

Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

EXF

| Product Status                 | Obsolete                                                                 |
|--------------------------------|--------------------------------------------------------------------------|
| Number of LABs/CLBs            | -                                                                        |
| Number of Logic Elements/Cells | 1024                                                                     |
| Total RAM Bits                 | 8192                                                                     |
| Number of I/O                  | 78                                                                       |
| Number of Gates                | 30000                                                                    |
| Voltage - Supply               | 3V ~ 3.6V                                                                |
| Mounting Type                  | Surface Mount                                                            |
| Operating Temperature          | 0°C ~ 70°C                                                               |
| Package / Case                 | 100-TQFP                                                                 |
| Supplier Device Package        | 100-TQFP (14x14)                                                         |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/at40k20al-1aqc |
|                                |                                                                          |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# The Symmetrical Array

At the heart of the Atmel architecture is a symmetrical array of identical cells, see Figure 1. The array is continuous from one edge to the other, except for bus repeaters spaced every four cells, see Figure 2 on page 5. At the intersection of each repeater row and column there is a  $32 \times 4$  RAM block accessible by adjacent buses. The RAM can be configured as either a single-ported or dual-ported RAM<sup>(1)</sup>, with either synchronous or asynchronous operation.

Note: 1. The right-most column can only be used as single-port RAM.

Figure 1. Symmetrical Array Surrounded by I/O (AT40K20AL)<sup>(1)</sup>



Note: 1. AT40KAL has registered I/Os. Group enable on every sector for tri-states on obufe's.



### **The Busing Network**

Figure 3 on page 7 depicts one of five identical busing planes. Each plane has three bus resources: a local-bus resource (the middle bus) and two express-bus (both sides) resources. Bus resources are connected via repeaters. Each repeater has connections to two adjacent local-bus segments and two express-bus segments. Each local-bus segment spans four cells and connects to consecutive repeaters. Each express-bus segment spans eight cells and "leapfrogs" or bypasses a repeater. Repeaters regenerate signals and can connect any bus to any other bus (all pathways are legal) on the same plane. Although not shown, a local bus can bypass a repeater via a programmable pass gate allowing long on-chip tri-state buses to be created. Local/Local turns are implemented through pass gates in the cell-bus interface. Express/Express turns are implemented through separate pass gates distributed throughout the array.

Some of the bus resources on the AT40KAL are used as a dual-function resources. Table 2 shows which buses are used in a dual-function mode and which bus plane is used. The AT40KAL software tools are designed to accommodate dual-function buses in an efficient manner.

| Function           | Туре    | Plane(s) | Direction                  | Comments                                                                          |
|--------------------|---------|----------|----------------------------|-----------------------------------------------------------------------------------|
| Cell Output Enable | Local   | 5        | Horizontal<br>and Vertical |                                                                                   |
| RAM Output Enable  | Express | 2        | Vertical                   | Bus full length at array edge<br>Bus in first column to left of<br>RAM block      |
| RAM Write Enable   | Express | 1        | Vertical                   | Bus full length at array edge<br>Bus in first column to left of<br>RAM block      |
| RAM Address        | Express | 1 - 5    | Vertical                   | Buses full length at array edge<br>Buses in second column to left<br>of RAM block |
| RAM Data In        | Local   | 1        | Horizontal                 | Data In connects to local bus plane 1                                             |
| RAM Data Out       | Local   | 2        | Horizontal                 | Data out connects to local bus plane 2                                            |
| Clocking           | Express | 4        | Vertical                   | Bus half length at array edge                                                     |
| Set/Reset          | Express | 5        | Vertical                   | Bus half length at array edge                                                     |

Table 2. Dual-function Buses

### RAM

32 x 4 dual-ported RAM blocks are dispersed throughout the array, see Figure 7. A 4-bit Input Data Bus connects to four horizontal local buses distributed over four sector rows (plane 1). A 4-bit Output Data Bus connects to four horizontal local buses distributed over four sector rows (plane 2). A 5-bit Input Address Bus connects to five vertical express buses in the same column. A 5-bit Output Address Bus connects to five vertical express buses in the same column. Ain (input address) and Aout (output address) alternate positions in horizontally aligned RAM blocks. For the left-most RAM blocks, Aout is on the left and Ain is on the right. For the right-most RAM blocks, Ain is on the left and Aout is tied off, thus it can only be configured as a single port. For single-ported RAM, Ain is the READ/WRITE address port and Din is the (bi-directional) data port. Right-most RAM blocks can be used only for single-ported memories. WEN and OEN connect to the vertical express buses in the same column.

Figure 7. RAM Connections (One Ram Block)







### **Set/Reset Scheme**

The AT40KAL family reset scheme is essentially the same as the clock scheme except that there is only one Global Reset. A dedicated Global Set/Reset bus can be driven by any User I/O, except those used for clocking (Global Clocks or Fast Clocks). The automatic placement tool will choose the reset net with the most connections to use the global resources. You can change this by using an RSBUF component in your design to indicate the global reset. Additional resets will use the express bus network.

The Global Set/Reset is distributed to each column of the array. Like Sector Clock mux, there is Sector Set/Reset mux at every four cells. Each sector column of four cells is set/reset by a Plane 5 express bus or Global Set/Reset using the Sector Set/Reset mux, see Figure 11 on page 17. The set/reset provided to each sector column of four cells is either inverted or non-inverted using the Sector Reset mux.

The function of the Set/Reset input of a register is determined by a configuration bit in each cell. The Set/Reset input of a register is active low (logic 0) by default. Setting or Resetting of a register is asynchronous. Before configuration on power-up, a logic 1 (a high) is provided by each register (i.e., all registers are set at power-up).





Any User I/O can Drive Global Set/Reset Lone



| Primary, Secondary and | The AT40KAL has three kinds of I/Os: Primary I/O, Secondary I/O and a Corner I/O.                        |
|------------------------|----------------------------------------------------------------------------------------------------------|
| Corner I/Os            | Every edge cell except corner cells on the AT40KAL has access to one Primary I/O and two Secondary I/Os. |

Primary I/O Every logic cell at the edge of the FPGA array has a direct orthogonal connection to and from a Primary I/O cell. The Primary I/O interfaces directly to its adjacent core cell. It also connects into the repeaters on the row immediately above and below the adjacent core cell. In addition, each Primary I/O also connects into the busing network of the three nearest edge cells. This is an extremely powerful feature, as it provides logic cells toward the center of the array with fast access to I/Os via local and express buses. It can be seen from the diagram that a given Primary I/O can be accessed from any logic cell on three separate rows or columns of the FPGA. See Figure 12 on page 20.

- Secondary I/O Every logic cell at the edge of the FPGA array has two direct diagonal connections to a Secondary I/O cell. The Secondary I/O is located between core cell locations. This I/O connects on the diagonal inputs to the cell above and the cell below. It also connects to the repeater of the cell above and below. In addition, each Secondary I/O also connects into the busing network of the two nearest edge cells. This is an extremely powerful feature, as it provides logic cells toward the center of the array with fast access to I/Os via local and express buses. It can be seen from the diagram that a given Secondary I/O can be accessed from any logic cell on two rows or columns of the FPGA. See Figure 13 on page 20.
- **Corner I/O** Logic cells at the corner of the FPGA array have direct-connect access to five separate I/Os: 2 Primary, 2 Secondary and 1 Corner I/O. Corner I/Os are like an extra Secondary I/O at each corner of the array. With the inclusion of Corner I/Os, an AT40KAL FPGA with n x n core cells always has 8n I/Os. As the diagram shows, Corner I/Os can be accessed both from the corner logic cell and the horizontal and vertical busing networks running along the edges of the array. This means that many different edge logic cells can access the Corner I/Os. See Figure 14 on page 21.





Figure 12. West Primary I/O (Mirrored for East I/O)



Figure 13. West Secondary I/O (Mirrored for East I/O)









| Symbol                                   | Parameter                                            | Conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Minimum                     | Typical | Maximum                                                                                                                                                                                                                                                   | Units |
|------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| V <sub>IH</sub>                          | High-level Input Voltage                             | CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7 V <sub>CC</sub>         |         | 5.5V                                                                                                                                                                                                                                                      | V     |
| VIL                                      | Low-level Input Voltage                              | CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.3                        |         | 30% V <sub>CC</sub>                                                                                                                                                                                                                                       | V     |
|                                          |                                                      | $I_{OH} = 4 \text{ mA}$<br>$V_{CC} = V_{CC} \text{ minimum}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.1                         |         |                                                                                                                                                                                                                                                           | V     |
| V <sub>OH</sub>                          | High-level Output Voltage                            | $I_{OH} = 12 \text{ mA}$<br>$V_{CC} = 3.0 \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1                         |         |                                                                                                                                                                                                                                                           | V     |
|                                          |                                                      | $I_{OH} = 16 \text{ mA}$<br>$V_{CC} = 3.0 \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.1                         |         |                                                                                                                                                                                                                                                           | V     |
|                                          |                                                      | $I_{OL} = -4 \text{ mA}$<br>$V_{CC} = 3.0 \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |         | 0.4                                                                                                                                                                                                                                                       | V     |
| V <sub>OL</sub> Low-level Output Voltage | Low-level Output Voltage                             | $I_{OL} = -12 \text{ mA}$<br>$V_{CC} = 3.0 \text{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |         | 0.4                                                                                                                                                                                                                                                       | V     |
|                                          | $I_{OL} = -16 \text{ mA}$<br>$V_{CC} = 3.0 \text{V}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             | 0.4     | V                                                                                                                                                                                                                                                         |       |
|                                          | Lligh lovel legent Compart                           | V <sub>IN</sub> = V <sub>CC</sub> Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |         | 10.0                                                                                                                                                                                                                                                      | μA    |
| ΊΗ                                       | High-level input Current                             | With pull-down, $V_{IN} = V_{CC}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 75.0                        | 150.0   | 300.0                                                                                                                                                                                                                                                     | μA    |
|                                          |                                                      | $V_{IN} = V_{SS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -10.0                       |         | Maximum   5.5V   30% V <sub>CC</sub> 0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.4   0.5   0.6   300.0   300.0   10.0   1.0   1.0 | μA    |
| ۱L                                       | Low-level input Current                              | With pull-up, $V_{IN} = V_{SS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -300.0                      | -150.0  | -75.0                                                                                                                                                                                                                                                     | μA    |
|                                          | High-level Tri-state Output                          | Without pull-down,<br>V <sub>IN</sub> = V <sub>CC</sub> Maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |         | 10.0                                                                                                                                                                                                                                                      | μA    |
| lozн                                     | Leakage Current                                      | ConditionsMinimumVoltageCMOS $0.7 V_{CC}$ /oltageCMOS $-0.3$ Image: Voltage $I_{OH} = 4 \text{ mA}$ $2.1$ $V_{CC} = V_{CC}$ minimum $2.1$ $V_{CC} = 3.0V$ $V_{CC} = 3.0V$ $V_{CC} = 3.0V$ $V_{CC} = 3.0V$ $V_{IN} = V_{CC}$ Maximum $V_{CC} = 3.0V$ $Current$ $V_{IN} = V_{CC}$ Maximum $V_{IN} = V_{CC}$ Maximum $V_{IN} = V_{CC}$ $Current$ $V_{IN} = V_{CC}$ Maximum $V_{IN} = V_{CC}$ Maximum $V_{IN} = V_{CC}$ $V_{IN} = V_{CC}$ Maximum $V_{IN} = V_{CD}$ $V_{IN} = V_{CC}$ Maximum $V_{IN} = V_{SS}$ $V_{IN} = V_{CD}$ Maximum $V_{IN} = V_{SD}$ $V_{IN} = V_{CD}$ Maximum $V_{IN} = V_{SD}$ $V_{IN} = V_{IN} = V_{SS}$ $-10.0$ $V_{IN} = V_{IN} = V_{SS}$ $V_{IN} = V_{IN} =$ | 150.0                       | 300.0   | μA                                                                                                                                                                                                                                                        |       |
|                                          | Level Tri state Output                               | Without pull-up, $V_{IN} = V_{SS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -10.0                       |         |                                                                                                                                                                                                                                                           | mA    |
| I <sub>OZL</sub>                         | Low-level In-state Output<br>Leakage Current         | With pull-up, $V_{IN} = V_{SS}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CON = -500 μA<br>TO -125 μA | -150.0  | CON = -500 μA<br>TO -125 μA                                                                                                                                                                                                                               | μA    |
| I <sub>CC</sub>                          | Standby Current<br>Consumption                       | Standby, unprogrammed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             | 0.6     | 1.0                                                                                                                                                                                                                                                       | mA    |
| C <sub>IN</sub>                          | Input Capacitance                                    | All pins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |         | 10.0                                                                                                                                                                                                                                                      | pF    |

## DC Characteristics – 3.3V Operation Commercial/Industrial

Note: 1. Parameter based on characterization and simulation; it is not tested in production.





### AC Timing Characteristics – 3.3V Operation

Delays are based on fixed loads and are described in the notes. Maximum times based on worst case: V<sub>CC</sub> = 3.0V, temperature = 70°C Minimum times based on best case: V<sub>CC</sub> = 3.6V, temperature = 0°C Maximum delays are the average of t<sub>PDLH</sub> and t<sub>PDHL</sub>.

All input IO characteristics measured from a V<sub>IH</sub> of 50% of V<sub>DD</sub> at the pad (CMOS threshold) to the internal V<sub>IH</sub> of 50% of V<sub>DD</sub>. All output IO characteristics are measured as the average of  $t_{PDLH}$  and  $t_{PDHL}$  to the pad V<sub>IH</sub> of 50% of V<sub>DD</sub>.

| Cell Function | Parameter                 | Path    | -1  | Units | Notes       |
|---------------|---------------------------|---------|-----|-------|-------------|
| Repeaters     |                           |         |     |       |             |
| Repeater      | t <sub>PD</sub> (Maximum) | L -> E  | 1.3 | ns    | 1 unit load |
| Repeater      | t <sub>PD</sub> (Maximum) | E -> E  | 1.3 | ns    | 1 unit load |
| Repeater      | t <sub>PD</sub> (Maximum) | L->L    | 1.3 | ns    | 1 unit load |
| Repeater      | t <sub>PD</sub> (Maximum) | E -> L  | 1.3 | ns    | 1 unit load |
| Repeater      | t <sub>PD</sub> (Maximum) | E -> 10 | 0.8 | ns    | 1 unit load |
| Repeater      | t <sub>PD</sub> (Maximum) | L -> 10 | 0.8 | ns    | 1 unit load |

All input IO characteristics measured from a V<sub>IH</sub> of 50% of V<sub>DD</sub> at the pad (CMOS threshold) to the internal V<sub>IH</sub> of 50% of V<sub>DD</sub>. All output IO characteristics are measured as the average of  $t_{PDLH}$  and  $t_{PDHL}$  to the pad V<sub>IH</sub> of 50% of V<sub>DD</sub>.

| Cell Function  | Parameter                  | Path           | -1   | Units | Notes          |
|----------------|----------------------------|----------------|------|-------|----------------|
| ю              |                            |                |      |       |                |
| Input          | t <sub>PD</sub> (Maximum)  | pad -> x/y     | 1.2  | ns    | No extra delay |
| Input          | t <sub>PD</sub> (Maximum)  | pad -> x/y     | 3.6  | ns    | 1 extra delay  |
| Input          | t <sub>PD</sub> (Maximum)  | pad -> x/y     | 7.3  | ns    | 2 extra delays |
| Input          | t <sub>PD</sub> (Maximum)  | pad -> x/y     | 10.8 | ns    | 3 extra delays |
| Output, Slow   | t <sub>PD</sub> (Maximum)  | x/y/E/L -> pad | 5.9  | ns    | 50 pf load     |
| Output, Medium | t <sub>PD</sub> (Maximum)  | x/y/E/L -> pad | 4.8  | ns    | 50 pf load     |
| Output, Fast   | t <sub>PD</sub> (Maximum)  | x/y/E/L -> pad | 3.9  | ns    | 50 pf load     |
| Output, Slow   | t <sub>PZX</sub> (Maximum) | oe -> pad      | 6.2  | ns    | 50 pf load     |
| Output, Slow   | t <sub>PXZ</sub> (Maximum) | oe -> pad      | 1.3  | ns    | 50 pf load     |
| Output, Medium | t <sub>PZX</sub> (Maximum) | oe -> pad      | 4.8  | ns    | 50 pf load     |
| Output, Medium | t <sub>PXZ</sub> (Maximum) | oe -> pad      | 1.9  | ns    | 50 pf load     |
| Output, Fast   | t <sub>PZX</sub> (Maximum) | oe -> pad      | 3.7  | ns    | 50 pf load     |
| Output, Fast   | t <sub>PXZ</sub> (Maximum) | oe -> pad      | 1.6  | ns    | 50 pf load     |



| AT40K05AL      | AT40K10AL       | AT40K20AL      | AT40K40AL      |            | Left Si  | de (Top to B | ottom)   |             |
|----------------|-----------------|----------------|----------------|------------|----------|--------------|----------|-------------|
| 128 I/O        | 192 I/O         | 256 I/O        | 384 I/O        | 84<br>PLCC | 100 TQFP | 144 LQFP     | 208 PQFP | 240<br>PQFP |
| I/O9,<br>FCK1  | I/O13,<br>FCK1  | I/O17,<br>FCK1 | I/O25,<br>FCK1 |            |          | 9            | 15       | 15          |
| I/O10          | I/O14           | I/O18          | I/O26          |            |          | 10           | 16       | 16          |
| I/O11<br>(A20) | I/O15<br>(A20)  | I/O19<br>(A20) | I/O27<br>(A20) | 17         | 6        | 11           | 17       | 17          |
| I/O12<br>(A21) | I/O16<br>(A21)  | I/O20<br>(A21) | I/O28<br>(A21) | 18         | 7        | 12           | 18       | 18          |
|                | VCC             | VCC            | VCC            |            |          |              |          | 19          |
|                | I/O17           | I/O21          | I/O29          |            |          |              |          | 20          |
|                | I/O18           | I/O22          | I/O30          |            |          |              |          | 21          |
|                |                 |                | GND            |            |          |              |          |             |
|                |                 |                | I/O31          |            |          |              |          |             |
|                |                 |                | I/O32          |            |          |              |          |             |
|                |                 |                | I/O33          |            |          |              |          |             |
|                |                 |                | I/O34          |            |          |              |          |             |
|                |                 | I/O23          | I/O35          |            |          |              |          |             |
|                |                 | I/O24          | I/O36          |            |          |              |          |             |
|                |                 | GND            | GND            |            |          |              |          | 22          |
|                |                 |                | VCC            |            |          |              |          |             |
|                |                 |                | I/O37          |            |          |              |          |             |
|                |                 |                | I/O38          |            |          |              |          |             |
|                |                 | I/O25          | I/O39          |            |          |              |          |             |
|                |                 | I/O26          | I/O40          |            |          |              |          |             |
|                | I/O19           | I/O27          | I/O41          |            |          |              | 19       | 23          |
|                | I/O20           | I/O28          | I/O42          |            |          |              | 20       | 24          |
|                |                 |                | GND            |            |          |              |          |             |
| I/O13          | I/O21           | I/O29          | I/O43          |            |          | 13           | 21       | 25          |
| I/O14          | I/O22           | I/O30          | I/O44          |            | 8        | 14           | 22       | 26          |
|                |                 |                | I/O45          |            |          |              |          |             |
|                |                 |                | I/O46          |            |          |              |          |             |
| I/O15<br>(A22) | I/O23<br>(A22)  | I/O31<br>(A22) | I/O47<br>(A22) | 19         | 9        | 15           | 23       | 27          |
| I/O16<br>(A23) | I/O24<br>(A23)  | I/O32<br>(A23) | I/O48<br>(A23) | 20         | 10       | 16           | 24       | 28          |
| GND            | GND             | GND            | GND            | 21         | 11       | 17           | 25       | 29          |
| VCC            | VCC             | VCC            | VCC            | 22         | 12       | 18           | 26       | 30          |
| Note: 1 On     | -chip tri-state | 1              | 1              | 1          |          | 1            |          |             |

| AT40K05AL              | AT40K10AL       | AT40K20AL      | AT40K40AL      |            | Left Si  | ide (Top to B | ottom)   |             |
|------------------------|-----------------|----------------|----------------|------------|----------|---------------|----------|-------------|
| 128 I/O                | 192 I/O         | 256 I/O        | 384 I/O        | 84<br>PLCC | 100 TQFP | 144 LQFP      | 208 PQFP | 240<br>PQFP |
| I/O17                  | I/O25           | I/O33          | I/O49          | 23         | 13       | 19            | 27       | 31          |
| I/O18                  | I/O26           | I/O34          | I/O50          | 24         | 14       | 20            | 28       | 32          |
|                        |                 |                | I/O51          |            |          |               |          |             |
|                        |                 |                | I/O52          |            |          |               |          |             |
| I/O19                  | I/O27           | I/O35          | I/O53          |            | 15       | 21            | 29       | 33          |
| I/O20                  | I/O28           | I/O36          | I/O54          |            |          | 22            | 30       | 34          |
|                        |                 |                | GND            |            |          |               |          |             |
|                        | I/O29           | I/O37          | I/O55          |            |          |               | 31       | 35          |
|                        | I/O30           | I/O38          | I/O56          |            |          |               | 32       | 36          |
|                        |                 | I/O39          | I/O57          |            |          |               |          |             |
|                        |                 | I/O40          | I/O58          |            |          |               |          |             |
|                        |                 |                | I/O59          |            |          |               |          |             |
|                        |                 |                | I/O60          |            |          |               |          |             |
|                        |                 |                | VCC            |            |          |               |          |             |
|                        |                 | GND            | GND            |            |          |               |          | 37          |
|                        |                 | I/O41          | I/O61          |            |          |               |          |             |
|                        |                 | I/O42          | I/O62          |            |          |               |          |             |
|                        |                 |                | I/O63          |            |          |               |          |             |
|                        |                 |                | I/O64          |            |          |               |          |             |
|                        |                 |                | I/O65          |            |          |               |          |             |
|                        |                 |                | I/O66          |            |          |               |          |             |
|                        |                 |                | GND            |            |          |               |          |             |
|                        | I/O31           | I/O43          | I/O67          |            |          |               |          | 38          |
|                        | I/O32           | I/O44          | I/O68          |            |          |               |          | 39          |
|                        | VCC             | VCC            | VCC            |            |          |               |          | 40          |
| I/O21                  | I/O33           | I/O45          | I/O69          | 25         | 16       | 23            | 33       | 41          |
| I/O22                  | I/O34           | I/O46          | I/O70          | 26         | 17       | 24            | 34       | 42          |
| I/O23                  | I/O35           | I/O47          | I/071          |            |          | 25            | 35       | 43          |
| I/O24,<br>FCK2         | I/O36,<br>FCK2  | I/O48,<br>FCK2 | I/O72,<br>FCK2 |            |          | 26            | 36       | 44          |
| GND                    | GND             | GND            | GND            |            |          | 27            | 37       | 45          |
|                        |                 | I/O49          | I/O73          |            |          |               |          |             |
|                        |                 | I/O50          | I/074          |            |          |               |          |             |
|                        | I/O37           | I/O51          | I/075          |            |          |               |          | 46          |
| Note <sup>.</sup> 1 On | -chin tri-state | 1              | 1              | 1          | 1        | 1             |          |             |





| AT40K05AL       | AT40K10AL       | AT40K20AL       | AT40K40AL        |            | Bottom   | Side (Left to | Right)   |             |
|-----------------|-----------------|-----------------|------------------|------------|----------|---------------|----------|-------------|
| 128 I/O         | 192 I/O         | 256 I/O         | 384 I/O          | 84<br>PLCC | 100 TQFP | 144 LQFP      | 208 PQFP | 240<br>PQFP |
| I/O42           | I/O62           | I/O82           | I/O122           |            |          | 47            | 69       | 77          |
| I/O43           | I/O63           | I/O83           | I/O123           | 38         | 31       | 48            | 70       | 78          |
| I/O44           | I/O64           | I/O84           | I/O124           | 39         | 32       | 49            | 71       | 79          |
|                 | VCC             | VCC             | VCC              |            |          |               |          | 80          |
|                 | I/O65           | I/O85           | I/O125           |            |          |               | 72       | 81          |
|                 | I/O66           | I/O86           | I/O126           |            |          |               | 73       | 82          |
|                 |                 |                 | GND              |            |          |               |          |             |
|                 |                 |                 | I/O127           |            |          |               |          |             |
|                 |                 |                 | I/O128           |            |          |               |          |             |
|                 |                 |                 | I/O129           |            |          |               |          |             |
|                 |                 |                 | I/O130           |            |          |               |          |             |
|                 |                 | I/O87           | I/O131           |            |          |               |          |             |
|                 |                 | I/O88           | I/O132           |            |          |               |          |             |
|                 |                 | GND             | GND              |            |          |               |          | 83          |
|                 |                 |                 | VCC              |            |          |               |          |             |
|                 |                 | I/O89           | I/O133           |            |          |               |          |             |
|                 |                 | I/O90           | I/O134           |            |          |               |          |             |
|                 | I/O67           | I/O91           | I/O135           |            |          |               |          | 84          |
|                 | I/O68           | I/O92           | I/O136           |            |          |               |          | 85          |
| I/O45           | I/O69           | I/O93           | I/O137           |            | 33       | 50            | 74       | 86          |
| I/O46           | I/O70           | I/O94           | I/O138           |            | 34       | 51            | 75       | 87          |
|                 |                 |                 | GND              |            |          |               |          |             |
|                 |                 |                 | I/O139           |            |          |               |          |             |
|                 |                 |                 | I/O140           |            |          |               |          |             |
|                 |                 |                 | I/O141           |            |          |               |          |             |
|                 |                 |                 | I/O142           |            |          |               |          |             |
| l/O47<br>(D15)  | I/O71<br>(D15)  | I/O95<br>(D15)  | I/O143<br>(D15)  | 40         | 35       | 52            | 76       | 88          |
| I/O48<br>(INIT) | I/O72<br>(INIT) | I/O96<br>(INIT) | I/O144<br>(INIT) | 41         | 36       | 53            | 77       | 89          |
| VCC             | VCC             | VCC             | VCC              | 42         | 37       | 54            | 78       | 90          |
| GND             | GND             | GND             | GND              | 43         | 38       | 55            | 79       | 91          |
| I/O49<br>(D14)  | I/O73<br>(D14)  | I/O97<br>(D14)  | I/O145<br>(D14)  | 44         | 39       | 56            | 80       | 92          |
| I/O50<br>(D13)  | l/O74<br>(D13)  | I/O98<br>(D13)  | I/O146<br>(D13)  | 45         | 40       | 57            | 81       | 93          |

| AT40K05AL      | AT40K10AL      | AT40K20AL       | AT40K40AL       |            | Bottom   | Bottom Side (Left to Right) |          |             |  |
|----------------|----------------|-----------------|-----------------|------------|----------|-----------------------------|----------|-------------|--|
| 128 I/O        | 192 I/O        | 256 I/O         | 384 I/O         | 84<br>PLCC | 100 TQFP | 144 LQFP                    | 208 PQFP | 240<br>PQFP |  |
|                |                |                 | I/O147          |            |          |                             |          |             |  |
|                |                |                 | I/O148          |            |          |                             |          |             |  |
|                |                |                 | I/O149          |            |          |                             |          |             |  |
|                |                |                 | I/O150          |            |          |                             |          |             |  |
|                |                |                 | GND             |            |          |                             |          |             |  |
| I/O51          | I/O75          | I/O99           | I/O151          |            | 41       | 58                          | 82       | 94          |  |
| I/O52          | I/076          | I/O100          | I/O152          |            | 42       | 59                          | 83       | 95          |  |
|                | I/077          | I/O101          | I/O153          |            |          |                             | 84       | 96          |  |
|                | I/078          | I/O102          | I/O154          |            |          |                             | 85       | 97          |  |
|                |                | I/O103          | I/O155          |            |          |                             |          |             |  |
|                |                | I/O104          | I/O156          |            |          |                             |          |             |  |
|                |                |                 | VCC             |            |          |                             |          |             |  |
|                |                | GND             | GND             |            |          |                             |          | 98          |  |
|                |                | I/O105          | I/O157          |            |          |                             |          |             |  |
|                |                | I/O106          | I/O158          |            |          |                             |          |             |  |
|                |                |                 | I/O159          |            |          |                             |          |             |  |
|                |                |                 | I/O160          |            |          |                             |          |             |  |
|                |                |                 | I/O161          |            |          |                             |          |             |  |
|                |                |                 | I/O162          |            |          |                             |          |             |  |
|                |                |                 | GND             |            |          |                             |          |             |  |
|                | I/O79          | I/O107          | I/O163          |            |          |                             |          | 99          |  |
|                | I/O80          | I/O108          | I/O164          |            |          |                             |          | 100         |  |
|                | VCC            | VCC             | VCC             |            |          |                             |          | 101         |  |
| I/O53<br>(D12) | I/O81<br>(D12) | I/O109<br>(D12) | I/O165<br>(D12) | 46         | 43       | 60                          | 86       | 102         |  |
| I/O54<br>(D11) | I/O82<br>(D11) | I/O110<br>(D11) | I/O166<br>(D11) | 47         | 44       | 61                          | 87       | 103         |  |
| I/O55          | I/O83          | I/O111          | I/O167          |            |          | 62                          | 88       | 104         |  |
| I/O56          | I/O84          | I/O112          | I/O168          |            |          | 63                          | 89       | 105         |  |
| GND            | GND            | GND             | GND             |            |          | 64                          | 90       | 106         |  |
|                |                | I/O113          | I/O169          |            |          |                             |          |             |  |
|                |                | I/O114          | I/O170          |            |          |                             |          |             |  |
|                | I/O85          | I/O115          | I/O171          |            |          |                             |          | 107         |  |
|                | I/O86          | I/O116          | I/O172          |            |          |                             |          | 108         |  |
|                |                |                 | I/O173          |            |          |                             |          |             |  |



| AT40K05AL      | AT40K10AL       | AT40K20AL       | AT40K40AL       |            | Right Si | de (Bottom t | о Тор)   |             |
|----------------|-----------------|-----------------|-----------------|------------|----------|--------------|----------|-------------|
| 128 I/O        | 192 I/O         | 256 I/O         | 384 I/O         | 84<br>PLCC | 100 TQFP | 144 LQFP     | 208 PQFP | 240<br>PQFP |
|                |                 |                 | I/O243          |            |          |              |          |             |
|                |                 |                 | I/O244          |            |          |              |          |             |
| I/O83          | I/O123          | I/O163          | I/O245          |            | 67       | 94           | 134      | 154         |
| I/O84          | I/O124          | I/O164          | I/O246          |            |          | 95           | 135      | 155         |
|                |                 |                 | GND             |            |          |              |          |             |
|                | I/O125          | I/O165          | I/O247          |            |          |              | 136      | 156         |
|                | I/O126          | I/O166          | I/O248          |            |          |              | 137      | 157         |
|                |                 | I/O167          | I/O249          |            |          |              |          |             |
|                |                 | I/O168          | I/O250          |            |          |              |          |             |
|                |                 |                 | I/O251          |            |          |              |          |             |
|                |                 |                 | I/O252          |            |          |              |          |             |
|                |                 |                 | VCC             |            |          |              |          |             |
|                |                 | GND             | GND             |            |          |              |          | 158         |
|                |                 | I/O169          | I/O253          |            |          |              |          |             |
|                |                 | I/O170          | I/O254          |            |          |              |          |             |
|                |                 |                 | I/O255          |            |          |              |          |             |
|                |                 |                 | I/O256          |            |          |              |          |             |
|                |                 |                 | I/O257          |            |          |              |          |             |
|                |                 |                 | I/O258          |            |          |              |          |             |
|                |                 |                 | GND             |            |          |              |          |             |
| l/O85<br>(D2)  | I/O127<br>(D2)  | I/O171<br>(D2)  | I/O259<br>(D2)  | 67         | 68       | 96           | 138      | 159         |
| I/O86          | I/O128          | I/O172          | I/O260          | 68         | 69       | 97           | 139      | 160         |
|                | VCC             | VCC             | VCC             |            |          |              |          | 161         |
| I/O87          | I/O129          | I/O173          | I/O261          |            |          | 98           | 140      | 162         |
| I/O88,<br>FCK4 | l/O130,<br>FCK4 | I/O174,<br>FCK4 | I/O262,<br>FCK4 |            |          | 99           | 141      | 163         |
|                | I/O131          | I/O175          | I/O263          |            |          |              |          | 164         |
|                | I/O132          | I/O176          | I/O264          |            |          |              |          | 165         |
| GND            | GND             | GND             | GND             |            |          | 100          | 142      | 166         |
|                |                 | I/O177          | I/O265          |            |          |              |          |             |
|                |                 | I/O178          | I/O266          |            |          |              |          |             |
|                | I/O133          | I/O179          | I/O267          |            |          |              |          | 167         |
|                | I/O134          | I/O180          | I/O268          |            |          |              |          | 168         |
|                |                 |                 | I/O269          |            |          |              |          |             |





| AT40K05AL     | AT40K10AL      | AT40K20AL      | AT40K40AL      | AT40K40AL Right Side (Bottom to Top) |          |          | Right Side (Bottom to Top) |             |  |  |
|---------------|----------------|----------------|----------------|--------------------------------------|----------|----------|----------------------------|-------------|--|--|
| 128 I/O       | 192 I/O        | 256 I/O        | 384 I/O        | 84<br>PLCC                           | 100 TQFP | 144 LQFP | 208 PQFP                   | 240<br>PQFP |  |  |
|               |                |                | I/O270         |                                      |          |          |                            |             |  |  |
|               |                |                | GND            |                                      |          |          |                            |             |  |  |
|               | I/O135         | I/O181         | I/O271         |                                      |          |          | 143                        | 169         |  |  |
|               | I/O136         | I/O182         | I/O272         |                                      |          |          | 144                        | 170         |  |  |
| I/O89         | I/O137         | I/O183         | I/O273         |                                      |          |          | 145                        | 171         |  |  |
| I/O90         | I/O138         | I/O184         | I/O274         |                                      |          |          | 146                        | 172         |  |  |
|               |                |                | I/O275         |                                      |          |          |                            |             |  |  |
|               |                |                | I/O276         |                                      |          |          |                            |             |  |  |
|               |                | GND            | GND            |                                      |          |          |                            |             |  |  |
|               |                | VCC            | VCC            |                                      |          |          |                            |             |  |  |
| I/O91<br>(D1) | I/O139<br>(D1) | I/O185<br>(D1) | I/O277<br>(D1) | 69                                   | 70       | 101      | 147                        | 173         |  |  |
| I/O92         | I/O140         | I/O186         | I/O278         | 70                                   | 71       | 102      | 148                        | 174         |  |  |
|               |                |                | I/O279         |                                      |          |          |                            |             |  |  |
|               |                |                | I/O280         |                                      |          |          |                            |             |  |  |
|               |                |                | I/O281         |                                      |          |          |                            |             |  |  |
|               |                |                | I/O282         |                                      |          |          |                            |             |  |  |
|               |                |                | GND            |                                      |          |          |                            |             |  |  |
|               |                | I/O187         | I/O283         |                                      |          |          |                            |             |  |  |
|               |                | I/O188         | I/O284         |                                      |          |          |                            |             |  |  |
| I/O93         | I/O141         | I/O189         | I/O285         |                                      |          | 103      | 149                        | 175         |  |  |
| I/O94         | I/O142         | I/O190         | I/O286         |                                      |          | 104      | 150                        | 176         |  |  |
| I/O95<br>(D0) | I/O143<br>(D0) | I/O191<br>(D0) | I/O287<br>(D0) | 71                                   | 72       | 105      | 151                        | 177         |  |  |
| I/O96,        | I/O144,        | I/O192,        | I/O288,        |                                      |          |          |                            |             |  |  |
| GCK6          | GCK6           | GCK6           | GCK6           | 72                                   | 73       | 106      | 152                        | 178         |  |  |
| (CSOUT)       | (CSOUT)        | (CSOUT)        | (CSOUT)        |                                      |          |          |                            |             |  |  |
| CCLK          | CCLK           | CCLK           | CCLK           | 73                                   | 74       | 107      | 153                        | 179         |  |  |
| VCC           | VCC            | VCC            | VCC            | 74                                   | 75       | 108      | 154                        | 180         |  |  |
| TSTCLK        | TSTCLK         | TSTCLK         | TSTCLK         | 75                                   | 76       | 109      | 159                        | 181         |  |  |

| AT40K05AL                   | AT40K10AL               | AT40K20AL               | AT40K40AL               | Top Side (Right to Left) |                         |                       |                       |                          |
|-----------------------------|-------------------------|-------------------------|-------------------------|--------------------------|-------------------------|-----------------------|-----------------------|--------------------------|
| 128 I/O                     | 192 I/O                 | 256 I/O                 | 384 I/O                 | 84<br>PLCC               | 100 TQFP                | 144 LQFP              | 208 PQFP              | 240<br>PQFP              |
| GND                         | GND                     | GND                     | GND                     | 76                       | 77                      | 110                   | 160                   | 182                      |
| I/O97<br>(A0)               | I/O145<br>(A0)          | I/O193<br>(A0)          | I/O289<br>(A0)          | 77                       | 78                      | 111                   | 161                   | 183                      |
| I/O98,<br>GCK7<br>(A1)      | I/O146,<br>GCK7<br>(A1) | I/O194,<br>GCK7<br>(A1) | I/O290,<br>GCK7<br>(A1) | 78                       | 79                      | 112                   | 162                   | 184                      |
| I/O99                       | I/O147                  | I/O195                  | I/O291                  |                          |                         | 113                   | 163                   | 185                      |
| I/O100                      | I/O148                  | I/O196                  | I/O292                  |                          |                         | 114                   | 164                   | 186                      |
|                             |                         |                         | I/O293                  |                          |                         |                       |                       |                          |
|                             |                         |                         | I/O294                  |                          |                         |                       |                       |                          |
|                             |                         |                         | GND                     |                          |                         |                       |                       |                          |
|                             |                         |                         | I/O295                  |                          |                         |                       |                       |                          |
|                             |                         |                         | I/O296                  |                          |                         |                       |                       |                          |
| I/O101<br>( <u>CS1</u> ,A2) | I/O149<br>(CS1,A2)      | I/O197<br>(CS1,A2)      | I/O297<br>(CS1,A2)      | 79                       | 80                      | 115                   | 165                   | 187                      |
| I/O102<br>(A3)              | I/O150<br>(A3)          | I/O198<br>(A3)          | I/O298<br>(A3)          | 80                       | 81                      | 116                   | 166                   | 188                      |
|                             |                         | I/O199                  | I/O299                  |                          |                         |                       |                       |                          |
|                             |                         | I/O200                  | I/O300                  |                          |                         |                       |                       |                          |
|                             |                         | VCC                     | VCC                     |                          |                         |                       |                       |                          |
|                             |                         | GND                     | GND                     |                          |                         |                       |                       |                          |
|                             | I/O151 <sup>(1)</sup>   | I/O201 <sup>(1)</sup>   | I/O301 <sup>(1)</sup>   | 75 <sup>(1)</sup><br>NC  | 76 <sup>(1)</sup><br>NC | 109 <sup>(1)</sup> NC | 159 <sup>(1)</sup> NC | 189 <sup>(1)</sup><br>NC |
|                             | I/O152                  | I/O202                  | I/O302                  |                          |                         |                       |                       | 190                      |
| I/O103                      | I/O153                  | I/O203                  | I/O303                  |                          |                         | 117                   | 167                   | 191                      |
| I/O104 <sup>(1)</sup>       | I/O154                  | I/O204                  | I/O304                  |                          |                         |                       | 168                   | 192                      |
|                             |                         |                         | I/O305                  |                          |                         |                       |                       |                          |
|                             |                         |                         | I/O306                  |                          |                         |                       |                       |                          |
|                             |                         |                         | GND                     |                          |                         |                       |                       |                          |
|                             |                         |                         | I/O307                  |                          |                         |                       |                       |                          |
|                             |                         |                         | I/O308                  |                          |                         |                       |                       |                          |
|                             | I/O155                  | I/O205                  | I/O309                  |                          |                         |                       | 169                   | 193                      |
|                             | I/O156                  | I/O206                  | I/O310                  |                          |                         |                       | 170                   | 194                      |
|                             |                         | I/O207                  | I/O311                  |                          |                         |                       |                       | 195                      |
|                             |                         | I/O208                  | I/O312                  |                          |                         |                       |                       |                          |
| GND                         | GND                     | GND                     | GND                     |                          |                         | 118                   | 171                   | 196                      |
| Note: 1. Sha                | ared with TSTCLK        | . No Connect.           |                         |                          |                         |                       |                       |                          |

**AIMEL** 



## AT40K05AL Ordering Information

| Usable Gates   | Operating Voltage | Speed Grade (ns) | Ordering Code  | Package | Operation Range <sup>(1)</sup> |
|----------------|-------------------|------------------|----------------|---------|--------------------------------|
| 5,000 - 10,000 | 3.3V 1            |                  | AT40K05AL-1AJC | 84J     | Commercial                     |
|                |                   |                  | AT40K05AL-1AQC | 100T1   | (0°C to 70°C)                  |
|                |                   |                  | AT40K05AL-1BQC | 144L1   |                                |
|                |                   |                  | AT40K05AL-1DQC | 208Q1   |                                |
| 5,000 - 10,000 | 3.3V              | 1                | AT40K05AL-1AJI | 84J     | Industrial                     |
|                |                   |                  | AT40K05AL-1AQI | 100T1   | (-40°C to 85°C)                |
|                |                   |                  | AT40K05AL-1BQI | 144L1   |                                |
|                |                   |                  | AT40K05AL-1DQI | 208Q1   |                                |

### AT40K10AL Ordering Information

| Usable Gates    | Operating Voltage     | Speed Grade (ns) | Ordering Code  | Package | Operation Range <sup>(1)</sup> |  |
|-----------------|-----------------------|------------------|----------------|---------|--------------------------------|--|
| 10,000 - 20,000 | 0,000 - 20,000 3.3V 1 |                  | AT40K10AL-1AJC | 84J     | Commercial                     |  |
|                 |                       |                  | AT40K10AL-1AQC | 100T1   | (0°C to 70°C)                  |  |
|                 |                       |                  | AT40K10AL-1BQC | 144L1   |                                |  |
|                 |                       |                  | AT40K10AL-1DQC | 208Q1   |                                |  |
| 10,000 - 20,000 | 3.3V                  | 1                | AT40K10AL-1AJI | 84J     | Industrial                     |  |
|                 |                       |                  | AT40K10AL-1AQI | 100T1   | (-40°C to 85°C)                |  |
|                 |                       |                  | AT40K10AL-1BQI | 144L1   |                                |  |
|                 |                       |                  | AT40K10AL-1DQI | 208Q1   |                                |  |

### AT40K20AL Ordering Information

| Usable Gates    | Operating Voltage | Speed Grade (ns) | Ordering Code                                                        | Package                        | Operation Range <sup>(1)</sup> |
|-----------------|-------------------|------------------|----------------------------------------------------------------------|--------------------------------|--------------------------------|
| 20,000 - 30,000 | 3.3V              | 1                | AT40K20AL-1AJC<br>AT40K20AL-1AQC<br>AT40K20AL-1BQC<br>AT40K20AL-1DQC | 84J<br>100T1<br>144L1<br>208Q1 | Commercial<br>(0°C to 70°C)    |
| 20,000 - 30,000 | 3.3V              | 1                | AT40K20AL-1AJI<br>AT40K20AL-1AQI<br>AT40K20AL-1BQI<br>AT40K20AL-1DQI | 84J<br>100T1<br>144L1<br>208Q1 | Industrial<br>(-40°C to 85°C)  |

## AT40K40AL Ordering Information

| Usable Gates    | Operating Voltage | Speed Grade (ns) | Ordering Code  | Package | Operation Range <sup>(1)</sup> |
|-----------------|-------------------|------------------|----------------|---------|--------------------------------|
| 40,000 - 50,000 | 3.3V 1            |                  | AT40K40AL-1BQC | 144L1   | Commercial                     |
|                 |                   |                  | AT40K40AL-1DQC | 208Q1   | (0°C to 70°C)                  |
|                 |                   |                  | AT40K40AL-1EQC | 240Q1   |                                |
| 40,000 - 50,000 | 3.3V              | 1                | AT40K40AL-1BQI | 144L1   | Industrial                     |
|                 |                   |                  | AT40K40AL-1DQI | 208Q1   | (-40°C to 85°C)                |
|                 |                   |                  | AT40K40AL-1EQI | 240Q1   |                                |

Note: 1. For military parts, contact Atmel at fpga@atmel.com.

### **Packaging Information**

### 84J – PLCC







### 100T1 - TQFP

