

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Data!la	
Details	
Product Status	Obsolete
Core Processor	ACE1001
Core Size	8-Bit
Speed	4MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	6
Program Memory Size	1KB (1K x 8)
Program Memory Type	EEPROM
EEPROM Size	64 x 8
RAM Size	64 x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	8-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	8-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/ace1001mt8x-32

ACE1001(L) DC Electrical Characteristics

 $V_{CC} = 1.8/2.2$ to 5.5V

All measurements valid for ambient operating temperature unless otherwise stated.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Units
I _{CC} ³	Supply Current – no data EEPROM write in	1.8V 2.2V		0.2 0.4	0.5 1.0	mA mA
	progress	2.7V		0.7	1.2	mA
		3.3V 5.5V		1.2 3.7	2.0 5.5	mA mA
1	HALT Mode current	3.3V @ +25°C		0	100	nA
I _{CCH}	TIALT Wode current	3.3V @ -40°C to +85°C		10	1000	nA
		5.5V @ +25°C 5.5V @+125°C		250	1000 3000	nA nA
I _{CCL} ⁴	IDLE Mode Current	3.3V 5.5V		120 140	200 300	μA μA
V _{CCW}	EEPROM Write Voltage	Code EEPROM in Programming Mode	4.5	5.0	5.5	V
		Data EEPROM in Operating Mode	2.4		5.5	V
S _{VCC}	Power Supply Slope		1μs/V		10ms/V	
V _{IL}	Input Low with Schmitt Trigger Buffer	V _{CC} = 1.8V V _{CC} = 2.2 -5.5V			0.15V _{CC} 0.20V _{CC}	V V
V _{IH}	Input High with Schmitt Trigger Buffer	$V_{CC} \le 2.2V$ $V_{CC} > 2.2V$	0.9V _{CC} 0.8V _{CC}			V V
I _{IP}	Input Pull-up Current	V _{CC} =5.5V, V _{IN} =0V	30	65	350	μА
I _{TL}	TRI-STATE Leakage	V _{CC} =5.5V		2	200	nA
V _{OL}	Output Low Voltage	V _{CC} = 1.8 - 2.2V				
	G0, G1, G2, G4	0.8 mA sink			0.2V _{CC}	V
	G5	1.0 mA sink			0.2V _{CC}	V
	Output Low Voltage	$V_{CC} = 2.2V - 3.3V$				
	G0, G1, G2, G4	3.0 mA sink			0.2V _{CC}	V
	G5	5.0 mA sink			0.2V _{CC}	V
	Output Low Voltage	$V_{CC} = 3.3V - 5.5V$				
	G0, G1, G2, G4	5.0 mA sink			0.2V _{CC}	V
	G5	10.0 mA sink			0.2V _{CC}	V
V _{OH}	Output High Voltage	V _{CC} = 1.8 - 2.2V				
	G0, G1, G2, G4	0.1 mA source	0.8V _{CC}			V
	G5	0.2 mA source	0.8V _{CC}			V
	Output High Voltage	$V_{CC} = 3.3V - 5.5V$				
	G0, G1, G2, G4	0.4 mA source	0.8V _{CC}			V
	G5	0.8 mA source	0.8V _{CC}			V
	Output High Voltage	$V_{CC} = 3.3V - 5.5V$				
	G0, G1, G2, G4	0.4 mA source	0.8V _{CC}			V
	G5	1.0 mA source	0.8V _{CC}			V

 $^{^3}$ $\rm I_{\rm CC}$ active current is dependent on the program code.

 $^{^{\}rm 4}$ Based on a continuous IDLE looping program.

ACE1001(L) AC Electrical Characteristics

 $V_{CC} = 1.8/2.2 \text{ to } 5.5V$

All measurements valid for ambient operating temperature unless otherwise stated.

Parameter	Conditions	MIN	TYP	MAX	Units
Instruction cycle time from internal clock - setpoint	5.0V at +25°C	0.96	1.0	1.04	μs
Internal clock frequency variation	2.4V to 5.5V at constant temperature	-5		+5	%
	2.4V to 5.5V at full temperature range	-10		+10	%
Crystal oscillator frequency	(Note 5)			4	MHz
External clock frequency	(Note 5)			4	MHz
EEPROM write time			3	10	ms
Internal clock start up time	(Note 6)			2	ms
Oscillator start up time	(Note 6)			2400	cycles

⁵ The maximum permissible frequency is guaranteed by design but not 100% tested.

ACE1001(L) Electrical Characteristics for programming

All data following is valid between 4.5V and 5.5V at ambient temperature. The following characteristics are guaranteed by design but are not 100% tested. See "EEPROM write time" in the AC Electrical Characteristics for definition of the programming ready time.

Parameter	Description	MIN	MAX	Units
t _{HI}	CLOCK high time	500	DC	ns
t _{LO}	CLOCK low time	500	DC	ns
t _{DIS}	SHIFT_IN setup time	100		ns
t _{DIH}	SHIFT_IN hold time	100		ns
t _{DOS}	SHIFT_OUT setup time	100		ns
t _{DOH}	SHIFT_OUT hold time	900		ns
t _{SV1} , t _{SV2}	LOAD supervoltage timing	50		μs
$t_{LOAD1}, t_{LOAD2}, t_{LOAD3}, t_{LOAD4}$	LOAD timing	5		μs
V _{SUPERVOLTAGE}	Supervoltage level	11.5	12.5	V

⁶ The parameter is guaranteed by design but not 100% tested.

ACE1001(L) Low Battery Detect (LBD) Characteristics

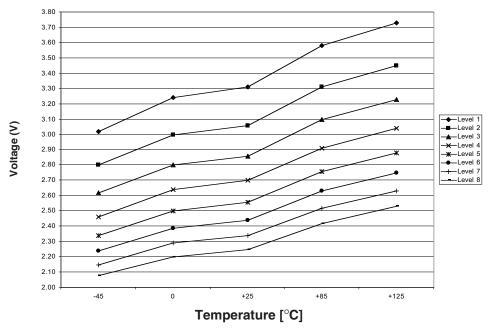
 $V_{CC} = 1.8/2.2 \text{ to } 5.5V$

Parameter	Conditions	MIN	TYP	MAX	Units
LBD Voltage Threshold Variation	+25°C	-7		+7	%
	0°C to +70°C	-12		+12	%
	-40°C to +85°C	-16		+16	%

ACE1001 Brown-out Reset (BOR) Characteristics

 $V_{CC} = 2.2 \text{ to } 5.5 \text{V}$

Parameter	Conditions	MIN	TYP	MAX	Units
BOR Voltage Threshold Variation (BLSEL = 1)	-40°C to +85°C	1.93	2.25	2.58	٧


ACE1001L Brown-out Reset (BOR) Characteristics

 $V_{CC} = 1.8 \text{ to } 5.5 \text{V}$

Parameter	Conditions	MIN	TYP	MAX	Units
BOR Voltage Threshold Variation (BLSEL = 0)	0°C to +70°C	1.76	1.95	2.20	V

Figure 6: LBD and BOR Threshold Levels

BOR Voltage Level vs. Temperature

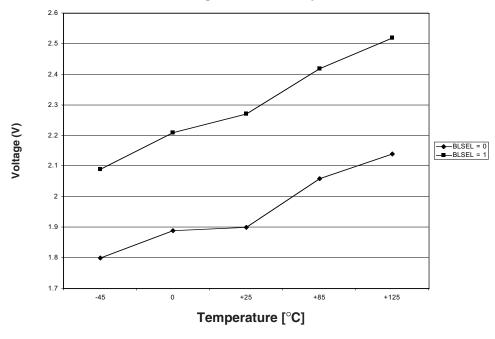
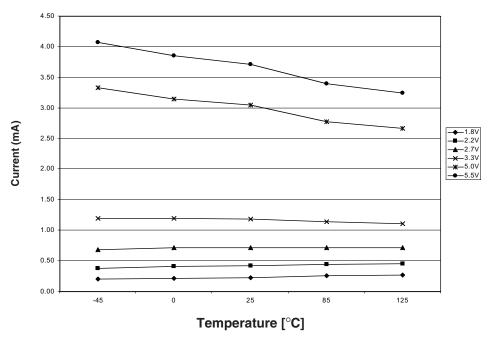



Figure 7: I_{CC} Active Current

I_{CC} Active (data EEPROM writes) vs. Temperature

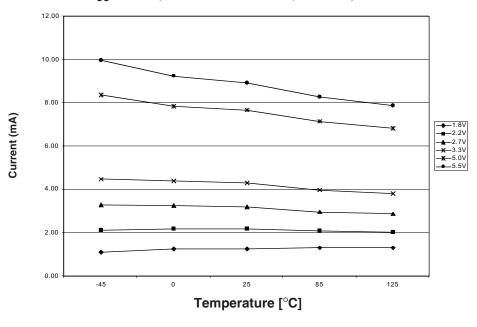
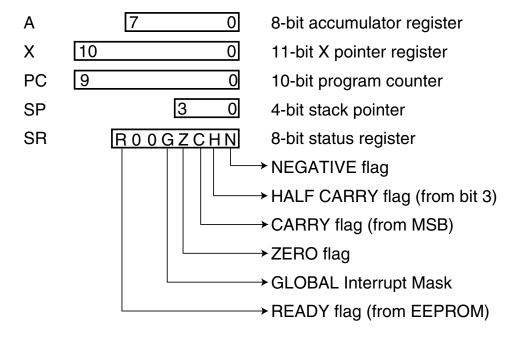


Figure 10: VOL/VOH VOL vs. IOL (G0-G4 @ 25°C) VOL vs. IOL (G5 @ 25°C) Voltage (V) Voltage (V) Current (mA) Current (mA) VOH vs. IOH (G5 @ 25°C) VOH vs. IOH (G0-G4 @ 25°C) Voltage (V) Voltage (V) Current (mA) Current (mA)

4.0 Arithmetic Controller Core

The ACEx microcontroller core is specifically designed for low cost applications involving bit manipulation, shifting and arithmetic operations. It is based on a modified Harvard architecture meaning peripheral, I/O, and RAM locations are addressed separately from instruction data.


The core differs from the traditional Harvard architecture by aligning the data and instruction memory sequentially. This allows

the X-pointer (11-bits) to point to any memory location in either segment of the memory map. This modification improves the overall code efficiency of the core and takes advantage of the flexibility found on Von Neumann style machines.

4.1 CPU Registers

The ACEx microcontroller has five general-purpose registers. These registers are the Accumulator (A), X-Pointer (X), Program Counter (PC), Stack Pointer (SP), and Status Register (SR). The X, SP, and SR registers are all memory-mapped.

Figure 11: Programming Model

4.1.1 Accumulator (A)

The Accumulator is a general-purpose 8-bit register that is used to hold data and results of arithmetic calculations or data manipulations.

4.1.2 X-Pointer (X)

The X-Pointer register allows for an 11-bit indexing value to be added to an 8-bit offset creating an effective address used for reading and writing between the entire memory space. (Software can only read from code EEPROM.) This provides software with the flexibility of storing lookup tables in the code EEPROM memory space for the core's accessibility during normal operation.

The X register is divided into two sections. The 10 least significant bits (LSB) of the register is the address of the program or data memory space. The most significant bit (MSB) of the register is write only and selects between the data (0x000 to 0x0FF) or program (0xC00 to 0xFFF) memory space.

Example: If Bit 10 = 0, then the LD A, [00,X] instruction will take a value from address range 0x000 to 0x0FF and load it into A. If Bit 10 = 1, then the LD A, [00,X] instruction will take a value from address range 0xC00 to 0xFFF and load it into A.

4.1.3 Program Counter (PC)

The 10-bit program counter register contains the address of the next instruction to be executed. After a reset, if in normal mode the program counter is initialized to 0xC00.

4.1.4 Stack Pointer (SP)

The ACEx microcontroller has an automatic program stack with a 4-bit stack pointer. The stack can be initialized to any location between addresses 0x30-0x3F. After a reset, the stack pointer is defaulted to 0xF pointing to address 0x3F. Normally, the stack pointer is initialized by one of the first instructions in an application program.

The stack is configured as a data structure which decrements from high to low memory. Each time a new address is pushed onto the stack, the core decrements the stack pointer by two. Each time an address is pulled from the stack, the core increments the stack pointer by two. At any given time, the stack pointer points to the next free location in the stack.

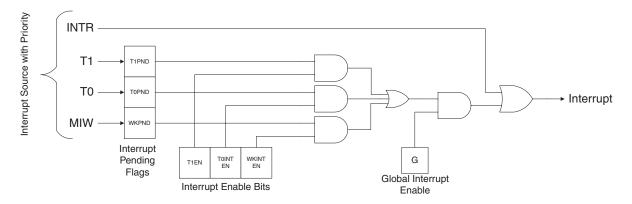
When a subroutine is called by a jump to subroutine (JSR) instruction, the address of the instruction is automatically pushed onto the stack least significant byte first. When the subroutine is finished, a return from subroutine (RET) instruction is executed. The RET instruction pulls the previously stacked return address from the stack and loads it into the program counter. Execution then continues at the recovered return address.

4.1.5 Status Register (SR)

This 8-bit register contains four condition code indicators (C, H, Z, and N), an interrupt masking bit (G), and an EEPROM write flag (R). The condition code indicators are automatically updated by most instructions. (See Table 10)

Carry/Borrow (C)

The carry flag is set if the arithmetic logic unit (ALU) performs a carry or borrow during an arithmetic operation and by its dedicated instructions. The rotate instruction operates with and through the carry bit to facilitate multiple-word shift operations. The LDC and INVC instructions facilitate direct bit manipulation using the carry flag.


Half Carry (H)

The half carry flag indicates whether an overflow has taken place on the boundary between the two nibbles in the accumulator. It is primarily used for Binary Coded Decimal (BCD) arithmetic calculation.

Zero (Z)

The zero flag is set if the result of an arithmetic, logic, or data manipulation operation is zero. Otherwise, it is cleared.

Negative (N)

The negative flag is set if the MSB of the result from an arithmetic, logic, or data manipulation operation is set to one. Otherwise, the flag is cleared. A result is said to be negative if its MSB is a one.

Interrupt Mask (G)

The interrupt request mask (G) is a global mask that disables all maskable interrupt sources. If the G Bit is cleared, interrupts can become pending, but the operation of the core continues uninterrupted. However, if the G Bit is set an interrupt is recognized. After any reset, the G bit is cleared by default and can only be set by a software instruction. When an interrupt is recognized, the G bit is cleared after the PC is stacked and the interrupt vector is fetched. Once the interrupt is serviced, a return from interrupt instruction is normally executed to restore the PC to the value that was present before the interrupt occurred. The G bit is the reset to one after a return from interrupt is executed. Although the G bit can be set within an interrupt service routine, "nesting" interrupts in this way should only be done when there is a clear understanding of latency and of the arbitration mechanism.

4.2 Interrupt handling

When an interrupt is recognized, the current instruction completes its execution. The return address (the current value in the program counter) is pushed onto the stack and execution continues at the address specified by the unique interrupt vector (see Table 11). This process takes five instruction cycles. At the end of the interrupt service routine, a return from interrupt (RETI) instruction is executed. The RETI instruction causes the saved address to be pulled off the stack in reverse order. The G bit is set and instruction execution resumes at the return address.

The ACEx microcontroller is capable of supporting four interrupts. Three are maskable through the G bit of the SR and the fourth (software interrupt) is not inhibited by the G bit (see Figure 12). The software interrupt is generated by the execution of the INTR instruction. Once the INTR instruction is executed, the ACEx core will interrupt whether the G bit is set or not. The INTR interrupt is executed in the same manner as the other maskable interrupts where the program counter register is stacked and the G bit is cleared. This means, if the G bit was enabled prior to the software

interrupt the RETI instruction must be used to return from interrupt in order to restore the G bit to its previous state. However, if the G bit was not enabled prior to the software interrupt the RET instruction must be used.

In case of multiple interrupts occurring at the same time, the ACEx microcontroller core has prioritized the interrupts. The interrupt priority sequence in shown in Table 8.

4.3 Addressing Modes

The ACEx microcontroller has six addressing modes indexed, direct, immediate, absolute jump, and relative jump.

Indexed

The instruction allows an 8-bit unsigned offset value to be added to the 10-LSBs of the X-pointer yielding a new effective address. This mode can be used to address any memory space (program or data).

Direct

The instruction contains an 8-bit address field that directly points to the data memory space as an operand.

Immediate

The instruction contains an 8-bit immediate field as an operand.

Inherent

This instruction has no operands associated with it.

Absolute

The instruction contains a 10-bit address that directly points to a location in the program memory space. There are two operands associated with this addressing mode. Each operand contains a byte of an address. This mode is used only for the long jump (JMP) and JSR instructions.

Relative

This mode is used for the short jump (JP) instructions where the operand is a value relative to the current PC address. With this instruction, software is limited to the number of bytes it can jump, -31 or +32.

Table 8: Interrupt Priority Sequence

Priority (4 highest, 1 lowest)	Interrupt
4	MIW (EDGEI)
3	Timer0 (TMRI0)
2	Timer1 (TMRI1)
1	Software (INTR)

Table 9: Instruction Addressing Modes

Instruction	Imme	ediate	Direct	Indexed	Inhe	rent	Relative	Absolute
ADC	A, #		A, M					
AND	A	., #	A, M					
SUBC	A	., #	A, M					
XOR	A	., #	A, M					
CLR			М		А			
INC			M		Α	X		
DEC			М		Α	Х		
IFEQ	A, #	M,#	A, M			•		
IFGT	A, #		A, M					
IFNE	A, #		A, M					
sc					no-	ор		
RC					no-	ор		
IFC					no-	ор		
IFNC					no-	ор		
INVC					no-	ор		
LDC			#, M					
STC			#, M					
RLC					P	١		
RRC					A	٨		
LD	A, # M	I, # X, #	A, M	A, [00,X]				
ST			A, M	A, [00,X]				
LD			M, M					
NOP	·	·			no-	ор		
IFBIT			#, M					
SBIT			#, M					
RBIT			#, M					
JP							Rel	
JSR								M
JMP								M
RET					no-	ор		
RETI					no-	ор		
INTR					no-			

4.4 Memory Map

All I/O ports, peripheral registers and core registers (except the accumulator and the program counter) are mapped into memory space.

Table 11: Memory Map

Address	Memory Space	Block	Contents		
0x00 - 0x3F	Data	SRAM	Data RAM		
0x40 - 0x7F	Data	EEPROM	Data EEPROM		
0xAA	Data	Timer1	T1RA register		
0xAB, 0xAD			Reserved		
0xAC	Data	Timer1	TMR1 register		
0xAE	Data	Timer1	T1CNTRL register		
0xAF	Data	MIW	WKEDG register		
0xB0	Data	MIW	WKPND register		
0xB1	Data	MIW	WKEN register		
0xB2	Data	I/O	PORTGD register		
0xB3	Data	I/O	PORTGC register		
0xB4	Data	I/O	PORTGP register		
0xB5	Data	Timer0	WDSVR register		
0xB6	Data	Timer0	T0CNTRL register		
0xB7	Data	Clock	HALT mode register		
0xB8 - 0xBA			Reserved		
0xBB	Data	Init. Reg.	Initialization register 1		
0xBC	Data	Init. Reg.	Initialization register 2		
0xBD	Data	LBD	LBD register		
0xBE	Data	Core	XHI register		
0xBF	Data	Core	XLO register		
0xC0	Data	Clock	Power mode clear (PMC) registe		
0xCE	Data	Core	SP register		
0xCF	Data	Core	Status register (SR)		
0xC00 - 0xFF5	Program	EEPROM	Code EEPROM		
0xFF6 - 0xFF7	Program	Core	Timer0 Interrupt vector		
0xFF8 - 0xFF9	Program	Core	Timer1 Interrupt vector		
0xFFA - 0xFFB	Program	Core	MIW Interrupt vector		
0xFFC - 0xFFD	Program	Core	Soft Interrupt vector		
0xFFE - 0xFFF			Reserved		

5.0 Timer 1

Timer 1 is a versatile 8-bit timer. Its main function is to operate as a Pulse Width Modulation (PWM) generator that generates pulses of a specified width and duty cycles.

Timer 1 contains an 8-bit timer register (TMR1), an 8-bit autoreload register (T1RA), and an 8-bit control register (T1CNTRL). All registers are memory-mapped for simple access through the core. For the PWM signal generation the timer contains an output (T1) that is multiplexed with the I/O pin G2.

The timer can be started or stopped through the T1CNTRL register bit T1C0. When running, the timer counts down (decrements) every clock cycle. The timer's clock has a pre-scalar and is selectable through two T1CNTRL register bits T1PSC[1:0]. Depending on the selected operating mode, occurrences of timer

underflow (transitions from 0x00 to 0xFF or reload) can either generate an interrupt and/or toggle the T1 output pin.

Timer 1's interrupt (TMRI1) can be enabled by the interrupt enable (T1EN) bit in the T1CNTRL register. When the timer interrupt is enabled, the source of the interrupt is a timer underflow. By default, the timer register is reset to 0xFF and the auto-reload register is reset to 0x00.

5.1 Timer control bits

Reading and writing to the T1CNTRL register controls the timer's operation. By writing to the control bits, the user can enable or disable the timer interrupts, set the mode of operation, start or stop the timer, and select the clock. The T1CNTRL register bits are described in Table 12.

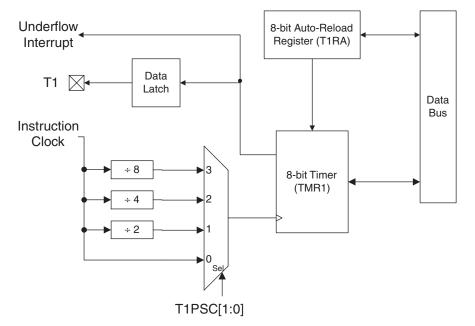
Table 12: TIMER1 Control Register Bits

T1CNTRL Register	Name	Function
Bit 7		Reserved
Bit 6		Reserved
Bit 5	T1C1	T1 toggle enable bit: 1 = T1 toggle enabled, 0 = T1 toggle disabled
Bit 4	T1C0	TMR1 run: 1 = Start timer, 0 = Stop timer
Bit 3	T1PND	Timer1 interrupt pending flag: 1 = Timer1 interrupt pending, 0 = Timer1 interrupt not pending
Bit 2	T1EN	Timer1 interrupt enable bit: 1 = Timer1 interrupt enabled, 0 = Timer1 interrupt disabled
Bit 1,0	T1PSC	Pre-scalar selection bits: Selects the 1MHz clock divider to be by 1 (00b), 2 (01b), 4 (10b), or 8 (11b)

5.2 Pulse Width Modulation (PWM) Mode

In the PWM mode, the timer counts down at the instruction clock rate. When an underflow occurs, the timer register is reloaded from T1RA and the count down proceeds from the loaded value. At every underflow, a pending flag (T1PND) located in the T1CNTRL register is set. Software must then clear the T1PND flag and load the T1RA register with an alternate PWM value. In addition, the timer can be configured to toggle the T1 output bit upon underflow. Configuring the timer to toggle T1 results in the generation of a signal outputted from port G2 with the width and duty cycle controlled by the values stored in the T1RA. A block diagram of the timer's PWM mode of operation is shown in Figure 14.

The timer has one interrupt (TMRI1) that is maskable through the T1EN bit of the T1CNTRL register. However, the core is only interrupted if the T1EN bit and the G (Global Interrupt enable) bit of the SR is set. If interrupts are enabled, the timer will generate an interrupt each time T1PND flags is set (whenever the timer underflows provided that the pending flag was cleared.) The interrupt service routine is responsible for proper handling of the T1PND flag and the T1EN bit.


The interrupt will be synchronous with every rising and falling edge of the T1 output signal. Generating interrupts only on rising or falling edges of T1 is achievable through appropriate handling of the T1EN bit or T1PND flag through software.

The following steps show how to properly configure Timer 1 to operate in the PWM mode. For this example, the T1 output signal is toggled with every timer underflow and the "high" and "low" times for the T1 output can be set to different values. The T1 output signal can start out either high or low depending on the configuration of I/O G2; the instructions below are for starting with the T1 output high. Follow the instructions in parentheses to start the T1 output low.

- 1. Configure T1 as an output by setting bit 2 of PORTGC.
 - SBIT 2, PORTGC ; Configure G2 as an output
- 2. Initialize T1 to 1 (or 0) by setting (or clearing) bit 2 of PORTGD.
 - SBIT 2, PORTGD ; Set G2 high
- 3. Load the initial PWM high (low) time into the timer register.
 - LD TMR1, #6FH ; High (Low) for .444ms
 - (1MHz/4 clock)
- 4. Load the PWM low (high) time into the T1RA register.
 - LD T1RA, #2FH ; Low (High) for .188ms
 - (1MHz/4 clock)
- Write the appropriate control value to the T1CNTRL register to select PWM mode with T1 toggle, to select the divide by 4 pre-scalar, and to clear the enable and pending flags. (See Table 12)
 - LD T1CNTRL, #22H ; Setting the T1C0 bit starts the timer
- 6. Set te T1CO bit to start the timer.
 - SBIT T1CP, T1CNTRL ; T1CO equals 4
- 7. After every underflow, load T1RA with alternate values. If the user wishes to generate an interrupt on timer output transitions, reset the pending flags and then enable the interrupt using T1EN. The G bit must also be set. The interrupt service routine must reset the pending flag and perform whatever processing is desired.

- RBIT T1PND, T1CNTRL ; T1PND equals 3 - LD T1RA, #6FH ; Low for .444ms (1MHz/4 clock)

Figure 14: Pulse Width Modulation Mode

6.0 Timer 0

Timer 0 is a 12-bit free running idle timer. Upon power-up or any reset, the timer is reset to 0x000 and then counts up continuously based on the instruction clock of 1MHz (1 μ s). Software cannot read from or write to this timer. However, software can monitor the timer's pending (T0PND) bit that is set every 8192 cycles (initially 4096 cycles after a reset or after the watchdog has been-serviced). The T0PND flag is set every other time the timer overflows (transitions from 0xFFF to 0x000). After an overflow, the timer will reset and restart its counting sequence.

Software can either poll the T0PND bit or vector to an interrupt subroutine. In order to interrupt on a T0PND, software must be sure to enable the Timer 0 interrupt enable (T0INTEN) bit in the Timer 0 control (T0CNTRL) register and also make sure the G bit is set in SR. Once the timer interrupt is serviced, software should reset the T0PND bit before exiting the routine. Timer 0 supports the following functions:

- 1. Exiting from IDLE mode (See Section 16.0 for details.)
- 2. Start up delay from HALT mode
- 3. Watchdog pre-scalar (See Section 7.0 for details.)

The TOINTEN bit is a read/write bit. If set to 0, interrupt requests from the Timer 0 are ignored. If set to 1, interrupt requests are accepted. Upon reset, the TOINTEN bit is reset to 0.

The TOPND bit is a read/write bit. If set to 1, it indicates that a Timer 0 interrupt is pending. This bit is set by a Timer 0 overflow and is reset by software or system reset.

The WKINTEN bit is used in the Multi-input Wakeup/Interrupt block. See Section 8.0 for details.

7.0 Watchdog

The Watchdog timer is used to reset the device and safely recover in the rare event of a processor "runaway condition." The 12-bit Timer 0 is used as a pre-scalar for Watchdog timer. The Watchdog timer must be serviced before every 61,440 cycles but no sooner than 4096 cycles since the last Watchdog reset. The Watchdog is serviced through software by writing the value 0x1B to the Watchdog Service (WDSVR) register (see Figure 16). The part resets automatically if the Watchdog is serviced too frequent, or not frequent enough.

The Watchdog timer must be enabled through the Watchdog enable bit (WDEN) in the initialization register. The WDEN bit can only be set while the device is in programming mode. Once set, the Watchdog will always be powered-up enabled. Software cannot disable the Watchdog. The Watchdog timer can only be disabled in programming mode by resetting the WDEN bit as long as the memory write protect (WDIS) feature is not enabled.

WARNING

Ensure that the Watchdog timer has been serviced before entering IDLE mode because it remains operational during this time.

Figure 15: Timer 0 Control Register Definition (T0CNTRL)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WKINTEN	х	х	х	х	х	TOPND	T0EN

Figure 16: Watchdog Server Register (WDSVR)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	0	1	1	0	1	1

10.0 In-circuit Programming Specification 10,11

The ACEx microcontroller supports in-circuit programming of the internal data EEPROM, code EEPROM, and the initialization registers.

An externally controlled four wire interface consisting of a LOAD control pin (G3), a serial data SHIFT-IN input pin (G4), a serial data SHIFT-OUT output pin (G2), and a CLOCK pin (G1) is used to access the on-chip memory locations. Communication between the ACEx microcontroller and the external programmer is made through a 32-bit command and response word described in Table 14.

The serial data timing for the four-wire interface is shown in Figure 22 and the programming protocol is shown in Figure 21.

10.1 Write Sequence

The external programmer brings the ACEx microcontroller into programming mode by applying a super voltage level to the LOAD pin. The external programmer then needs to set the LOAD pin to 5V before shifting in the 32-bit serial command word using the SHIFT_IN and CLOCK signals. By definition, bit 31 of the command word is shifted in first. At the same time, the ACEx microcontroller shifts out the 32-bit serial response to the last command on the SHIFT_OUT pin. It is recommended that the external programmer samples this signal $t_{\rm ACCESS} \, (1\mu s)$ after the rising edge of the CLOCK signal. The serial response word, sent immediately after entering programming mode, contains indeterminate data.

After 32 bits have been shifted into the device, the external programmer must set the LOAD signal to 0V, and then apply two clock pulses as shown in Figure 21 to complete program cycle. The SHIFT_OUT pin acts as the handshaking signal between the device and programming hardware once the LOAD signal is brought low. The device sets SHIFT_OUT low by the time the programmer has sent the second rising edge during the LOAD =

0V phase (if the timing specifications in Figure 21 are obeyed).

The device will set the R bit of the Status register when the write operation has completed. The external programmer must wait for the SHIFT_OUT pin to go high before bringing the LOAD signal to 5V to initiate a normal command cycle.

10.2 Read Sequence

When reading the device after a write, the external programmer must set the LOAD signal to 5V before it sends the new command word. Next, the 32-bit serial command word (for during a READ) should be shifted into the device using the SHIFT_IN and the CLOCK signals while the data from the previous command is serially shifted out on the SHIFT_OUT pin. After the Read command has been shifted into the device, the external programmer must, once again, set the LOAD signal to 0V and apply two clock pulses as shown in Figure 21 to complete READ cycle. Data from the selected memory location, will be latched into the lower 8 bits of the command word shortly after the second rising edge of the CLOCK signal.

Writing a series of bytes to the device is achieved by sending a series of Write command words while observing the devices handshaking requirements.

Reading a series of bytes from the device is achieved by sending a series of Read command words with the desired addresses in sequence and reading the following response words to verify the correct address and data contents.

The addresses of the data EEPROM and code EEPROM locations are the same as those used in normal operation.

Powering down the device will cause the part to exit programming mode.

Table 14: 32-Bit Command and Response Word

Bit number	Input command word	Output response word
bits 31 – 30	Must be set to 0	X
bit 29	Set to 1 to read/write data EEPROM, or the initialization registers, otherwise 0	X
bit 28	Set to 1 to read/write code EEPROM, otherwise 0	X
bits 27 – 25	Must be set to 0	X
bit 24	Set to 1 to read, 0 to write	X
bits 23 – 18	Must be set to 0	X
bits 17 – 8	Address of the byte to be read or written	Same as Input command word
bits 7 – 0	Data to be programm ed or zero if data is to be read	Programmed data or data read at specified address

¹⁰ Application Note reference: "How to In-Circuit Program the ACEx Family of Microcontrollers."

 $^{^{\}rm 11}$ During in-circuit programming, G5 must be either not connected or driven high.

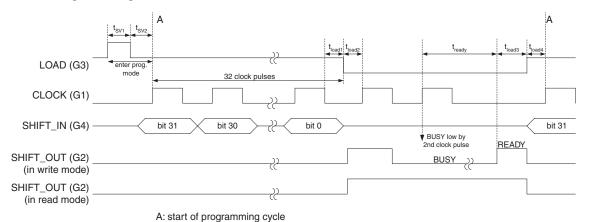
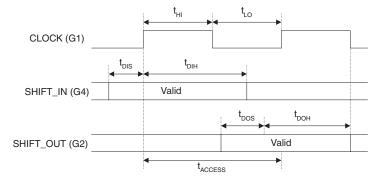



Figure 22: Serial Data Timing

12.0 RESET block

When a RESET sequence is initiated, all I/O registers will be reset setting all I/Os to high-impedence inputs. The system clock is restarted after the required clock start-up delay. A reset is generated by any one of the following three conditions:

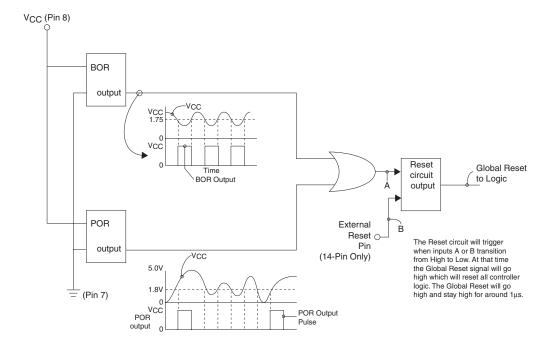
- · Power-on Reset (as described in Section 13.0)
- · Brown-out Reset (as described in Section 11.1)
- · Watchdog Reset (as described in Section 7.0)

13.0 Power-On-Reset

The Power-On Reset (POR) circuit is guaranteed to work if the rate of rise of $V_{\rm CC}$ is no slower than 10ms/1volt. The POR circuit was designed to respond to fast low to high transitions between 0V and $V_{\rm CC}$. The circuit will not work if $V_{\rm CC}$ does not drop to 0V before the next power-up sequence. In applications where 1) the $V_{\rm CC}$ rise is slower than 10ms/1 volt or 2) $V_{\rm CC}$ does not drop to 0v before the next power-up sequence the external reset option should be used. (The external reset option is not available in the ACE1001 but is

available in the ACE1101 and ACE1202 product families.)

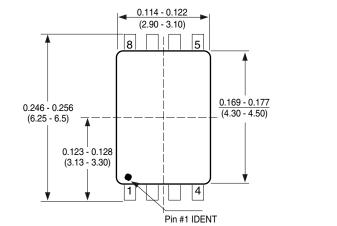
14.0 CLOCK

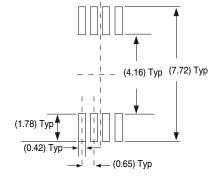

The ACEx microcontroller has an on-board oscillator trimmed to a frequency of 2MHz who is divided down by two yielding a 1MHz frequency.(See AC Electrical Characteristics.) Upon power-up, the on-chip oscillator runs continuously unless entering HALT mode or using an external clock source. (See Figure 26.)

If required, an external oscillator circuit may be used depending on the states of the CMODE bits of the initialization register. (See Table 15) When the device is driven using an external clock, the clock input to the device (G1/CKI) can range between DC to 4MHz. For external crystal configuration, the output clock (CKO) is on the G0 pin. If an external crystal or RC is used, to yield the corresponding instruction clock the input frequency is internally divided down by four. If the device is configured for an external square clock, it will not be divided.

Table 15: CMODE[0:1] Bit Definition

CMODE[0]	CMODE[1]	Clock Type
0	0	Internal 1 MHz clock
1	0	External square clock
0	1	External crystal/resonator
1	1	External RC clock

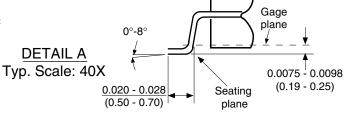

Figure 25: BOR and POR Circuit Relationship Diagram (see AC Electrical Characteristics)



Ordering Information

Part Number	Core Type		Max. # I/Os	Program Memory Size		Operating Voltage Range		Temperature Range			Package		Tape and	
	0	1	2	8	1K	2K	1.8 – 5.5V	2.2 5.5V	0 to 70°C	-40 to +85C	-40 to +125°C	8-pin SOIC	8-pin TSSOP	Reel
ACE1001M8		Х		Х	Х			Х	Х			Х		
ACE1001M8X		Х		Х	Х			Х	Х			Х		Х
ACE1001MT8		Х		Х	Х			Х	Х				Х	
ACE1001MT8X		Х		Х	Х			Х	Х				Х	Х
ACE1001EM8		Х		Х	Х			Х		Х		Х		
ACE1001EM8X		Х		Х	Х			Х		Х		Х		Х
ACE1001EMT8		Х		Х	Х			Х		Х			Х	
ACE1001EMT8X		Х		Х	Х			Х		Х			Х	Х
ACE1001LM8		Х		Х	Х		Х		Х			Х		
ACE1001LM8X		Х		Х	Х		Х		Х			Х		Х
ACE1001LMT8		Х		Х	Х		Х		Х				Х	
ACE1001LMT8X		Х		Х	Х		Х		Х				Х	Х

Physical Dimensions inches (millimeters) unless otherwise noted



Land pattern recommendation

Notes: Unless otherwise specified

1. Reference JEDEC registration MO153. Variation AA. Dated 7/93

8-Pin Molded TSSOP (MT8)
Order Number ACE1001MT8/ACE1001EMT8/ACE1001LMT8
Package Number MTC08

ACEx Development Tools

General Information

Fairchild Semiconductor offers different possibilities to evaluate and emulate software written for ACEx.

Simulator: Is a Windows program able to load, assemble, and debug ACEx programs. It is possible to place as many breakpoints as needed, trace the program execution in symbolic format, and program a device with the proper options. The ACEx Simulator is available free-of-charge and can be downloaded from Fairchild's web site at www.fairchildsemi.com/products/micro

ACEx Emulator Kit: Fairchild also offers a low cost real-time incircuit emulator kit that includes:

Emulator board

Emulator software

Assembler and Manuals

Power supply

DIP14 target cable

PC cable

The ACEx emulator allows for debugging the program code in a symbolic format. It is possible to place one breakpoint and watch various data locations. It also has built-in programming capability.

Prototype Board Kits: Fairchild offer two solutions for the simplification of the breadboard operation so that ACEx Applications can be quickly tested.

- 1) ACEDEMO is can be used for general purpose applications
- 2) ACETXRX for transmitting / receiving (RF, IR, RS232, RS485) applications.

ACEDEMO has 8 switches, 8 LEDs, RS232 voltage translator, buzzer, and a lamp with a small breadboard area.

Ordering P/Ns

Programming Adapters:

DIP8 - ACEADAPTN
DIP14 - ACEADAPTN14
TSSOP8 - ACEADAPTMT8
SO8 - ACEADAPTM8
SO14 - ACEADAPTM

Emulator Kit:

ACEICE (110Vac) ACEICEEU (220Vac)

Prototype Boards:

ACEDEMO ACETXRX (315MHz) ACETXRXEU (433MHz)

Life Support Policy

Fairchild's products are not authorized for use as critical components in life support devices or systems without the express written approval of the President of Fairchild Semiconductor Corporation. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor Americas Customer Response Center Tel. 1-888-522-5372 Fairchild Semiconductor Europe

 Fax:
 +44 (0) 1793-856858

 Deutsch
 Tel:
 +49 (0) 8141-6102-0

 English
 Tel:
 +44 (0) 1793-856856

 Français
 Tel:
 +44 (0) 1793-856856

 Français
 Tel:
 +33 (0) 1-6930-3696

 Italiano
 Tel:
 +39 (0) 2-249111-1

Fairchild Semiconductor Hong Kong 8/F, Room 808, Empire Centre

68 Mody Road, Tsimshatsui East Kowloon. Hong Kong Tel; +852-2722-8338 Fax: +852-2722-8383 Fairchild Semiconductor Japan Ltd. 4F, Natsume Bldg. 2-18-6, Yushima, Bunkyo-ku Tokyo 113-0034 Japan

2-18-6, Yushima, Bunkyo-Tokyo, 113-0034 Japan Tel: 81-3-3818-8840 Fax: 81-3-3818-8841