

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	·
Number of Logic Elements/Cells	576
Total RAM Bits	4608
Number of I/O	62
Number of Gates	20000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at40k10al-1ajc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The Symmetrical Array

At the heart of the Atmel architecture is a symmetrical array of identical cells, see Figure 1. The array is continuous from one edge to the other, except for bus repeaters spaced every four cells, see Figure 2 on page 5. At the intersection of each repeater row and column there is a 32×4 RAM block accessible by adjacent buses. The RAM can be configured as either a single-ported or dual-ported RAM⁽¹⁾, with either synchronous or asynchronous operation.

Note: 1. The right-most column can only be used as single-port RAM.

Figure 1. Symmetrical Array Surrounded by I/O (AT40K20AL)⁽¹⁾

	⊠ =	I/O Pad		= Repe	eater Rov	v	□ = Fre	eRAM
	○ =	AT40K C	ell	= Repe	eater Colu	umn		
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8								2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-								
_		, 1 1 1 1 1 1 1 1	 				, 	
_								
_								
_			, , , , , , , , , , , , , , , , , , ,					
_								

Note: 1. AT40KAL has registered I/Os. Group enable on every sector for tri-states on obufe's.

Figure 2. Floor Plan (Representative Portion)⁽¹⁾

- Note:
- Repeaters regenerate signals and can connect any bus to any other bus (all pathways are legal) on the same plane. Each repeater has connections to two adjacent local-bus segments and two express-bus segments. This is done automatically using the integrated development system (IDS) tool.

Figure 5. The Cell

- X = Diagonal Direct Connect or Bus
- Y = Orthogonal Direct Connect or Bus
- W = Bus Connection
- Z = Bus Connection
- FB = Internal Feedback

RAM

32 x 4 dual-ported RAM blocks are dispersed throughout the array, see Figure 7. A 4-bit Input Data Bus connects to four horizontal local buses distributed over four sector rows (plane 1). A 4-bit Output Data Bus connects to four horizontal local buses distributed over four sector rows (plane 2). A 5-bit Input Address Bus connects to five vertical express buses in the same column. A 5-bit Output Address Bus connects to five vertical express buses in the same column. Ain (input address) and Aout (output address) alternate positions in horizontally aligned RAM blocks. For the left-most RAM blocks, Aout is on the left and Ain is on the right. For the right-most RAM blocks, Ain is on the left and Aout is tied off, thus it can only be configured as a single port. For single-ported RAM, Ain is the READ/WRITE address port and Din is the (bi-directional) data port. Right-most RAM blocks can be used only for single-ported memories. WEN and OEN connect to the vertical express buses in the same column.

Figure 7. RAM Connections (One Ram Block)

Clocking Scheme

There are eight Global Clock buses (GCK1 - GCK8) on the AT40KAL FPGA. Each of the eight dedicated Global Clock buses is connected to one of the dual-use Global Clock pins. Any clocks used in the design should use global clocks where possible: this can be done by using Assign Pin Locks to lock the clocks to the Global Clock locations. In addition to the eight Global Clocks, there are four Fast Clocks (FCK1 - FCK4), two per edge column of the array for PCI specification. For AT40KAL FPGAs, even the derived clocks can be routed through the Global network. Access points are provided in the corners of the array to route the derived clocks into the global clock network. The IDS software tools handle derived clocks to global clock connections automatically if used.

Each column of an array has a "Column Clock mux" and a "Sector Clock mux". The Column Clock mux is at the top of every column of an array and the Sector Clock mux is at every four cells. The Column Clock mux is selected from one of the eight Global Clock buses. The clock provided to each sector column of four cells is inverted, non-inverted or tied off to "0", using the Sector Clock mux to minimize the power consumption in a sector that has no clocks. The clock can either come from the Column Clock or from the Plane 4 express bus, see Figure 10 on page 15. The extreme-left Column Clock mux has two additional inputs, FCK1 and FCK2, to provide fast clocking to left-side I/Os. The extreme-right Column Clock mux has two additional inputs as well, FCK3 and FCK4, to provide fast clocking to right-side I/Os.

The register in each cell is triggered on a rising clock edge by default. Before configuration on power-up, constant "0" is provided to each register's clock pins. After configuration on power-up, the registers either set or reset, depending on the user's choice.

The clocking scheme is designed to allow efficient use of multiple clocks with low clock skew, both within a column and across the core cell array.

Figure 10. Clocking (for One Column of Cells)

Α	MEL
	8

I/O Structure	The AT40KAL has registered I/Os and group enable every sector for tri-states on obuf's.
PAD	The I/O pad is the one that connects the I/O to the outside world. Note that not all I/Os have pads: the ones without pads are called Unbonded I/Os. The number of unbonded I/Os varies with the device size and package. These unbonded I/Os are used to perform a variety of bus turns at the edge of the array.
PULL-UP/PULL-DOWN	Each pad has a programmable pull-up and pull-down attached to it. This supplies a weak "1" or "0" level to the pad pin. When all other drivers are off, this control will dictate the signal level of the pad pin.
	The input stage of each I/O cell has a number of parameters that can be programmed either as properties in schematic entry or in the I/O Pad Attributes editor in IDS.
CMOS	The threshold level is a CMOS-compatible level.
SCHMITT	A Schmitt trigger circuit can be enabled on the inputs. The Schmitt trigger is a regenera- tive comparator circuit that adds 1V hysteresis to the input. This effectively improves the rise and fall times (leading and trailing edges) of the incoming signal and can be useful for filtering out noise.
DELAYS	The input buffer can be programmed to include four different intrinsic delays as specified in the AC timing characteristics. This feature is useful for meeting data hold require- ments for the input signal.
DRIVE	The output drive capabilities of each I/O are programmable. They can be set to FAST, MEDIUM or SLOW (using IDS tool). The FAST setting has the highest drive capability (20 mA at 5V) buffer and the fastest slew rate. MEDIUM produces a medium drive (14 mA at 5V) buffer, while SLOW yields a standard (6 mA at 5V) buffer.
TRI-STATE	The output of each I/O can be made tri-state (0, 1 or Z), open source (1 or Z) or open drain (0 or Z) by programming an I/O's Source Selection mux. Of course, the output can be normal (0 or 1), as well.
SOURCE SELECTION MUX	The Source Selection mux selects the source for the output signal of an I/O.

Primary, Secondary and	The AT40KAL has three kinds of I/Os: Primary I/O, Secondary I/O and a Corner I/O.
Corner I/Os	Every edge cell except corner cells on the AT40KAL has access to one Primary I/O and two Secondary I/Os.

Primary I/O Every logic cell at the edge of the FPGA array has a direct orthogonal connection to and from a Primary I/O cell. The Primary I/O interfaces directly to its adjacent core cell. It also connects into the repeaters on the row immediately above and below the adjacent core cell. In addition, each Primary I/O also connects into the busing network of the three nearest edge cells. This is an extremely powerful feature, as it provides logic cells toward the center of the array with fast access to I/Os via local and express buses. It can be seen from the diagram that a given Primary I/O can be accessed from any logic cell on three separate rows or columns of the FPGA. See Figure 12 on page 20.

- Secondary I/O Every logic cell at the edge of the FPGA array has two direct diagonal connections to a Secondary I/O cell. The Secondary I/O is located between core cell locations. This I/O connects on the diagonal inputs to the cell above and the cell below. It also connects to the repeater of the cell above and below. In addition, each Secondary I/O also connects into the busing network of the two nearest edge cells. This is an extremely powerful feature, as it provides logic cells toward the center of the array with fast access to I/Os via local and express buses. It can be seen from the diagram that a given Secondary I/O can be accessed from any logic cell on two rows or columns of the FPGA. See Figure 13 on page 20.
- **Corner I/O** Logic cells at the corner of the FPGA array have direct-connect access to five separate I/Os: 2 Primary, 2 Secondary and 1 Corner I/O. Corner I/Os are like an extra Secondary I/O at each corner of the array. With the inclusion of Corner I/Os, an AT40KAL FPGA with n x n core cells always has 8n I/Os. As the diagram shows, Corner I/Os can be accessed both from the corner logic cell and the horizontal and vertical busing networks running along the edges of the array. This means that many different edge logic cells can access the Corner I/Os. See Figure 14 on page 21.

Figure 12. West Primary I/O (Mirrored for East I/O)

Figure 13. West Secondary I/O (Mirrored for East I/O)

AC Timing Characteristics – 3.3V Operation

Delays are based on fixed loads and are described in the notes. Maximum times based on worst case: V_{CC} = 3.0V, temperature = 70°C Minimum times based on best case: V_{CC} = 3.6V, temperature = 0°C Maximum delays are the average of t_{PDLH} and t_{PDHL}.

All input IO characteristics measured from a V_{IH} of 50% of V_{DD} at the pad (CMOS threshold) to the internal V_{IH} of 50% of V_{DD}. All output IO characteristics are measured as the average of t_{PDLH} and t_{PDHL} to the pad V_{IH} of 50% of V_{DD}.

Cell Function	Parameter	Path	-1	Units	Notes						
Repeaters											
Repeater	t _{PD} (Maximum)	L -> E	1.3	ns	1 unit load						
Repeater	t _{PD} (Maximum)	E -> E	1.3	ns	1 unit load						
Repeater	t _{PD} (Maximum)	L->L	1.3	ns	1 unit load						
Repeater	t _{PD} (Maximum)	E -> L	1.3	ns	1 unit load						
Repeater	t _{PD} (Maximum)	E -> 10	0.8	ns	1 unit load						
Repeater	t _{PD} (Maximum)	L -> 10	0.8	ns	1 unit load						

All input IO characteristics measured from a V_{IH} of 50% of V_{DD} at the pad (CMOS threshold) to the internal V_{IH} of 50% of V_{DD}. All output IO characteristics are measured as the average of t_{PDLH} and t_{PDHL} to the pad V_{IH} of 50% of V_{DD}.

Cell Function	Parameter	Path	-1	Units	Notes
ю					
Input	t _{PD} (Maximum)	pad -> x/y	1.2	ns	No extra delay
Input	t _{PD} (Maximum)	pad -> x/y	3.6	ns	1 extra delay
Input	t _{PD} (Maximum)	pad -> x/y	7.3	ns	2 extra delays
Input	t _{PD} (Maximum)	pad -> x/y	10.8	ns	3 extra delays
Output, Slow	t _{PD} (Maximum)	x/y/E/L -> pad	5.9	ns	50 pf load
Output, Medium	t _{PD} (Maximum)	x/y/E/L -> pad	4.8	ns	50 pf load
Output, Fast	t _{PD} (Maximum)	x/y/E/L -> pad	3.9	ns	50 pf load
Output, Slow	t _{PZX} (Maximum)	oe -> pad	6.2	ns	50 pf load
Output, Slow	t _{PXZ} (Maximum)	oe -> pad	1.3	ns	50 pf load
Output, Medium	t _{PZX} (Maximum)	oe -> pad	4.8	ns	50 pf load
Output, Medium	t _{PXZ} (Maximum)	oe -> pad	1.9	ns	50 pf load
Output, Fast	t _{PZX} (Maximum)	oe -> pad	3.7	ns	50 pf load
Output, Fast	t _{PXZ} (Maximum)	oe -> pad	1.6	ns	50 pf load

AC Timing Characteristics – 3.3V Operation

Delays are based on fixed loads and are described in the notes. Maximum times based on worst case: $V_{CC} = 3.0V$, temperature = 70°C Minimum times based on best case: $V_{CC} = 3.6V$, temperature = 0°C Maximum delays are the average of t_{PDLH} and t_{PDHL} .

Clocks and Reset Input buffers are measured from a V_{IH} of 1.5V at the input pad to the internal V_{IH} of 50% of V_{CC} . Maximum times for clock input buffers and internal drivers are measured for rising edge delays only.

Cell Function	Parameter	Path	Device	-1	Units	Notes
Global Clocks and Set/Re	eset					
GCLK Input Buffer	t _{PD}	pad -> clock	AT40K05AL	1.1	ns	Rising edge clock
	(Maximum)	pad -> clock	AT40K10AL	1.2	ns	
		pad -> clock	AT40K20AL	1.2	ns	
		pad -> clock	AT40K40AL	1.4	ns	
FCLK Input Buffer	t _{PD}	pad -> clock	AT40K05AL	0.7	ns	Rising edge clock
	(Maximum)	pad -> clock	AT40K10AL	0.8	ns	
		pad -> clock	AT40K20AL	0.8	ns	
		pad -> clock	AT40K40AL	0.8	ns	
Clock Column Driver	t _{PD}	clock -> colclk	AT40K05AL	0.8	ns	Rising edge clock
	(Maximum)	clock -> colclk	AT40K10AL	0.9	ns	
		clock -> colclk	AT40K20AL	1.0	ns	
		clock -> colclk	AT40K40AL	1.1	ns	
Clock Sector Driver	t _{PD}	colclk -> secclk	AT40K05AL	0.5	ns	Rising edge clock
	(Maximum)	colclk -> secclk	AT40K10AL	0.5	ns	
		colclk -> secclk	AT40K20AL	0.5	ns	
		colclk -> secclk	AT40K40AL	0.5	ns	
GSRN Input Buffer	t _{PD}	pad -> GSRN	AT40K05AL	3.0	ns	From any pad to Global
	(Maximum)	pad -> GSRN	AT40K10AL	3.7	ns	Set/Reset network
		pad -> GSRN	AT40K20AL	4.3	ns	
		pad -> GSRN	AT40K40AL	5.6	ns	
Global Clock to Output	t _{PD}	clock pad -> out	AT40K05AL	8.3	ns	Rising edge clock
	(Maximum)	clock pad -> out	AT40K10AL	8.4	ns	Fully loaded clock tree
		clock pad -> out	AT40K20AL	8.6	ns	Rising edge DFF
		clock pad -> out	AT40K40AL	8.8	ns	20 mA output buffer
						50 pf pin load
Fast Clock to Output	t _{PD}	clock pad -> out	AT40K05AL	7.9	ns	Rising edge clock
	(Maximum)	clock pad -> out	AT40K10AL	8.0	ns	Fully loaded clock tree
		clock pad -> out	AT40K20AL	8.1	ns	Rising edge DFF
		clock pad -> out	AT40K40AL	8.3	ns	20 mA output buffer
						50 pf pin load

FreeRAM Asynchronous Timing Characteristics

Single-port Write/Read

Dual-port Read

FreeRAM Synchronous Timing Characteristics

Single-port Write/Read

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL		Left Si	ide (Top to B	ottom)	
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP
I/O17	I/O25	I/O33	I/O49	23	13	19	27	31
I/O18	I/O26	I/O34	I/O50	24	14	20	28	32
			I/O51					
			I/O52					
I/O19	I/O27	I/O35	I/O53		15	21	29	33
I/O20	I/O28	I/O36	I/O54			22	30	34
			GND					
	I/O29	I/O37	I/O55				31	35
	I/O30	I/O38	I/O56				32	36
		I/O39	I/O57					
		I/O40	I/O58					
			I/O59					
			I/O60					
			VCC					
		GND	GND					37
		I/O41	I/O61					
		I/O42	I/O62					
			I/O63					
			I/O64					
			I/O65					
			I/O66					
			GND					
	I/O31	I/O43	I/O67					38
	I/O32	I/O44	I/O68					39
	VCC	VCC	VCC					40
I/O21	I/O33	I/O45	I/O69	25	16	23	33	41
I/O22	I/O34	I/O46	I/O70	26	17	24	34	42
I/O23	I/O35	I/O47	I/071			25	35	43
I/O24, FCK2	I/O36, FCK2	I/O48, FCK2	I/O72, FCK2			26	36	44
GND	GND	GND	GND			27	37	45
		I/O49	I/O73					
		I/O50	I/074					
	I/O37	I/O51	I/075					46
Note [.] 1 On	-chin tri-state	1	1	1	1	1		

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL		Right Si	ide (Bottom to Top)			
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP	
I/O73, FCK3	I/O111, FCK3	I/O147, FCK3	I/O219, FCK3			82	120	138	
I/074	I/O112	I/O148	I/O220			83	121	139	
	VCC	VCC	VCC					140	
l/O75 (D5)	I/O113 (D5)	I/O149 (D5)	I/O221 (D5)	59	57	84	122	141	
I/O76 (CS0)	I/O114 (CS0)	I/O150 (CS0)	I/O222 (CS0)	60	58	85	123	142	
			GND						
			I/O223						
			I/O224						
			I/O225						
			I/O226						
		I/O151	I/O227						
		I/O152	I/O228						
		GND	GND					143	
			VCC						
			I/O229						
			I/O230						
		I/O153	I/O231						
		I/O154	I/O232						
	I/O115	I/O155	I/O233				124	144	
	I/O116	I/O156	I/O234				125	145	
			GND						
I/077	I/O117	I/O157	I/O235		59	86	126	146	
I/O78	I/O118	I/O158	I/O236		60	87	127	147	
			I/O237						
			I/O238						
I/O79(D4)	I/O119(D4)	I/O159(D4)	I/O239(D4)	61	61	88	128	148	
I/O80	I/O120	I/O160	I/O240	62	62	89	129	149	
VCC	VCC	VCC	VCC	63	63	90	130	150	
GND	GND	GND	GND	64	64	91	131	151	
I/O81 (D3)	I/O121 (D3)	I/O161 (D3)	I/O241 (D3)	65	65	92	132	152	
I/O82 (CHECK)	I/O122 (CHECK)	I/O162 (CHECK)	I/O242 (CHECK)	66	66	93	133	153	

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL	Right Side (Bottom to Top)				
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP
			I/O270					
			GND					
	I/O135	I/O181	I/O271				143	169
	I/O136	I/O182	I/O272				144	170
I/O89	I/O137	I/O183	I/O273				145	171
I/O90	I/O138	I/O184	I/O274				146	172
			I/O275					
			I/O276					
		GND	GND					
		VCC	VCC					
I/O91 (D1)	I/O139 (D1)	I/O185 (D1)	I/O277 (D1)	69	70	101	147	173
I/O92	I/O140	I/O186	I/O278	70	71	102	148	174
			I/O279					
			I/O280					
			I/O281					
			I/O282					
			GND					
		I/O187	I/O283					
		I/O188	I/O284					
I/O93	I/O141	I/O189	I/O285			103	149	175
I/O94	I/O142	I/O190	I/O286			104	150	176
I/O95 (D0)	I/O143 (D0)	I/O191 (D0)	I/O287 (D0)	71	72	105	151	177
I/O96,	I/O144,	I/O192,	I/O288,					
GCK6	GCK6	GCK6	GCK6	72	73	106	152	178
(CSOUT)	(CSOUT)	(CSOUT)	(CSOUT)					
CCLK	CCLK	CCLK	CCLK	73	74	107	153	179
VCC	VCC	VCC	VCC	74	75	108	154	180
TSTCLK	TSTCLK	TSTCLK	TSTCLK	75	76	109	159	181

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL		Top Si	de (Right to	le (Right to Left)		
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP	
I/O105	I/O157	I/O209	I/O313			119	172	197	
I/O106	I/O158	I/O210	I/O314			120	173	198	
	I/O159	I/O211	I/O315					199	
	I/O160	I/O212	I/O316					200	
	VCC	VCC	VCC					201	
		I/O213	I/O317						
		I/O214	I/O318						
			GND						
			I/O319						
			I/O320						
			I/O321						
			I/O322						
		I/O215	I/O323						
		I/O216	I/O324						
		GND	GND						
			VCC						
I/O107 (A4)	I/O161 (A4)	I/O217 (A4)	I/O325 (A4)	81	82	121	174	202	
I/O108 (A5)	I/O162 (A5)	I/O218 (A5)	I/O326 (A5)	82	83	122	175	203	
	I/O163	I/O219	I/O327				176	205	
	I/O164	I/O220	I/O328				177	206	
I/O109	I/O165	I/O221	I/O329		84	123	178	207	
I/O110	I/O166	I/O222	I/O330		85	124	179	208	
			GND						
			I/O331						
			I/O332						
			I/O333						
			I/O334						
I/O111 (A6)	I/O167 (A6)	I/O223 (A6)	I/O335 (A6)	83	86	125	180	209	
I/O112 (A7)	I/O168 (A7)	I/O224 (A7)	I/O336 (A7)	84	87	126	181	210	
GND	GND	GND	GND	1	88	127	182	211	
VCC	VCC	VCC	VCC	2	89	128	183	212	
Note: 1. Sha	ared with TSTCLK	. No Connect.				•			

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL	Top Side (Right to Left)				
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP
I/O113 (A8)	I/O169 (A8)	I/O225 (A8)	I/O337 (A8)	3	90	129	184	213
I/O114 (A9)	I/O170 (A9)	I/O226 (A9)	I/O338 (A9)	4	91	130	185	214
			I/O339					
			I/O340					
			I/O341					
			I/O342					
			GND					
I/O115	I/O171	I/O227	I/O343		92	131	186	215
I/O116	I/O172	I/O228	I/O344		93	132	187	216
	I/O173	I/O229	I/O345				188	217
	I/O174	I/O230	I/O346				189	218
I/O117 (A10)	I/O175 (A10)	I/O231 (A10)	I/O347 (A10)	5	94	133	190	220
I/O118 (A11)	I/O176 (A11)	I/O232 (A11)	I/O348 (A11)	6	95	134	191	221
			VCC					
		GND	GND					
		I/O233	I/O349					
		I/O234	I/O350					
			I/O351					
			I/O352					
			I/O353					
			I/O354					
			GND					
		I/O235	I/O355					
		I/O236	I/O356					
	VCC	VCC	VCC					222
	I/O177	I/O237	I/O357					223
	I/O178	I/O238	I/O358					224
I/O119	I/O179	I/O239	I/O359			135	192	225
I/O120	I/O180	I/O240	I/O360			136	193	226
GND	GND	GND	GND			137	194	227
		I/O241	I/O361					
Note: 1. Sha	ared with TSTCL	K. No Connect.						

AT40K05AL Ordering Information

Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
5,000 - 10,000	3.3V	1	AT40K05AL-1AJC	84J	Commercial
			AT40K05AL-1AQC	100T1	(0°C to 70°C)
			AT40K05AL-1BQC	144L1	
			AT40K05AL-1DQC	208Q1	
5,000 - 10,000	3.3V	1	AT40K05AL-1AJI	84J	Industrial
			AT40K05AL-1AQI	100T1	(-40°C to 85°C)
			AT40K05AL-1BQI	144L1	
			AT40K05AL-1DQI	208Q1	

AT40K10AL Ordering Information

Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
10,000 - 20,000	3.3V	1	AT40K10AL-1AJC	84J	Commercial
			AT40K10AL-1AQC	100T1	(0°C to 70°C)
			AT40K10AL-1BQC	144L1	
			AT40K10AL-1DQC	208Q1	
10,000 - 20,000	3.3V	1	AT40K10AL-1AJI	84J	Industrial
			AT40K10AL-1AQI	100T1	(-40°C to 85°C)
			AT40K10AL-1BQI	144L1	
			AT40K10AL-1DQI	208Q1	

AT40K20AL Ordering Information

Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
20,000 - 30,000	3.3V	1	AT40K20AL-1AJC AT40K20AL-1AQC AT40K20AL-1BQC AT40K20AL-1DQC	84J 100T1 144L1 208Q1	Commercial (0°C to 70°C)
20,000 - 30,000	3.3V	1	AT40K20AL-1AJI AT40K20AL-1AQI AT40K20AL-1BQI AT40K20AL-1DQI	84J 100T1 144L1 208Q1	Industrial (-40°C to 85°C)

AT40K40AL Ordering Information

Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
40,000 - 50,000	3.3V	1	AT40K40AL-1BQC	144L1	Commercial
			AT40K40AL-1DQC	208Q1	(0°C to 70°C)
			AT40K40AL-1EQC	240Q1	
40,000 - 50,000	3.3V	1	AT40K40AL-1BQI	144L1	Industrial
			AT40K40AL-1DQI	208Q1	(-40°C to 85°C)
			AT40K40AL-1EQI	240Q1	

Note: 1. For military parts, contact Atmel at fpga@atmel.com.

240Q1 – PQFP

