

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, SCI, SSU
Peripherals	PWM, WDT
Number of I/O	45
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	64-BQFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36034hv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section 2 CPU

Figure 2.1 Memory Map (2)

2.6.2 On-Chip Peripheral Modules

On-chip peripheral modules are accessed in two states, three states, or four states. The data bus width is 8 bits or 16 bits depending on the register. For description on the data bus width and number of accessing states of each register, refer to section 21.1, Register Addresses (Address Order). Registers with 16-bit data bus width can be accessed by word size only. Registers with 8-bit data bus width can be accessed by byte or word size. When a register with 8-bit data bus width is accessed by word size, a bus cycle occurs twice. In two-state access, the operation timing is the same as that for on-chip memory. Figure 2.10 shows the operation timing in the case of three-state access to an on-chip peripheral module. In four-state access, the operation timing is such that a wait cycle is inserted between the T_2 and T_3 states.

Figure 2.10 On-Chip Peripheral Module Access Cycle (3-State Access)

Bit	Bit Name	Initial Value	R/W	Description
2	PV	0	R/W	Program-Verify
				When this bit is set to 1, the flash memory changes to program-verify mode. When it is cleared to 0, program-verify mode is cancelled.
1	E	0	R/W	Erase
				When this bit is set to 1 while $SWE = 1$ and $ESU = 1$, the flash memory changes to erase mode. When it is cleared to 0, erase mode is cancelled.
0	Р	0	R/W	Program
				When this bit is set to 1 while $SWE = 1$ and $PSU = 1$, the flash memory changes to program mode. When it is cleared to 0, program mode is cancelled.

7.2.2 Flash Memory Control Register 2 (FLMCR2)

FLMCR2 is a register that displays the state of flash memory programming/erasing. FLMCR2 is a read-only register, and should not be written to.

Bit	Bit Name	Initial Value	R/W	Description
7	FLER	0	R	Flash Memory Error
				Indicates that an error has occurred during an operation on flash memory (programming or erasing). When FLER is set to 1, flash memory goes to the error-protection state.
				See section 7.5.3, Error Protection, for details.
6 to 0	_	All 0	_	Reserved
				These bits are always read as 0.

12.3.8 General Registers A, B, C, and D (GRA, GRB, GRC, and GRD)

GR are 16-bit registers. Timer Z has eight general registers (GR), four for each channel. The GR registers are dual function 16-bit readable/writable registers, functioning as either output compare or input capture registers. Functions can be switched by TIORA and TIORC.

The values in GR and TCNT are constantly compared with each other when the GR registers are used as output compare registers. When the both values match, the IMFA to IMFD flags in TSR are set to 1. Compare match outputs can be selected by TIORA and TIORC.

When the GR registers are used as input capture registers, the TCNT value is stored after detecting external signals. At this point, IMFA to IMFD flags in the corresponding TSR are set to 1. Detection edges for input capture signals can be selected by TIORA and TIORC.

When PWM mode, complementary PWM mode, or reset synchronous PWM mode is selected, the values in TIORA and TIORC are ignored. Upon reset, the GR registers are set as output compare registers (no output) and initialized to H'FFFF. The GR registers cannot be accessed in 8-bit units; they must always be accessed as a 16-bit unit.

Examples of Waveform Output Operation: Figure 12.13 shows an example of 0 output/1 output.

In this example, TCNT has been designated as a free-running counter, and settings have been made such that 0 is output by compare match A, and 1 is output by compare match B. When the set level and the pin level coincide, the pin level does not change.

Figure 12.13 Example of 0 Output/1 Output Operation

Figure 12.59 When Compare Match and Bit Manipulation Instruction to TOCR Occur at the Same Timing

• Break detection: Break can be detected by reading the RXD pin level directly in the case of a framing error

Clocked synchronous mode

- Data length: 8 bits
- Receive error detection: Overrun errors

Table 14.1 Channel Configuration

Channel	Abbreviation	Pin	Register	Register Address
Channel 1*1	SCI3	SCK3	SMR	H'FFA8
	AbbreviationPinSCI3SCK3 RXD TXDSCI3_2SCK3_2 RXD_2 TXD_2	RXD TXD	BRR	H'FFA9
		T/LB	SCR3	H'FFAA
			TDR	H'FFAB
			SSR	H'FFAC
			RDR	H'FFAD
			RSR	—
			TSR	—
Channel 2*2	TSR SCI3_2 SCK3_2 RXD_2 TXD_2 SMR_2 BRR_2 SCR3_2 TDR_2	SCK3_2	SMR_2	H'F740
		BRR_2	H'F741	
		170_2	SCR3_2	H'F742
			TDR_2	H'F743
			SSR_2	H'F744
			RDR_2	H'F745
			RSR_2	—
			TSR_2	—

Notes: 1. Channel 1 is used in on-board programming mode by boot mode.

2. The H8/36037 Group does not have the channel 2.

Figure 14.1 Block Diagram of SCI3

- Read the OER flag in SSR to determine if there is an error. If an overrun error has occurred, execute overrun error processing.
- [2] Read SSR and check that the RDRF flag is set to 1, then read the receive data in RDR. When data is read from RDR, the RDRF flag is automatically cleared to 0.
- [3] To continue serial reception, before the MSB (bit 7) of the current frame is received, reading the RDRF flag and reading RDR should be finished. When data is read from RDR, the RDRF flag is automatically cleared to 0.
- [4] If an overrun error occurs, read the OER flag in SSR, and after performing the appropriate error processing, clear the OER flag to 0. Reception cannot be resumed if the OER flag is set to 1.

Figure 14.13 Sample Serial Reception Flowchart (Clocked Synchronous Mode)

14.5.5 Simultaneous Serial Data Transmission and Reception

Figure 14.14 shows a sample flowchart for simultaneous serial transmit and receive operations. The following procedure should be used for simultaneous serial data transmit and receive operations. To switch from transmit mode to simultaneous transmit and receive mode, after checking that the SCI3 has finished transmission and the TDRE and TEND flags are set to 1, clear TE to 0. Then simultaneously set TE and RE to 1 with a single instruction. To switch from receive mode to simultaneous transmit and receive mode, after checking that the SCI3 has finished receive mode, after checking that the SCI3 has finished receive mode, after checking that the SCI3 has finished receive mode to simultaneous transmit and receive mode, after checking that the SCI3 has finished reception, clear RE to 0. Then after checking that the RDRF and receive error flags (OER, FER, and PER) are cleared to 0, simultaneously set TE and RE to 1 with a single instruction.

- Read SSR and check that the TDRE flag is set to 1, set the MPBT bit in SSR to 0 or 1, then write transmit data to TDR. When data is written to TDR, the TDRE flag is automatically cleared to 0.
- [2] To continue serial transmission, be sure to read 1 from the TDRE flag to confirm that writing is possible, then write data to TDR. When data is written to TDR, the TDRE flag is automatically cleared to 0.
- [3] To output a break in serial transmission, set the port PCR to 1, clear PDR to 0, then clear the TE bit in SCR3 to 0.

Figure 14.16 Sample Multiprocessor Serial Transmission Flowchart

14.6.2 Multiprocessor Serial Data Reception

Figure 14.17 shows a sample flowchart for multiprocessor serial data reception. If the MPIE bit in SCR3 is set to 1, data is skipped until data with a 1 multiprocessor bit is sent. On receiving data with a 1 multiprocessor bit, the receive data is transferred to RDR. An RXI interrupt request is

14.8 Usage Notes

14.8.1 Break Detection and Processing

When framing error detection is performed, a break can be detected by reading the RXD pin value directly. In a break, the input from the RXD pin becomes all 0s, setting the FER flag, and possibly the PER flag. Note that as the SCI3 continues the receive operation after receiving a break, even if the FER flag is cleared to 0, it will be set to 1 again.

14.8.2 Mark State and Break Sending

When TE is 0, the TXD pin is used as an I/O port whose direction (input or output) and level are determined by PCR and PDR. This can be used to set the TXD pin to mark state (high level) or send a break during serial data transmission. To maintain the communication line at mark state until TE is set to 1, set both PCR and PDR to 1. As TE is cleared to 0 at this point, the TXD pin becomes an I/O port, and 1 is output from the TXD pin. To send a break during serial transmission, first set PCR to 1 and clear PDR to 0, and then clear TE to 0. When TE is cleared to 0, the transmitter is initialized regardless of the current transmission state, the TXD pin becomes an I/O port, and 0 is output from the TXD pin.

14.8.3 Receive Error Flags and Transmit Operations (Clocked Synchronous Mode Only)

Transmission cannot be started when a receive error flag (OER, PER, or FER) is set to 1, even if the TDRE flag is cleared to 0. Be sure to clear the receive error flags to 0 before starting transmission. Note also that receive error flags cannot be cleared to 0 even if the RE bit is cleared to 0.

15.3.14 TinyCAN Interrupt Registers 0, 1 (TCIRR0, TCIRR1)

TCIRR is a status flag for each interrupt source.

. . . .

• TCIRR0

Bit	Bit Name	Initial Value	R/W	Description
7	OVLI	0	R/(W)*	Overload Frame Transmit Interrupt Flag
				Status flag indicating that the TinyCAN has transmitted an overload frame.
				[Setting condition]
				When an overload frame is transmitted
				[Clearing condition]
				When 1 is written to this bit
6	BOFI	0	R/(W)*	Bus Off Interrupt Flag
				Status flag indicating the bus off state caused by the TEC or recovery from the bus off state to the error-active state.
				[Setting condition]
				When TEC \ge 256 or when 11 bits are received for 128 times in the bus off state
				[Clearing condition]
				When 1 is written to this bit
5	EPI	0	R/(W)*	Error Passive Interrupt Flag
				Status flag indicating the error-passive state caused by REC or TEC.
				[Setting condition]
				When TEC \geq 128 or REC \geq 128
				[Clearing condition]
				When 1 is written to this bit
4	ROWI	0	R/(W)*	Receive Overload Warning Interrupt Flag
				Status flag indicating the error warning state caused by REC.
				[Setting condition]
				When $REC \ge 96$
				[Clearing condition]
				When 1 is written to this bit

• • •

15.4.2 Local Acceptance Filter Mask (LAFMHn1, LAFMHn0, LAFMLn1, LAFMLn0 [n = 0 to 3])

LAFM consists of four registers for one Mailbox. LAFM filters mask of bit-unit comparison between the message identifier of RXn (n = 0 to 3) stored in the receive Mailbox and the receive message identifier. Since LAFM is in RAM, initial values are undefined after power-on. Be sure to initialize each bit by writing 0 or 1.

Register Name	Bit	Bit Name	R/W	Description
LAFMLn1	7 to 0	LAFMLn7 to	R/W	Filter mask for bits 7 to 0 of the extended identifier.
(n = 0 to 3)		LAFMLn0		0: Receive message is stored in RXn because the RXn message identifier bits match the receive message identifier bits
				1: Receive message is stored in RXn regardless of whether the RXn message identifier bits match the receive message identifier bits
LAFMLn0 (n = 0 to 3)	7 to 0	LAFMLn15 to LAFMLn8	R/W	Filter mask for bits 15 to 8 of the extended identifier.
				0: Receive message is stored in RXn because the RXn message identifier bits match the receive message identifier bits
				1: Receive message is stored in RXn regardless of whether the RXn message identifier bits match the receive message identifier bits
LAFMHn1	7 to 5	LAFMHn7 to	R/W	Filter mask for bits 2 to 0 of the standard identifier.
(n = 0 to 3)		LAFMHn5		0: Receive message is stored in RXn because the RXn message identifier bits match the receive message identifier bits
				1: Receive message is stored in RXn regardless of whether the RXn message identifier bits match the receive message identifier bits

Figure 16.12 Example of Operation in Data Reception (MSS = 1)

Register Name	Abbre- viation	Bit No	Address	Module Name	Data Bus Width	Access State
_	_	_	H'FFED to H'FFEF	—	_	_
System control register 1	SYSCR1	8	H'FFF0	Power- down	8	2
System control register 2	SYSCR2	8	H'FFF1	Power- down	8	2
Interrupt edge select register 1	IEGR1	8	H'FFF2	Interrupt	8	2
Interrupt edge select register 2	IEGR2	8	H'FFF3	Interrupt	8	2
Interrupt enable register 1	IENR1	8	H'FFF4	Interrupt	8	2
Interrupt enable register 2	IENR2	8	H'FFF5	Interrupt	8	2
Interrupt flag register 1	IRR1	8	H'FFF6	Interrupt	8	2
Interrupt flag register 2	IRR2	8	H'FFF7	Interrupt	8	2
Wakeup interrupt flag register	IWPR	8	H'FFF8	Interrupt	8	2
Module standby control register 1	MSTCR1	8	H'FFF9	Power- down	8	2
Module standby control register 2	MSTCR2	8	H'FFFA	Power- down	8	2
_	_	_	H'FFFB to H'FFFF	_	_	—

Notes: 1. LVDC: Low-voltage detection circuits (optional)

2. WDT: Watchdog timer

3. The H8/36037 Group does not have the SCI3_2.

Register Abbreviation	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Module Name
PUCR1	PUCR17	PUCR16	PUCR15	PUCR14	_	PUCR12	PUCR11	PUCR10	I/O port
PUCR5	_	_	PUCR55	PUCR54	PUCR53	PUCR52	PUCR51	PUCR50	_
PDR1	P17	P16	P15	P14	_	P12	P11	P10	_
PDR2	_	_	_	P24	P23	P22	P21	P20	-
PDR5	P57	P56	P55	P54	P53	P52	P51	P50	_
PDR6	P67	P66	P65	P64	P63	P62	P61	P60	_
PDR7	_	P76	P75	P74	_	P72	P71	P70	-
PDR8	P87	P86	P85	_	_	_	_	_	_
PDR9	P97	P96	P95	P94	P93	P92	P91	P90	-
PDRB	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	-
PMR1	IRQ3	IRQ2	IRQ1	IRQ0	TXD2*4	_	TXD	_	_
PMR5	POF57	POF56	WKP5	WKP4	WKP3	WKP2	WKP1	WKP0	_
PMR3	_	_	_	POF24	POF23	_	_	_	-
PCR1	PCR17	PCR16	PCR15	PCR14	_	PCR12	PCR11	PCR10	_
PCR2	_	_	_	PCR24	PCR23	PCR22	PCR21	PCR20	_
PCR5	PCR57	PCR56	PCR55	PCR54	PCR53	PCR52	PCR51	PCR50	-
PCR6	PCR67	PCR66	PCR65	PCR64	PCR63	PCR62	PCR61	PCR60	_
PCR7	_	PCR76	PCR75	PCR74	_	PCR72	PCR71	PCR70	_
PCR8	PCR87	PCR86	PCR85	_	_	_	_	_	_
PCR9	PCR97	PCR96	PCR95	PCR94	PCR93	PCR92	PCR91	PCR90	_
SYSCR1	SSBY	STS2	STS1	STS0	_	_	_	_	Power-
SYSCR2	SMSEL	LSON	DTON	MA2	MA1	MA0	SA1	SA0	down
IEGR1	NMIEG	_	_	_	IEG3	IEG2	IEG1	IEG0	Interrupt
IEGR2	_	_	WPEG5	WPEG4	WPEG3	WPEG2	WPEG1	WPEG0	_
IENR1	IENDT	_	IENWP	_	IEN3	IEN2	IEN1	IEN0	_
IENR2	_	_	IENTB1	_	_	_	_	_	-
IRR1	IRRDT	_	_	_	IRRI3	IRRI2	IRRI1	IRRI0	_
IRR2	_	_	IRRTB1	_	_	_	_	_	_
IWPR	_	_	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0	-
MSTCR1	_	_	MSTS3	MSTAD	MSTWD	_	MSTTV	_	Power-
MSTCR2	MSTS3_2*4	_	_	MSTTB1	_	_	MSTTZ		down

22.3.2 DC Characteristics

Table 22.12 DC Characteristics (1)

 $V_{cc} = 2.7$ to 5.5 V, $V_{ss} = 0.0$ V, $T_a = -20$ to $+75^{\circ}$ C (regular specifications) or $T_a = -40$ to $+85^{\circ}$ C (wide-range specifications), unless otherwise indicated.

					Value	s	_	
Item	Symbol	Applicable Pins	Test Condition	Min.	Тур.	Max.	Unit	Notes
Input high voltage	V _{IH}	RES, NMI, WKP0 to WKP5, IRQ0 to IRQ3, ADTRG,TMRIV,	V_{cc} = 4.0 to 5.5 V	$V_{cc} \times 0.8$	_	V _{cc} + 0.3	V	
		TMCIV, FTIOA0 to FTIOD0, FTIOA1 to FTIOD1, SCK3, SCK3_2* ¹ , SCS, SSCK, TRGV, TMIB1		$V_{cc} \times 0.9$	_	V _{cc} + 0.3		_
		RXD, RXD_2* ¹ , SSI, SSO, HRXD, P10 to P12, P14 to P17, P20 to P24, P50 to P57,	$V_{cc} = 4.0 \text{ to } 5.5 \text{ V}$	$V_{cc} \times 0.7$	_	V _{cc} + 0.3	V	
		P60 to P67, P70 to P72, P74 to P76, P85 to P87 P90 to P97		$V_{cc} \times 0.8$	_	V _{cc} + 0.3		
	$V_{\rm IH}$	PB0 to PB7	V_{cc} = 4.0 to 5.5 V	$V_{cc} \times 0.7$	—	$AV_{cc} + 0.3$	V	-
				$V_{cc} \times 0.8$	—	AV _{cc} + 0.3		_
		OSC1	$V_{\rm cc}$ = 4.0 to 5.5 V	$V_{\rm cc} - 0.5$	—	V _{cc} + 0.3	V	
				$V_{\rm cc} - 0.3$	—	V_{cc} + 0.3		

Appendix

l	Maamaala	Instruction Fetch	Branch Addr. Read	Stack Operation	Byte Data Access	Word Data Access	Internal Operation
Instruction		1	J	ĸ	L	M	N
RUIXR		1					
		1					
	ROTXR.L ERd	1					
RTE	RTE	2		2			2
RTS	RTS	2		1			2
SHAL	SHAL.B Rd	1					
	SHAL.W Rd	1					
	SHAL.L ERd	1					
SHAR	SHAR.B Rd	1					
	SHAR.W Rd	1					
	SHAR.L ERd	1					
SHLL	SHLL.B Rd	1					
	SHLL.W Rd	1					
	SHLL.L ERd	1					
SHLR	SHLR.B Rd	1					
	SHLR.W Rd	1					
	SHLR.L ERd	1					
SLEEP	SLEEP	1					
STC	STC CCR, Rd	1					
	STC CCR, @ERd	2				1	
	STC CCR, @(d:16,ERd)	3				1	
	STC CCR, @(d:24,ERd)	5				1	
	STC CCR,@-ERd	2				1	2
	STC CCR, @aa:16	3				1	
	STC CCR, @aa:24	4				1	
SUB	SUB.B Rs, Rd	1					
	SUB.W #xx:16, Rd	2					
	SUB.W Rs, Rd	1					
	SUB.L #xx:32, ERd	3					
	SUB.L ERs, ERd	1					
SUBS	SUBS #1/2/4, ERd	1					