

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	Н8/300Н
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, SCI, SSU
Peripherals	PWM, WDT
Number of I/O	45
Program Memory Size	56KB (56K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df36057fzjv

Email: info@E-XFL.COM

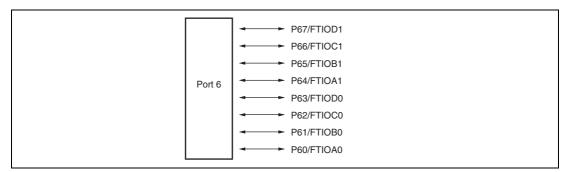
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

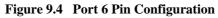
Table 15.4	Interrupt Requests						
Table 15.5	Test Mode Settings						
Section 16	Synchronous Serial Communication Unit (SSU)						
Table 16.1	Pin Configuration						
Table 16.2	Relationship between Communication Modes and Input/Output Pins						
Table 16.3	Interrupt Requests						
Section 17	Subsystem Timer (Subtimer)						
Table 17.1	Example of Subclock Error						
Section 18	A/D Converter						
Table 18.1	Pin Configuration						
Table 18.2	Analog Input Channels and Corresponding ADDR Registers						
Table 18.3	A/D Conversion Time (Single Mode)						
Section 19	Power-On Reset and Low-Voltage Detection Circuits (Optional)						
Table 19.1	LVDCR Settings and Select Functions						
Section 22	Electrical Characteristics						
Table 22.1	Absolute Maximum Ratings						
Table 22.2	DC Characteristics (1)						
Table 22.2	DC Characteristics (2)						
Table 22.3	AC Characteristics						
Table 22.4	Serial Communication Interface (SCI) Timing						
Table 22.5	Controller Area Network for Tiny (TinyCAN) Timing						
Table 22.6	Synchronous Communication Unit (SSU) Timing						
Table 22.7	A/D Converter Characteristics						
Table 22.8	Watchdog Timer Characteristics						
Table 22.9	Flash Memory Characteristics						
Table 22.10							
Table 22.11	Power-On Reset Circuit Characteristics						
Table 22.12	DC Characteristics (1)						
Table 22.13	DC Characteristics (2)						
Table 22.14	AC Characteristics						
Table 22.15	Serial Communication Interface (SCI) Timing						
Table 22.16							
Table 22.17							
Table 22.18	A/D Converter Characteristics						
Table 22.19	6						
Table 22.20	11.5 8						
Table 22.21	Power-On Reset Circuit Characteristics						

Renesas

Host Bit Rate	System Clock Frequency Range of LSI	
19,200 bps	16 to 20 MHz	
9,600 bps	8 to 16 MHz	
4,800 bps	4 to 16 MHz	
2,400 bps	2 to 16 MHz	

Table 7.3System Clock Frequencies for which Automatic Adjustment of LSI Bit Rate is
Possible


7.3.2 Programming/Erasing in User Program Mode

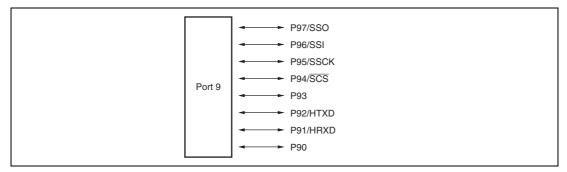

On-board programming/erasing of an individual flash memory block can also be performed in user program mode by branching to a user program/erase control program. The user must set branching conditions and provide on-board means of supplying programming data. The flash memory must contain the user program/erase control program or a program that provides the user program/erase control program from external memory. As the flash memory itself cannot be read during programming/erasing, transfer the user program/erase control program to on-chip RAM, as in boot mode. Figure 7.2 shows a sample procedure for programming/erasing in user program mode. Prepare a user program/erase control program in accordance with the description in section 7.4, Flash Memory Programming/Erasing.

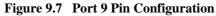
9.4 Port 6

Port 6 is a general I/O port also functioning as a timer Z I/O pin. Each pin of the port 6 is shown in figure 9.4. The register setting of the timer Z has priority for functions of the pins for both uses.

Port 6 has the following registers.

- Port control register 6 (PCR6)
- Port data register 6 (PDR6)


9.4.1 Port Control Register 6 (PCR6)


PCR6 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 6.

Bit	Bit Name	Initial Value	R/W	Description
7	PCR67	0	W	When each of the port 6 pins P67 to P60 functions as a
6	PCR66	0	W	general I/O port, setting a PCR6 bit to 1 makes the corresponding pin an output port, while clearing the bit to
5	PCR65	0	W	0 makes the pin an input port.
4	PCR64	0	W	
3	PCR63	0	W	
2	PCR62	0	W	
1	PCR61	0	W	
0	PCR60	0	W	

9.7 Port 9

Port 9 is a general I/O port also functioning as a TinyCAN I/O pin and an SSU I/O pin. Each pin of the port 9 is shown in figure 9.7.

Port 9 has the following registers.

- Port control register 9 (PCR9)
- Port data register 9 (PDR9)

9.7.1 Port Control Register 9 (PCR9)

PCR9 selects inputs/outputs in bit units for pins to be used as general I/O ports of port 9.

Bit	Bit Name	Initial Value	R/W	Description
7	PCR97	0	W	When each of the port 9 pins P97 to P90 functions as a
6	PCR96	0	W	general I/O port, setting a PCR9 bit to 1 makes the corresponding pin an output port, while clearing the bit to
5	PCR95	0	W	0 makes the pin an input port.
4	PCR94	0	W	
3	PCR93	0	W	
2	PCR92	0	W	
1	PCR91	0	W	
0	PCR90	0	W	

Bit	Bit Name	Initial Value	R/W	Description
0	IMIEA	0	R/W	Input Capture/Compare Match Interrupt Enable A
				0: Interrupt requests (IMIA) by IMFA flag are disabled
				1: Interrupt requests (IMIA) by IMFA flag are enabled

12.3.13 PWM Mode Output Level Control Register (POCR)

POCR control the active level in PWM mode. Timer Z has two POCR registers, one for each channel.

Bit	Bit Name	Initial value	R/W	Description
7 to 3	_	All 1		Reserved
				These bits are always read as 1.
2	POLD	0	R/W	PWM Mode Output Level Control D
				0: The output level of FTIOD is low-active
				1: The output level of FTIOD is high-active
1	POLC	0	R/W	PWM Mode Output Level Control C
				0: The output level of FTIOC is low-active
				1: The output level of FTIOC is high-active
0	POLB	0	R/W	PWM Mode Output Level Control B
				0: The output level of FTIOB is low-active
_				1: The output level of FTIOB is high-active

12.3.14 Interface with CPU

16-Bit Register: TCNT and GR are 16-bit registers. Reading/writing in a 16-bit unit is enabled but disabled in an 8-bit unit since the data bus with the CPU is 16-bit width. These registers must always be accessed in a 16-bit unit. Figure 12.5 shows an example of accessing the 16-bit registers.

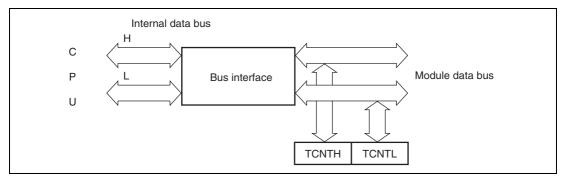


Figure 12.5 Accessing Operation of 16-Bit Register (between CPU and TCNT (16 Bits))

8-Bit Register: Registers other than TCNT and GR are 8-bit registers that are connected internally with the CPU in an 8-bit width. Figure 12.6 shows an example of accessing the 8-bit registers.

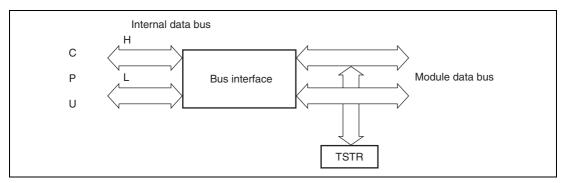
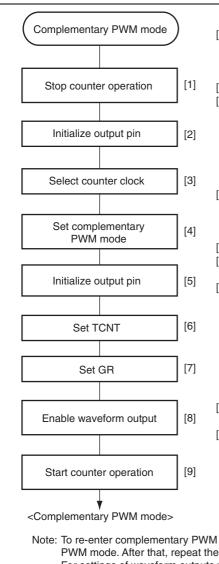



Figure 12.6 Accessing Operation of 8-Bit Register (between CPU and TSTR (8 Bits))

Register	Description
TCNT_0	Initial setting of non-overlapped periods (non-overlapped periods are differences with TCNT_1)
TCNT_1	Initial setting of H'0000
GRA_0	Sets (upper limit value – 1) of TCNT_0
GRB_0	Set a changing point of the PWM waveform output from pins FTIOB0 and FTIOD0.
GRA_1	Set a changing point of the PWM waveform output from pins FTIOA1 and FTIOC1.
GRB_1	Set a changing point of the PWM waveform output from pins FTIOB1 and FTIOD1.

Table 12.7 Register Settings in Complementary PWM Mode

- Clear bits STR0 and STR1 in TSTR to 0, and stop the counter operation of TCNT_0. Stop TCNT_0 and TCNT_1 and set complementary PWM mode.
- [2] Write H'00 to TOCR.
- Use bits TPSC2 to TPSC0 in TCR to select the same counter clock for channels 0 and 1. When an external clock is selected, select the edge of the external clock by bits CKEG1 and CKEG0 in TCR. Do not use bits CCLR1 and CCLR0 in TCR to clear the counter.
- [4] Use bits CMD1 and CMD0 in TFCR to set complementary PWM mode. FTIOB0 to FTIOD0 and FTIOA1 to FTIOD1 automatically become PWM output pins.
- [5] Set H'00 to TOCR.
- [6] TCNT_1 must be H'0000. Set a nonoverlapped period to TCNT_0.
- [7] GRA_0 is a cycle register. Set the cycle to GRA_0. Set the timing to change the PWM output waveform to GRB_0, GRA_1, and GRB_1. Note that the timing must be set within the range of compare match carried out for TCNT_0 and TCNT_1. For GR settings, see Setting GR Value in Complementary PWM Mode in section 12.4.7, Complementary PWM Mode.
- [8] Use TOER to enable or disable the timer output.
- [9] Set the STR0 and STR1 bits in TSTR to 1 to start the count operation.

Note: To re-enter complementary PWM mode, first, enter a mode other than the complementary PWM mode. After that, repeat the setting procedures from step [1]. For settings of waveform outputs with a duty cycle of 0% and 100%, see Examples of Complementary PWM Mode Operation and Setting GR Value in Complementary PWM Mode in section 12.4.7, Complementary PWM Mode.

Figure 12.29 Example of Complementary PWM Mode Setting Procedure

RENESAS

Table 14.5	Examples of BRR Settings for Various Bit Rates (Clocked Synchronous Mode)
	(1)

	Operating Frequency (MHZ)											
Bit Rate	2			4		8		10	16			
(bit/s)	n	Ν	n	Ν	n	Ν	n	Ν	n	Ν		
110	3	70	_		_		_					
250	2	124	2	249	3	124		_	3	249		
500	1	249	2	124	2	249		_	3	124		
1k	1	124	1	249	2	124	_	_	2	249		
2.5k	0	199	1	99	1	199	1	249	2	99		
5k	0	99	0	199	1	99	1	124	1	199		
10k	0	49	0	99	0	199	0	249	1	99		
25k	0	19	0	39	0	79	0	99	0	159		
50k	0	9	0	19	0	39	0	49	0	79		
100k	0	4	0	9	0	19	0	24	0	39		
250k	0	1	0	3	0	7	0	9	0	15		
500k	0	0*	0	1	0	3	0	4	0	7		
1M			0	0*	0	1	—	_	0	3		
2M					0	0*		_	0	1		
2.5M							0	0*	_	_		
4M									0	0*		

Operating Frequency ϕ **(MHz)**

[Legend]

Blank: No setting is available.

-: A setting is available but error occurs.

*: Continuous transfer is not possible.

14.4.4 Serial Data Reception

Figure 14.7 shows an example of operation for reception in asynchronous mode. In serial reception, the SCI3 operates as described below.

- 1. The SCI3 monitors the communication line. If a start bit is detected, the SCI3 performs internal synchronization, receives receive data in RSR, and checks the parity bit and stop bit.
- 2. If an overrun error occurs (when reception of the next data is completed while the RDRF flag is still set to 1), the OER bit in SSR is set to 1. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is generated. Receive data is not transferred to RDR.
- 3. If a parity error is detected, the PER bit in SSR is set to 1 and receive data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is generated.
- 4. If a framing error is detected (when the stop bit is 0), the FER bit in SSR is set to 1 and receive data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an ERI interrupt request is generated.
- 5. If reception is completed successfully, the RDRF bit in SSR is set to 1, and receive data is transferred to RDR. If the RIE bit in SCR3 is set to 1 at this time, an RXI interrupt request is generated. Continuous reception is possible because the RXI interrupt routine reads the receive data transferred to RDR before reception of the next receive data has been completed.

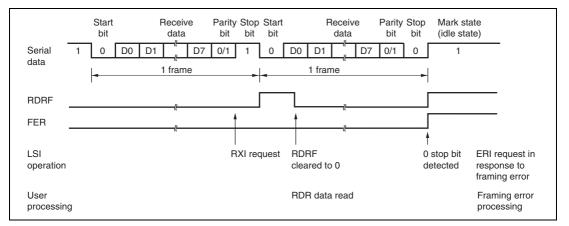


Figure 14.7 Example of SCI3 Reception in Asynchronous Mode (8-Bit Data, Parity, One Stop Bit)

Section 15	Controller Area	Network for	Tiny (TinyCAN)
------------	-----------------	-------------	----------------

Bit	Bit Name	Initial Value	R/W	Description
6	BOFIM	1	R/W	Bus Off Interrupt Mask
				Enables or disables a bus-off interrupt request.
				0: The bus-off interrupt request is enabled
				1: The bus-off interrupt request is disabled
5	EPIM	1	R/W	Error Passive Interrupt Mask
				Enables or disables an error passive interrupt request.
				0: The error passive interrupt request is enabled
				1: The error passive interrupt request is disabled
4	ROWIM	1	R/W	Receive Overload Warning Interrupt Mask
				Enables or disables an interrupt request for a receive overload warning.
				0: The interrupt request for the receive overload warning is enabled
				1: The interrupt request for the receive overload warning is disabled
3	TOWIM	1	R/W	Transmit Overload Warning Interrupt Mask
				Enables or disables an interrupt request for a transmit overload warning.
				0: The interrupt request for the transmit overload warning is enabled
				1: The interrupt request for the transmit overload warning is disabled
2	RFRIM	1	R/W	Remote Frame Request Interrupt Mask
				Enables or disables an interrupt request for a remote frame request.
				0: The interrupt request for the remote frame request is enabled
				1: The interrupt request for the remote frame request is disabled
1	DFRIM	1	R/W	Data Frame Receive Message Interrupt Mask
				Enables or disables an interrupt request for a data frame receive message.
				0: The interrupt request for the data frame receive message is enabled
				1: The interrupt request for the data frame receive message is disabled

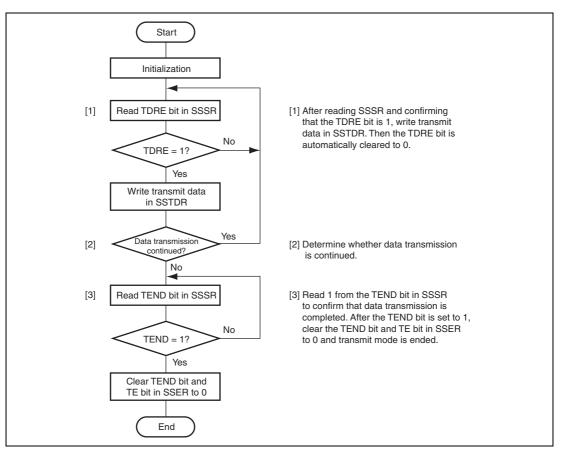
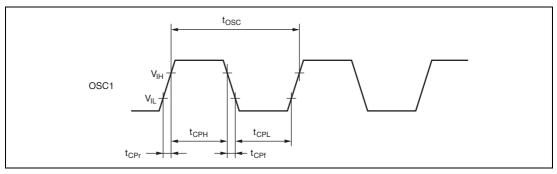
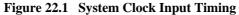


Figure 16.6 Sample Serial Transmission Flowchart


Table 22.13 DC Characteristics (2)


 $V_{cc} = 2.7$ to 5.5 V, $V_{ss} = 0.0$ V, $T_a = -20$ to $+75^{\circ}C$ (regular specifications) or $T_a = -40$ to $+85^{\circ}C$ (wide-range specifications), unless otherwise indicated.

					Value	s	
Item	Symbol	Applicable Pins	Test Condition	Min.	Тур.	Max.	Unit
Allowable output low current (per pin)	I _{ol}	Output pins except port 6	$V_{\rm cc}$ = 4.0 to 5.5 V	_	_	2.0	mA
		Port 6	-	_	_	20.0	
		Output pins except port 6		_	_	0.5	_
		Port 6	-	_	—	10.0	_
Allowable output low current (total)	$\Sigma {\rm I}_{\rm OL}$	Output pins except port 6	V_{cc} = 4.0 to 5.5 V	_	_	40.0	mA
		Port 6	-	_	_	80.0	
		Output pins except port 6		_	_	20.0	_
		Port 6	-	_	—	40.0	_
Allowable output high	-I _{OH}	All output pins	$V_{\rm cc}$ = 4.0 to 5.5 V	—	—	2.0	mA
current (per pin)				_	_	0.2	_
Allowable output high	$\Sigma -I_{OH} $	All output pins	$V_{\rm cc}$ = 4.0 to 5.5 V	_	_	30.0	mA
current (total)						8.0	

22.4 Operation Timing

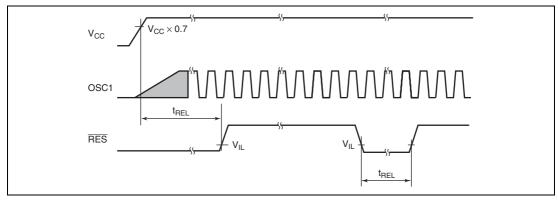


Figure 22.2 RES Low Width Timing

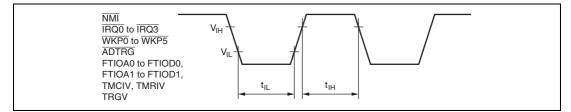


Figure 22.3 Input Timing

22.5 Output Load Condition

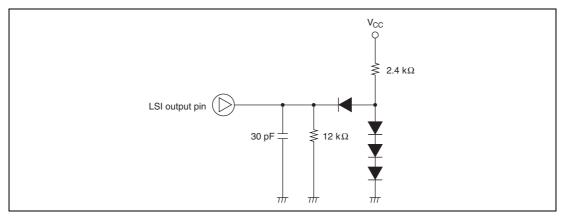


Figure 22.12 Output Load Circuit

			Addressing Mode and Instruction Length (bytes))							No. o States			
Mnemonic		perand Size	Operand Size	#xx	Rn	@ERn	@(d, ERn)	@-ERn/@ERn+	@aa	@(d, PC)	@ @ aa		Operation	Condition Code					с	Normal	Advanced
DEC	DEC.L #1, ERd	L	-145	2			-				-	ERd32–1 \rightarrow ERd32	 _	н	N ↓	z ≎	v ≎	_	_	2	
220	DEC.L #2, ERd	L		2			-	-				ERd32–2 \rightarrow ERd32	_	_	\$	↓	↓ ↓	-		2	
DAS	DAS.Rd	В		2								Rd8 decimal adjust \rightarrow Rd8	-	*	\$	\$	*	-	:	2	
MULXU	MULXU. B Rs, Rd	В		2								$Rd8 \times Rs8 \rightarrow Rd16$ (unsigned multiplication)	-	—	-	-	-	-	1	4	
	MULXU. W Rs, ERd	W		2								$Rd16 \times Rs16 \rightarrow ERd32$ (unsigned multiplication)	—	—	—	—	—	-	22		
MULXS	MULXS. B Rs, Rd	В		4								$Rd8 \times Rs8 \rightarrow Rd16$ (signed multiplication)	-	-	\$	\$	—	-	16		
	MULXS. W Rs, ERd	W		4								$Rd16 \times Rs16 \rightarrow ERd32$ (signed multiplication)	—	—	\$	\$	—	-	2	24	
DIVXU	DIVXU. B Rs, Rd	В		2								Rd16 \div Rs8 \rightarrow Rd16 (RdH: remainder, RdL: quotient) (unsigned division)			(6)	(7)	—	_	1	4	
	DIVXU. W Rs, ERd	W		2								$ERd32 \div Rs16 \rightarrow ERd32$ (Ed: remainder, Rd: quotient) (unsigned division)	_	_	(6)	(7)	-	-	2	22	
DIVXS	DIVXS. B Rs, Rd	В		4								$\begin{array}{l} Rd16 \div Rs8 \to Rd16 \\ (RdH: remainder, \\ RdL: quotient) \\ (signed division) \end{array}$	—	—	(8)	(7)	_	-	1	6	
	DIVXS. W Rs, ERd	W		4								$\label{eq:result} \begin{array}{l} ERd32 \div Rs16 \rightarrow ERd32 \\ (Ed: remainder, \\ Rd: quotient) \\ (signed division) \end{array}$	_	—	(8)	(7)	_	-	2	24	
CMP	CMP.B #xx:8, Rd	В	2									Rd8–#xx:8	-	\$	\$	\$	\$	\$	1	2	
	CMP.B Rs, Rd	В		2								Rd8–Rs8	—	\updownarrow	\$	\$	↕	\$	\$ 2		
	CMP.W #xx:16, Rd	W	4									Rd16-#xx:16	—	(1)	\$	\$	↕	\$		4	
	CMP.W Rs, Rd	W		2								Rd16–Rs16	—	(1)	\$	\$	↕	\$	1	2	
	CMP.L #xx:32, ERd	L	6									ERd32-#xx:32	_	(2)	\$	\$	↕	\$	4	4	
	CMP.L ERs, ERd	L		2	L 2 ERd32–ERs32 –		_	(2)	\$	\$	\$	\$:	2							

Instruction code:

byte	BL	
2nd	BH	
oyte	AL	
1st l	ΥH	

ш	Table A.2 (3)		INC						EXTS		DEC		BGT BLE			
	ble A.2 (3)		INC						EXTS		DEC		BLT B(
O	Table A.2 Table A.2 (3) (3)	Δ		>						Ē		<u>د</u>	BGE			
ш		ADD		MOV	SHAL	SHAR	ROTL	ROTR	NEG	SUB		CMP	BMI			
A													BPL			
ര			ADDS		SHAL	SHAR	ROTL	ROTR	NEG		SUB		BVS			
œ	SLEEP		AC		Ś	Ś	Я	RC	z		ō		BVC			
2			INC						EXTU		DEC		BEQ			
9													BNE	AND		
ى ا				INC						EXTU		DEC		BCS	XOR	aOX
4	LDC/STC												BCC	OR	6	
m					SHLL	SHLR	ROTXL	ROTXR	NOT				BLS	SUB	u u	
7													BHI	CMP	dWC	
-					SHLL	SHLR	ROTXL	ROTXR	NOT				BRN	ADD		
0	MOV	INC	ADDS	DAA	ō	ъ	RC	RC	z	DEC	SUBS	DAS	BRA	MOV	NOM	
AH AL	01	OA	OB	OF	10	1	12	13	17	1A	1B	Ť	58	62	~~	

Table A.2 **Operation Code Map (2)**

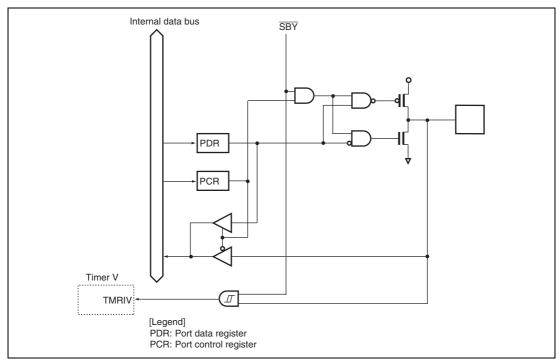


Figure B.15 Port 7 Block Diagram (P74)

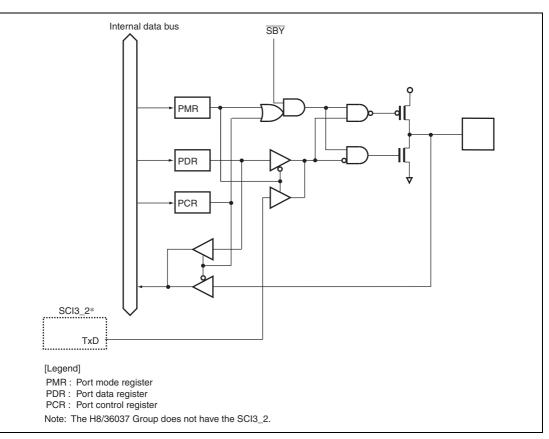


Figure B.16 Port 7 Block Diagram (P72)

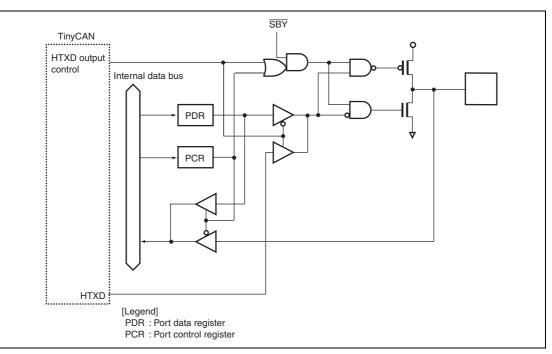


Figure B.20 Port 9 Block Diagram (P97)

