

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300H
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, SCI, SSU
Peripherals	PWM, WDT
Number of I/O	45
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	64-BQFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36054hv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The revision list can be viewed directly by clicking the title page.

The revision list summarizes the locations of revisions and additions. Details should always be checked by referring to the relevant text.

16 H8/36057Group, H8/36037Group

Hardware Manual

Renesas 16-Bit Single-Chip Microcomputer H8 Family/H8/300H Tiny Series

1119/110/30011	
H8/36057	HD64F36057, HD64F36057G
	HD64336057, HD64336057G
H8/36054	HD64F36054, HD64F36054G
	HD64336054, HD64336054G
H8/36037	HD64F36037, HD64F36037G
	HD64336037, HD64336037G
H8/36036	HD64336036, HD64336036G
H8/36035	HD64336035, HD64336035G
H8/36034	HD64F36034, HD64F36034G
	HD64336034, HD64336034G
H8/36033	HD64336033, HD64336033G
H8/36032	HD64336032, HD64336032G

Renesas Electronics

Rev.4.00 2006.05

Rev. 4.00 Mar. 15, 2006 Page ii of xxxii

Figure 5.6 Example of External Clock Input	75
Figure 5.7 Example of Incorrect Board Design	76
Section 6 Power-Down Modes	
Figure 6.1 Mode Transition Diagram	82
Section 7 ROM Figure 7.1 Flash Memory Block Configuration	00
Figure 7.1 Prash Memory Block Configuration Figure 7.2 Programming/Erasing Flowchart Example in User Program Mode	
Figure 7.2 Program/Program-Verify Flowchart	
Figure 7.4 Erase/Erase-Verify Flowchart	
	104
Section 9 I/O Ports	
Figure 9.1 Port 1 Pin Configuration	
Figure 9.2 Port 2 Pin Configuration	
Figure 9.3 Port 5 Pin Configuration	
Figure 9.4 Port 6 Pin Configuration	
Figure 9.5 Port 7 Pin Configuration	
Figure 9.6 Port 8 Pin Configuration	
Figure 9.7 Port 9 Pin Configuration	
Figure 9.8 Port B Pin Configuration	141
Section 10 Timer B1	
Figure 10.1 Block Diagram of Timer B1	143
Section 11 Timer V	
Figure 11.1 Block Diagram of Timer V	150
Figure 11.2 Increment Timing with Internal Clock	
Figure 11.3 Increment Timing with External Clock	
Figure 11.4 OVF Set Timing	
Figure 11.5 CMFA and CMFB Set Timing	
Figure 11.6 TMOV Output Timing	
Figure 11.7 Clear Timing by Compare Match	
Figure 11.8 Clear Timing by TMRIV Input	
Figure 11.9 Pulse Output Example	
Figure 11.10 Example of Pulse Output Synchronized to TRGV Input	
Figure 11.11 Contention between TCNTV Write and Clear	
Figure 11.12 Contention between TCORA Write and Compare Match	
Figure 11.13 Internal Clock Switching and TCNTV Operation	162

1.3 Pin Arrangement

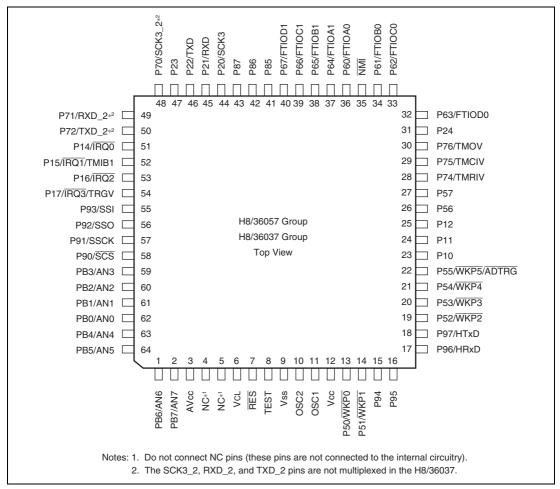
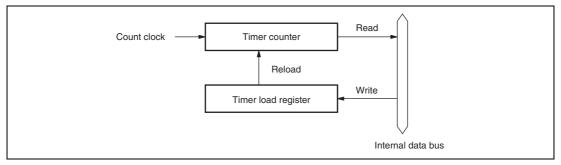



Figure 1.2 Pin Arrangement of F-ZTAT[™] and Masked ROM Versions (FP-64K, FP-64A)

The timer is counting, so the value read is not necessarily the same as the value in the timer load register. As a result, bits other than the intended bit in the timer counter may be modified and the modified value may be written to the timer load register.

Figure 2.13 Example of Timer Configuration with Two Registers Allocated to Same Address

Example 2: The BSET instruction is executed for port 5.

P57 and P56 are input pins, with a low-level signal input at P57 and a high-level signal input at P56. P55 to P50 are output pins and output low-level signals. An example to output a high-level signal at P50 with a BSET instruction is shown below.

	P57	P56	P55	P54	P53	P52	P51	P50
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High level	Low level	Low level	Low level	Low level	Low level	Low level
PCR5	0	0	1	1	1	1	1	1
PDR5	1	0	0	0	0	0	0	0

• Prior to executing BSET instruction

• BSET instruction executed instruction

BSET #0, @PDR5

The BSET instruction is executed for port 5.

6.1.4 Module Standby Control Register 2 (MSTCR2)

MSTCR2 allows the on-chip peripheral modules to enter a standby state in module units.

Bit	Bit Name	Initial Value	R/W	Description
7	MSTS3_2	0	R/W	SCI3_2 Module Standby
				The SCI3_2 enters standby mode when this bit is set to 1.
				Note: This bit is reserved in the H8/36037 Group. This bit is always read as 0.
6, 5	_	All 0		Reserved
				These bits are always read as 0.
4	MSTTB1	0	R/W	Timer B1 Module Standby
				The timer B1 enters standby mode when this bit is set to 1.
3, 2	_	All 0		Reserved
				These bits are always read as 0.
1	MSTTZ	0	R/W	Timer Z Module Standby
				The timer Z enters standby mode when this bit is set to 1.
0	_	0		Reserved
				This bit is always read as 0.

• P72/TXD_2* pin

Register	PMR1*	PCR7	
Bit Name	TXD2*	PCR72	Pin Function
Setting Value	0	0	P72 input pin
		1	P72 output pin
	1	Х	TXD_2 output pin*

[Legend]

X: Don't care.

Note: * The H8/36037 Group does not have this pin.

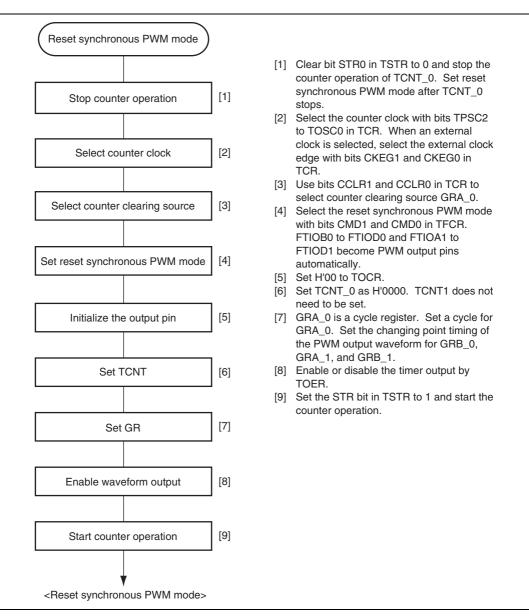
• P71/RXD_2* pin

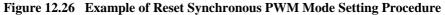
Register	SCR3_2*	PCR7	
Bit Name	RE*	PCR71	Pin Function
Setting Value	0	0	P71 input pin
		1	P71 output pin
	1	Х	RXD_2 input pin*

[Legend]

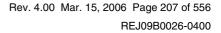
X: Don't care.

Note: * The H8/36037 Group does not have this pin.


• P70/SCK3_2* pin


Register	SCR3_2	<u>2</u> *	SMR2*	PCR7	
Bit Name	CKE1*	CKE0*	COM*	PCR70	Pin Function
Setting Value	0	0	0	0	P70 input pin
				1	P70 output pin
	0	0	1	Х	SCK3_2 output pin*
	0	1	Х	Х	SCK3_2 output pin*
	1	Х	Х	Х	SCK3_2 input pin*

[Legend]


X: Don't care.

Note: * The H8/36037 Group does not have these pins.

RENESAS

Section 12 Timer Z

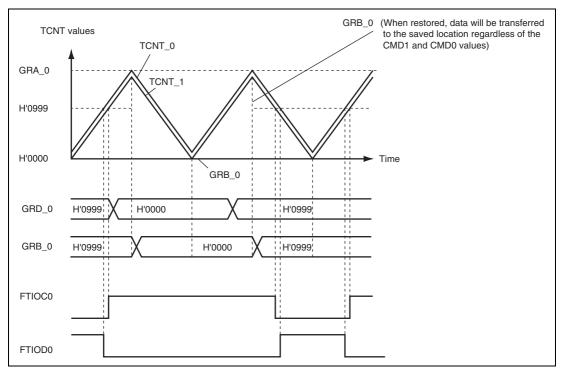


Figure 12.43 Buffer Operation (4) (Buffer Operation in Complementary PWM Mode CMD1 = CMD0 = 1)

	Operating Frequency φ (MHz)								
	18								
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)			
110	3	79	-0.12	3	88	-0.25			
150	2	233	0.14	3	64	0.14			
300	2	114	0.14	2	129	0.14			
600	1	233	0.14	2	64	0.14			
1200	1	114	0.14	1	129	0.14			
2400	0	233	0.14	1	64	0.14			
4800	0	114	0.14	0	129	0.14			
9600	0	58	-0.96	0	64	0.14			
19200	0	28	1.02	0	32	-1.36			
31250	0	17	0.00	0	19	0.00			
38400	0	14	-2.34	0	15	1.73			

Operating Frequency ϕ (MHz)

[Legend]

-: A setting is available but error occurs.

Table 14.4 Maximum Bit Rate for Each Frequency (Asynchronous Mo

φ (MHz)	Maximum Bit Rate (bit/s)	n	N	φ (MHz)	Maximum Bit Rate (bit/s)	n	N
2	62500	0	0	8	250000	0	0
2.097152	65536	0	0	9.8304	307200	0	0
2.4576	76800	0	0	10	312500	0	0
3	93750	0	0	12	375000	0	0
3.6864	115200	0	0	12.288	384000	0	0
4	125000	0	0	14	437500	0	0
4.9152	153600	0	0	14.7456	460800	0	0
5	156250	0	0	14	500000	0	0
6	187500	0	0	17.2032	537600	0	0
6.144	192000	0	0	18	562500	0	0
7.3728	230400	0	0	20	625000	0	0

RENESAS

Table 14.5Examples of BRR Settings for Various Bit Rates (Clocked Synchronous Mode)
(2)

	Operating Frequency φ (MF						
Bit Rate		18	20				
(bit/s)	n	Ν	n	Ν			
110	_	_	_	_			
250	_	_	_	_			
500	3	140	3	155			
1k	3	69	3	77			
2.5k	2	112	2	124			
5k	1	224	1	249			
10k	1	112	1	124			
25k	0	179	0	199			
50k	0	89	0	99			
100k	0	44	0	49			
250k	0	17	0	19			
500k	0	8	0	9			
1M	0	4	0	4			
2M	_		_	_			
2.5M	_	_	0	1			
4M	_	—	—	_			

[Legend]

Blank: No setting is available.

-: A setting is available but error occurs.

*: Continuous transfer is not possible.

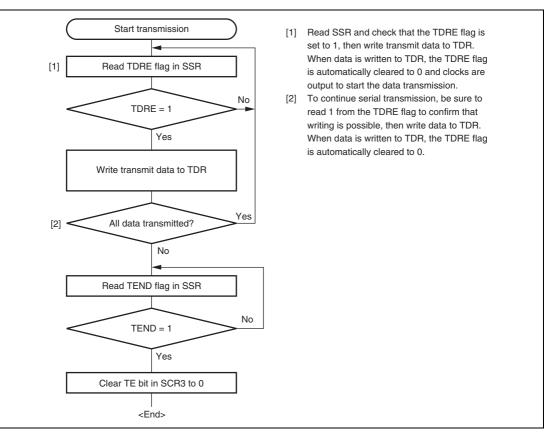


Figure 14.11 Sample Serial Transmission Flowchart (Clocked Synchronous Mode)

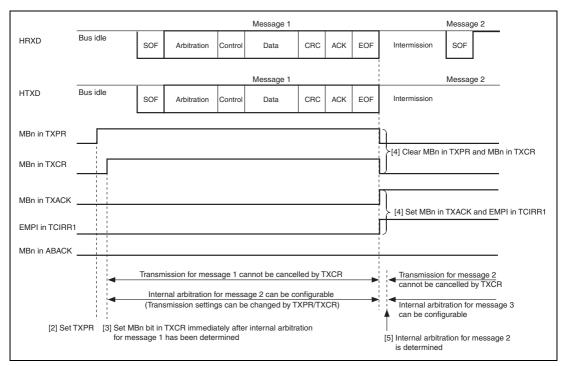


Figure 15.7 Internal Arbitration at Transmission Caused by TXCR/TXPR Setting

Arbitration Lost during Message Transmission: If an arbitration loss on the CAN bus occurs, the TinyCAN halts transmission, and starts message reception. If the DART bit for the transmission-requested message is cleared to 0, on the completion of reception, the transmission-requested message is retransmitted. However, if the DART bit is set to 1, it is not transmitted in frame 2. Figures 15.8 to 15.10 show the timings of the arbitration loss on the CAN bus. Procedure and operation are as follows.

- 1. Write data of a transmit message to MCn0, MCn4 to MCn7, and MDn0 to MDn7 [n = 1 to 3] before clearing the MBn bit in MBCR corresponding to the Mailbox of the transmit message to 0 (initial setting).
- 2. Set the corresponding MBn bit in TXPR to 1 (start condition issuance). Then, the start condition is generated.
- 3. The internal arbitration for message 1 is determined and the transmit message is transferred to the temporary buffer. After that, even if a transmit request cancellation is issued to the message being transmitted by the DART or MBn bit in TXCR, message 1 is transmitted continuously unless the TinyCAN detects an arbitration loss or error on the CAN bus.

		Data frame reception	Remote frame reception	
MBn in RXPR			jį	
DFRI in TCIRR0			ji	
MBn in RFPR				
RFRI in TCIRR0			ſ	
MBn in UMSR				
OVRI in TCIRR1				
RTR in MCn4			ſ	
CPU access	Other module		•	TinyCAN
Case 2: Overwrite (NM	MC = 1, 1st: Remote Fi	rame, 2nd: Data Frame)		
		Remote frame reception	Data frame reception	
MBn in RXPR			r	
DFRI in TCIRR0			ſ	
MBn in RFPR			į į	
RFRI in TCIRR0			ii	
MBn in UMSR			ſ	
OVRI in TCIRR1			ſ	
RTR in MCn4			i i	
	Other module C = 0, 1st: Data Frame			TinyCAN
Case 3: Overrun (NM		, 2nd: Remote Frame) Data frame reception	Remote frame reception	TinyCAN
Case 3: Overrun (NM			Remote frame reception	TinyCAN
Case 3: Overrun (NM MBn in RXPR DFRI in TCIRR0			Remote frame reception	TinyCAN
Case 3: Overrun (NM MBn in RXPR DFRI in TCIRR0 _ MBn in RFPR			Remote frame reception	TinyCAN
Case 3: Overrun (NM MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0			Remote frame reception	TinyCAN
Case 3: Overrun (NM MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR			Remote frame reception	TinyCAN
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1			Remote frame reception	TinyCAN
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 RTR in MCn4			Remote frame reception	TinyCAN
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 RTR in MCn4 CPU access	C = 0, 1st: Data Frame	Data frame reception	Remote frame reception	
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 RTR in MCn4 CPU access	C = 0, 1st: Data Frame	Data frame reception	Remote frame reception	
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 RTR in MCn4 CPU access Case 4: Overrun (NMC	C = 0, 1st: Data Frame	Data frame reception		
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 RTR in MCn4 CPU access Case 4: Overrun (NMC MBn in RXPR	C = 0, 1st: Data Frame	Data frame reception		
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 CPU access Case 4: Overrun (NMC MBn in RXPR DFRI in TCIRR0	C = 0, 1st: Data Frame	Data frame reception		
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 CPU access Case 4: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR	C = 0, 1st: Data Frame	Data frame reception		
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 CPU access Case 4: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0	C = 0, 1st: Data Frame	Data frame reception		
Case 3: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 CPU access Case 4: Overrun (NMC MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR	C = 0, 1st: Data Frame	Data frame reception		
MBn in RXPR DFRI in TCIRR0 MBn in RFPR RFRI in TCIRR0 MBn in UMSR OVRI in TCIRR1 RTR in MCn4 CPU access	C = 0, 1st: Data Frame	Data frame reception		

Figure 15.16 RXPR/RFPR Set/Clear Timing when Overrun/Overwrite Occurs

16.3.6 SS Receive Data Register (SSRDR)

SSRDR is an 8-bit register that stores received serial data. When the SSU has received one byte of serial data, it transfers the received serial data from SSTRSR and the data is stored. After this, SSTRSR is receive-enabled. As SSTRSR and SSRDR function as a double buffer in this way, continuous receive operations are possible. SSRDR is a read-only register and cannot be written to by the CPU. SSRDR is initialized to H'00.

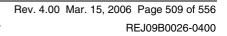
16.3.7 SS Transmit Data Register (SSTDR)

SSTDR is an 8-bit register that stores serial data for transmission. SSTDR can be read or written to by the CPU at all times. When the SSU detects that SSTRSR is empty, it transfers the transmit data written in SSTDR to SSTRSR and starts serial transmission. If the next transmit data has already been written to SSTDR during serial transmission, continuous serial transmission is possible. SSTDR is initialized to H'00.

16.3.8 SS Shift Register (SSTRSR)

SSTRSR is a shift register that transmits and receives serial data. When transmit data is transferred from SSTDR to SSTRSR, bit 0 in SSTDR is transferred to bit 0 in SSTRSR while the MLS bit in SSMR is 0 (LSB-first transfer) and bit 7 in SSTDR is transferred to bit 0 in SSTRSR while the MLS bit in SSMR is 1 (MSB-first transfer). SSTRSR cannot be directly accessed by the CPU.

Instruction code:


byte	BL	
2nd	BH	
oyte	AL	
1st l	ΥH	

ш	Table A.2 (3)		INC						EXTS		DEC		BGT BLE		
	ble A.2 (3)		INC						EXTS		DEC		BLT B(
O	Table A.2 Table A.2 (3) (3)	Δ		>						Ē		<u>د</u>	BGE		
ш		ADD		MOV	SHAL	SHAR	ROTL	ROTR	NEG	SUB		CMP	BMI		
A													BPL		
ര			ADDS		SHAL	SHAR	ROTL	ROTR	NEG		SUB		BVS		
œ	SLEEP		AC		Ś	Ś	Я	RC	z		ō		BVC		
2			INC						EXTU		DEC		BEQ		
9													BNE	AND	
ى ا			INC						EXTU		DEC		BCS	XOR	aOX
4	LDC/STC												BCC	OR	6
m					SHLL	SHLR	ROTXL	ROTXR	NOT				BLS	SUB	u u
7													BHI	CMP	dWC
-					SHLL	SHLR	ROTXL	ROTXR	NOT				BRN	ADD	
0	MOV	INC	ADDS	DAA	ō	ъ	RC	RC	z	DEC	SUBS	DAS	BRA	MOV	NOM
AH AL	01	OA	OB	OF	10	1	12	13	17	1A	1B	Ť	58	62	~~

Table A.2 **Operation Code Map (2)**

	•	Instruction Fetch	Addr. Read		Byte Data Access	Word Data Access	Internal Operation
		1	J	к	L	Μ	N
BIOR	BIOR #xx:8, Rd	1			_		
	BIOR #xx:8, @ERd	2			1		
	BIOR #xx:8, @aa:8	2			1		
BIST	BIST #xx:3, Rd	1					
	BIST #xx:3, @ERd	2			2		
	BIST #xx:3, @aa:8	2			2		
BIXOR	BIXOR #xx:3, Rd	1					
	BIXOR #xx:3, @ERd	2			1		
	BIXOR #xx:3, @aa:8	2			1		
BLD	BLD #xx:3, Rd	1					
	BLD #xx:3, @ERd	2			1		
	BLD #xx:3, @aa:8	2			1		
BNOT	BNOT #xx:3, Rd	1					
	BNOT #xx:3, @ERd	2			2		
	BNOT #xx:3, @aa:8	2			2		
	BNOT Rn, Rd	1					
	BNOT Rn, @ERd	2			2		
	BNOT Rn, @aa:8	2			2		
BOR	BOR #xx:3, Rd	1					
	BOR #xx:3, @ERd	2			1		
	BOR #xx:3, @aa:8	2			1		
BSET	BSET #xx:3, Rd	1					
	BSET #xx:3, @ERd	2			2		
	BSET #xx:3, @aa:8	2			2		
	BSET Rn, Rd	1					
	BSET Rn, @ERd	2			2		
	BSET Rn, @aa:8	2			2		
BSR	BSR d:8	2		1			
	BSR d:16	2		1			2
BST	BST #xx:3, Rd	1					
	BST #xx:3, @ERd	2			2		
	BST #xx:3, @aa:8	2			2		

RENESAS

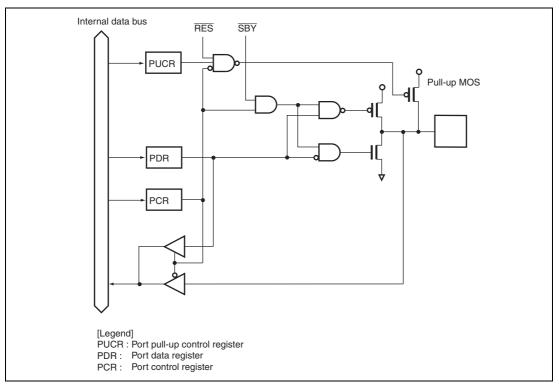


Figure B.4 Port 1 Block Diagram (P12, P11, P10)

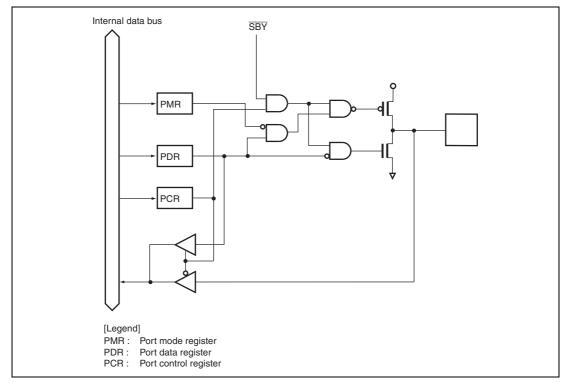


Figure B.5 Port 2 Block Diagram (P24, P23)

Item	Page	Revision (See Manual for Details)						
Table 22.2 DC Characteristics (1)								
Table 22.12 DC Characteristics (1)	468	Note: 3. Pin states during current consumption measurement are given below (excluding current in the pull-up MOS transistors and output buffers).						
		Mode	RES Pin	in Internal State				
		Active mode 1	V _{cc}	Operates				
		Active mode 2	_	Operates (¢	o _{osc} /64)			
		Sleep mode 1	V _{cc}	Only timers	operate			
		Sleep mode 2	_	Only timers operate($\phi_{osc}/64$)				
Figure 22.8 SSU Input/Output Timing (Four-Line Bus Communication Mode, Master, CPHS = 1) to Figure 22.11 SSU Input/Output Timing (Four-Line Bus Communication Mode, Slave, CPHS = 0)	481 to 484	t _{oн} deleted						
Table A.1 Instruction Set	491	Amended						
2. Arithmetic Instructions		Mnemonic	Operand Size	lition Code	Vo. of States ^{*1} Advanced Advanced			
		DAA DAA Rd	B - *	\$ \$ * \$	2			