

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

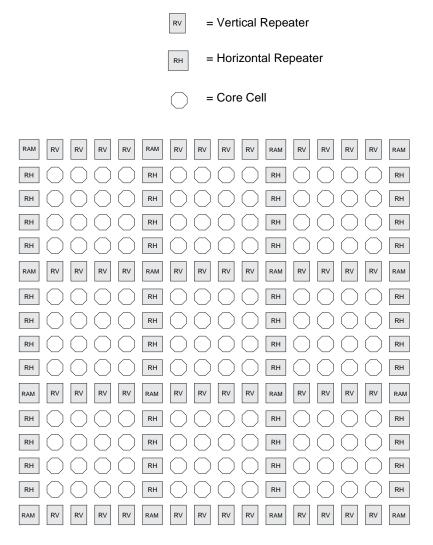
E·XFI

Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	1024
Total RAM Bits	8192
Number of I/O	130
Number of Gates	30000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at40k20al-1cqc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Cache Logic Design The AT40KAL, AT6000 and FPSLIC families are capable of implementing Cache Logic (dynamic full/partial logic reconfiguration, without loss of data, on-the-fly) for building adaptive logic and systems. As new logic functions are required, they can be loaded into the logic cache without losing the data already there or disrupting the operation of the rest of the chip; replacing or complementing the active logic. The AT40KAL can act as a reconfigurable coprocessor.


Automatic Component Generators The AT40KAL FPGA family is capable of implementing user-defined, automatically generated, macros in multiple designs; speed and functionality are unaffected by the macro orientation or density of the target device. This enables the fastest, most predictable and efficient FPGA design approach and minimizes design risk by reusing already proven functions. The Automatic Component Generators work seamlessly with industry standard schematic and synthesis tools to create the fastest, most efficient designs available.

The patented AT40KAL series architecture employs a symmetrical grid of small yet powerful cells connected to a flexible busing network. Independently controlled clocks and resets govern every column of cells. The array is surrounded by programmable I/O.

Devices range in size from 5,000 to 50,000 usable gates in the family, and have 256 to 3,048 registers. Pin locations are consistent throughout the AT40KAL series for easy design migration in the same package footprint. The AT40KAL series FPGAs utilize a reliable 0.35µ triple-metal, CMOS process and are 100% factory-tested. Atmel's PC-and workstation-based integrated development system (IDS) is used to create AT40KAL series designs. Multiple design entry methods are supported.

The Atmel architecture was developed to provide the highest levels of performance, functional density and design flexibility in an FPGA. The cells in the Atmel array are small, efficient and can implement any pair of Boolean functions of (the same) three inputs or any single Boolean function of four inputs. The cell's small size leads to arrays with large numbers of cells, greatly multiplying the functionality in each cell. A simple, high-speed busing network provides fast, efficient communication over medium and long distances.

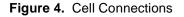
Figure 2. Floor Plan (Representative Portion)⁽¹⁾

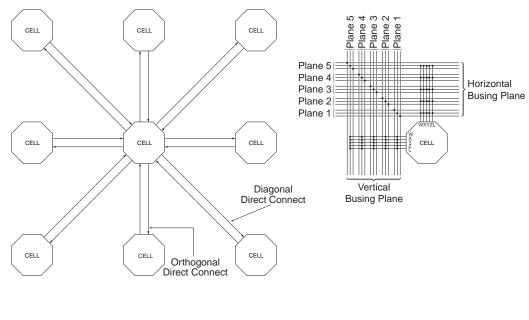
- Note:
- Repeaters regenerate signals and can connect any bus to any other bus (all pathways are legal) on the same plane. Each repeater has connections to two adjacent local-bus segments and two express-bus segments. This is done automatically using the integrated development system (IDS) tool.

The Busing Network

Figure 3 on page 7 depicts one of five identical busing planes. Each plane has three bus resources: a local-bus resource (the middle bus) and two express-bus (both sides) resources. Bus resources are connected via repeaters. Each repeater has connections to two adjacent local-bus segments and two express-bus segments. Each local-bus segment spans four cells and connects to consecutive repeaters. Each express-bus segment spans eight cells and "leapfrogs" or bypasses a repeater. Repeaters regenerate signals and can connect any bus to any other bus (all pathways are legal) on the same plane. Although not shown, a local bus can bypass a repeater via a programmable pass gate allowing long on-chip tri-state buses to be created. Local/Local turns are implemented through pass gates in the cell-bus interface. Express/Express turns are implemented through separate pass gates distributed throughout the array.

Some of the bus resources on the AT40KAL are used as a dual-function resources. Table 2 shows which buses are used in a dual-function mode and which bus plane is used. The AT40KAL software tools are designed to accommodate dual-function buses in an efficient manner.


Function	Туре	Plane(s)	Direction	Comments
Cell Output Enable	Local	5	Horizontal and Vertical	
RAM Output Enable	Express	2	Vertical	Bus full length at array edge Bus in first column to left of RAM block
RAM Write Enable	Express	1	Vertical	Bus full length at array edge Bus in first column to left of RAM block
RAM Address	Express	1 - 5	Vertical	Buses full length at array edge Buses in second column to left of RAM block
RAM Data In	Local	1	Horizontal	Data In connects to local bus plane 1
RAM Data Out	Local	2	Horizontal	Data out connects to local bus plane 2
Clocking	Express	4	Vertical	Bus half length at array edge
Set/Reset	Express	5	Vertical	Bus half length at array edge


Table 2. Dual-function Buses

Cell Connections

Figure 4(a) depicts direct connections between a cell and its eight nearest neighbors. Figure 4(b) shows the connections between a cell and five horizontal local buses (1 per busing plane) and five vertical local buses (1 per busing plane).

(a) Cell-to-cell Connections

(b) Cell-to-bus Connections

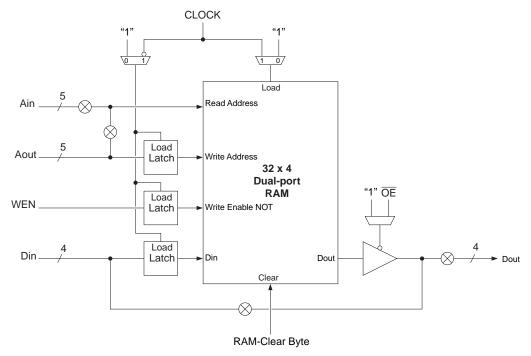
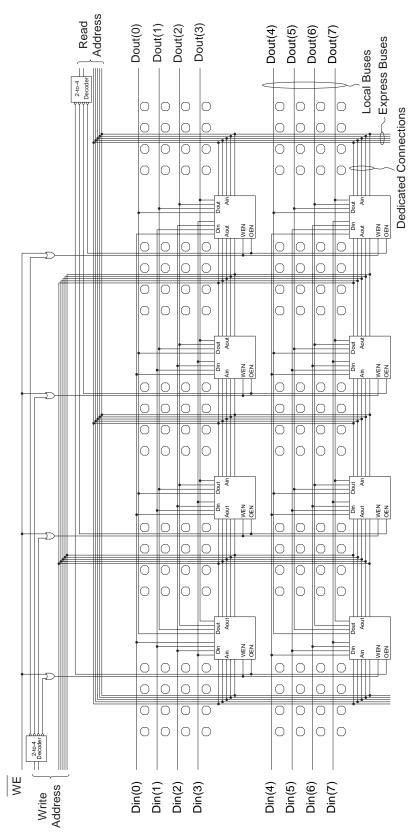
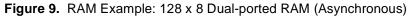
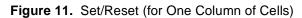
The Cell

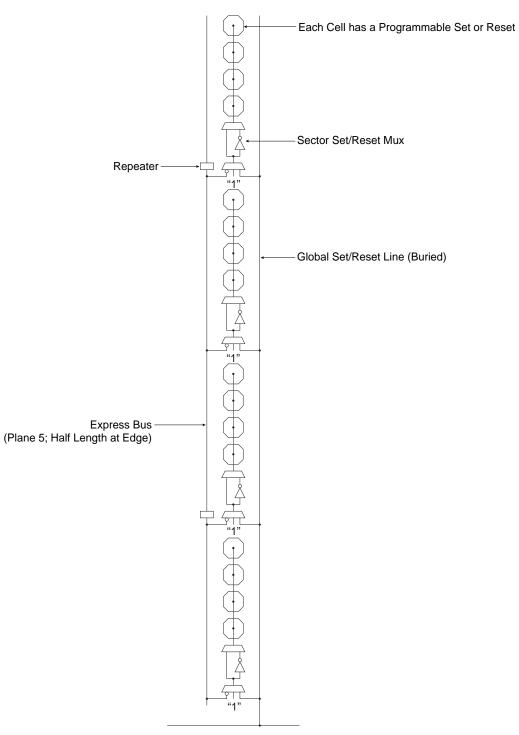
Figure 5 depicts the AT40KAL cell. Configuration bits for separate muxes and pass gates are independent. All permutations of programmable muxes and pass gates are legal. $V_n (V_1 - V_5)$ is connected to the vertical local bus in plane n. $H_n (H_1 - H_5)$ is connected to the horizontal local bus in plane *n*. A local/local turn in plane n is achieved by turning on the two pass gates connected to V_n and H_n . Pass gates are opened to let signals into the cell from a local bus or to drive a signal out onto a local bus. Signals coming into the logic cell on one local bus plane can be switched onto another plane by opening two of the pass gates. This allows bus signals to switch planes to achieve greater route ability. Up to five simultaneous local/local turns are possible.

The AT40KAL FPGA core cell is a highly configurable logic block based around two 3input LUTs (8 x 1 ROM), which can be combined to produce one 4-input LUT. This means that any core cell can implement two functions of 3 inputs or one function of 4 inputs. There is a Set/Reset D flip-flop in every cell, the output of which may be tri-stated and fed back internally within the core cell. There is also a 2-to-1 multiplexer in every cell, and an upstream AND gate in the "front end" of the cell. This AND gate is an important feature in the implementation of efficient array multipliers.

With this functionality in each core cell, the core cell can be configured in several "modes". The core cell flexibility makes the AT40KAL architecture well suited to most digital design application areas, see Figure 6.

Reading and writing of the 10 ns 32 x 4 dual-port FreeRAM are independent of each other. Reading the 32 x 4 dual-port RAM is completely asynchronous. Latches are transparent; when Load is logic 1, data flows through; when Load is logic 0, data is latched. These latches are used to synchronize Write Address, Write Enable Not, and Din signals for a synchronous RAM. Each bit in the 32 x 4 dual-port RAM is also a transparent latch. The front-end latch and the memory latch together form an edge-triggered flip flop. When a nibble (bit = 7) is (Write) addressed and LOAD is logic 1 and WE is logic 0, data flows through the bit. When a nibble is not (Write) addressed or LOAD is logic 0 or WE is logic 1, data is latched in the nibble. The two CLOCK muxes are controlled together; they both select CLOCK (for a synchronous RAM) or they both select "1" (for an asynchronous RAM). CLOCK is obtained from the clock for the sector-column immediately to the left and immediately above the RAM block. Writing any value to the RAM clear byte during configuration clears the RAM (see the "AT40K/40KAL Configuration Series" application note at www.atmel.com).


Figure 9 on page 13 shows an example of a RAM macro constructed using the AT40KAL's FreeRAM cells. The macro shown is a 128 x 8 dual-ported asynchronous RAM. Note the very small amount of external logic required to complete the address decoding for the macro. Most of the logic cells (core cells) in the sectors occupied by the RAM will be unused: they can be used for other logic in the design. This logic can be automatically generated using the macro generators.

Any User I/O can Drive Global Set/Reset Lone

MEI
•

I/O Structure	The AT40KAL has registered I/Os and group enable every sector for tri-states on obuf's.
PAD	The I/O pad is the one that connects the I/O to the outside world. Note that not all I/Os have pads: the ones without pads are called Unbonded I/Os. The number of unbonded I/Os varies with the device size and package. These unbonded I/Os are used to perform a variety of bus turns at the edge of the array.
PULL-UP/PULL-DOWN	Each pad has a programmable pull-up and pull-down attached to it. This supplies a weak "1" or "0" level to the pad pin. When all other drivers are off, this control will dictate the signal level of the pad pin.
	The input stage of each I/O cell has a number of parameters that can be programmed either as properties in schematic entry or in the I/O Pad Attributes editor in IDS.
CMOS	The threshold level is a CMOS-compatible level.
SCHMITT	A Schmitt trigger circuit can be enabled on the inputs. The Schmitt trigger is a regenera- tive comparator circuit that adds 1V hysteresis to the input. This effectively improves the rise and fall times (leading and trailing edges) of the incoming signal and can be useful for filtering out noise.
DELAYS	The input buffer can be programmed to include four different intrinsic delays as specified in the AC timing characteristics. This feature is useful for meeting data hold requirements for the input signal.
DRIVE	The output drive capabilities of each I/O are programmable. They can be set to FAST, MEDIUM or SLOW (using IDS tool). The FAST setting has the highest drive capability (20 mA at 5V) buffer and the fastest slew rate. MEDIUM produces a medium drive (14 mA at 5V) buffer, while SLOW yields a standard (6 mA at 5V) buffer.
TRI-STATE	The output of each I/O can be made tri-state (0, 1 or Z), open source (1 or Z) or open drain (0 or Z) by programming an I/O's Source Selection mux. Of course, the output can be normal (0 or 1), as well.
SOURCE SELECTION MUX	The Source Selection mux selects the source for the output signal of an I/O.

Figure 12. West Primary I/O (Mirrored for East I/O)

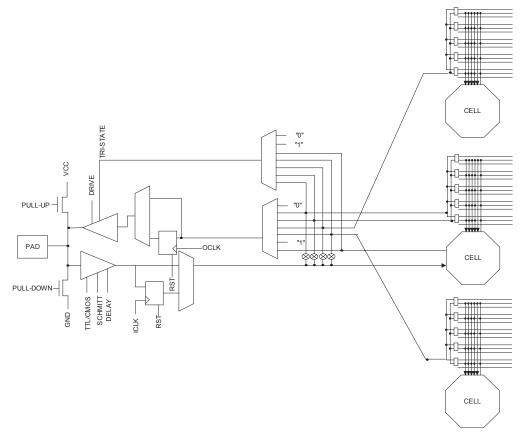
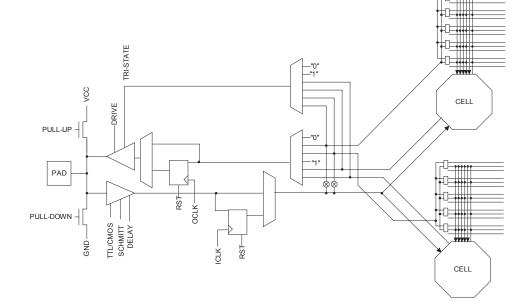
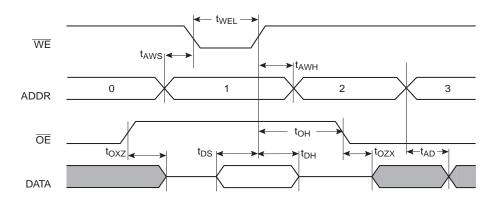
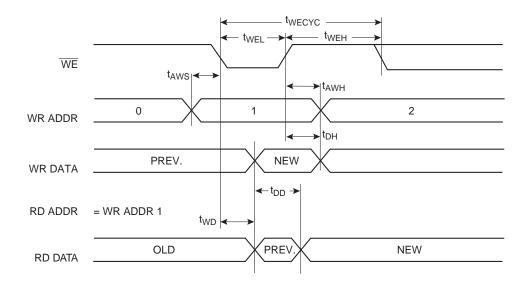
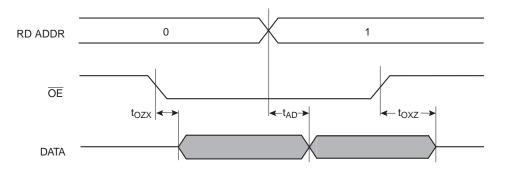
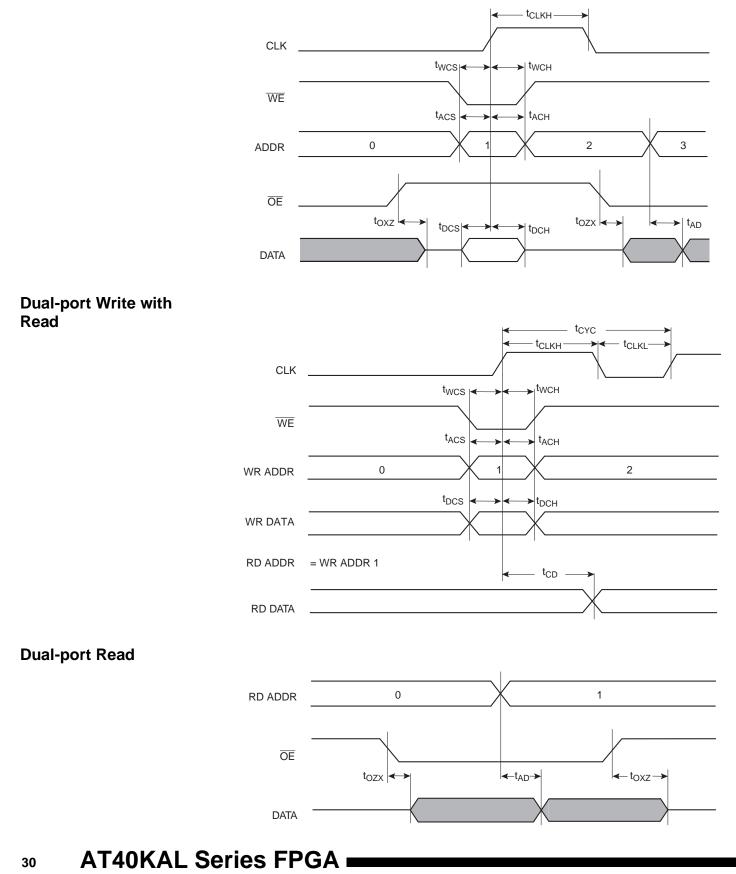




Figure 13. West Secondary I/O (Mirrored for East I/O)



FreeRAM Asynchronous Timing Characteristics


Single-port Write/Read


Dual-port Read

FreeRAM Synchronous Timing Characteristics

Single-port Write/Read

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL	Left Side (Top to Bottom)				
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFF
I/O9, FCK1	I/O13, FCK1	I/O17, FCK1	I/O25, FCK1			9	15	15
I/O10	I/O14	I/O18	I/O26			10	16	16
I/O11 (A20)	I/O15 (A20)	I/O19 (A20)	I/O27 (A20)	17	6	11	17	17
I/O12 (A21)	I/O16 (A21)	I/O20 (A21)	I/O28 (A21)	18	7	12	18	18
	VCC	VCC	VCC					19
	I/O17	I/O21	I/O29					20
	I/O18	I/O22	I/O30					21
			GND					
			I/O31					
			I/O32					
			I/O33					
			I/O34					
		I/O23	I/O35					
		I/O24	I/O36					
		GND	GND					22
			VCC					
			I/O37					
			I/O38					
		I/O25	I/O39					
		I/O26	I/O40					
	I/O19	I/O27	I/O41				19	23
	I/O20	I/O28	I/O42				20	24
			GND					
I/O13	I/O21	I/O29	I/O43			13	21	25
I/O14	I/O22	I/O30	I/O44		8	14	22	26
			I/O45					
			I/O46					
I/O15 (A22)	I/O23 (A22)	I/O31 (A22)	I/O47 (A22)	19	9	15	23	27
I/O16 (A23)	I/O24 (A23)	I/O32 (A23)	I/O48 (A23)	20	10	16	24	28
GND	GND	GND	GND	21	11	17	25	29
VCC	VCC	VCC	VCC	22	12	18	26	30

AT40K05AL	AT40K05AL AT40K10AL AT40K20AL AT40K40AL Le						Left Side (Top to Bottom)			
128 I/O	192 I/O	D 256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP		
	I/O38	I/O52	I/O76					47		
			I/077							
			I/O78							
			GND							
			I/O79							
			I/O80							
	I/O39	I/O53	I/O81				38	48		
	I/O40	I/O54	I/O82				39	49		
I/O25	I/O41	I/O55	I/O83				40	50		
I/O26	I/O42	I/O56	I/O84				41	51		
		GND	GND							
		VCC	VCC							
		I/O57	I/O85							
		I/O58	I/O86							
			I/O87							
			I/O88							
I/O27	I/O43	I/O59	I/O89	27	18	28	42	52		
I/O28	I/O44	I/O60	I/O90		19	29	43	53		
			GND							
			I/O91							
			I/O92							
I/O29	I/O45	I/O61	I/O93			30	44	54		
I/O30	I/O46	I/O62	I/O94			31	45	55		
I/O31 (OTS) ⁽¹⁾	I/O47 (OTS) ⁽¹⁾	I/O63 (OTS) ⁽¹⁾	I/O95 (OTS) ⁽¹⁾	28	20	32	46	56		
I/O32, GCK2	I/O48, GCK2	I/O64, GCK2	I/O96, GCK2	29	21	33	47	57		
M1	M1	M1	M1	30	22	34	48	58		
GND	GND	GND	GND	31	23	35	49	59		
MO	MO	MO	MO	32	24	36	50	60		

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL		Bottom	Side (Left to	Right)	
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP
I/O42	I/O62	I/O82	I/O122			47	69	77
I/O43	I/O63	I/O83	I/O123	38	31	48	70	78
I/O44	I/O64	I/O84	I/O124	39	32	49	71	79
	VCC	VCC	VCC					80
	I/O65	I/O85	I/O125				72	81
	I/O66	I/O86	I/O126				73	82
			GND					
			I/O127					
			I/O128					
			I/O129					
			I/O130					
		I/O87	I/O131					
		I/O88	I/O132					
		GND	GND					83
			VCC					
		I/O89	I/O133					
		I/O90	I/O134					
	I/O67	I/O91	I/O135					84
	I/O68	I/O92	I/O136					85
I/O45	I/O69	I/O93	I/O137		33	50	74	86
I/O46	I/O70	I/O94	I/O138		34	51	75	87
			GND					
			I/O139					
			I/O140					
			I/O141					
			I/O142					
I/O47 (D15)	I/O71 (D15)	I/O95 (D15)	I/O143 (D15)	40	35	52	76	88
I/O48 (INIT)	I/O72 (INIT)	I/O96 (INIT)	I/O144 (INIT)	41	36	53	77	89
VCC	VCC	VCC	VCC	42	37	54	78	90
GND	GND	GND	GND	43	38	55	79	91
I/O49 (D14)	I/O73 (D14)	I/O97 (D14)	I/O145 (D14)	44	39	56	80	92
I/O50 (D13)	I/O74 (D13)	I/O98 (D13)	I/O146 (D13)	45	40	57	81	93

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL		Right Si	de (Bottom t	о Тор)	
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP
VCC	VCC	VCC	VCC	54	51	73	106	121
RESET	RESET	RESET	RESET	55	52	74	108	122
I/O65 (D7)	I/O97 (D7)	I/O129 (D7)	I/O193 (D7)	56	53	75	109	123
I/O66, GCK5	I/O98, GCK5	I/O130, GCK5	I/O194, GCK5	57	54	76	110	124
I/O67	I/O99	I/O131	I/O195			77	111	125
I/O68	I/O100	I/O132	I/O196			78	112	126
		I/O133	I/O197					
		I/O134	I/O198					
			GND					
	I/O101	I/O135	I/O199					127
	I/O102	I/O136	I/O200					128
			I/O201					
			I/O202					
			I/O203					
			I/O204					
		VCC	VCC					
		GND	GND					
I/O69 (D6)	I/O103 (D6)	I/O137 (D6)	I/O205 (D6)	58	55	79	113	129
I/O70	I/O104	I/O138	I/O206		56	80	114	130
I/071	I/O105	I/O139	I/O207				115	131
I/072	I/O106	I/O140	I/O208				116	132
			I/O209					
			I/O210					
			GND					
			I/O211					
			I/O212					
	I/O107	I/O141	I/O213				117	133
	I/O108	I/O142	I/O214				118	134
		I/O143	I/O215					
		I/O144	I/O216					
GND	GND	GND	GND			81	119	135
	I/O109	I/O145	I/O217					136
	I/O110	I/O146	I/O218					137

AT40K05AL Ordering Information

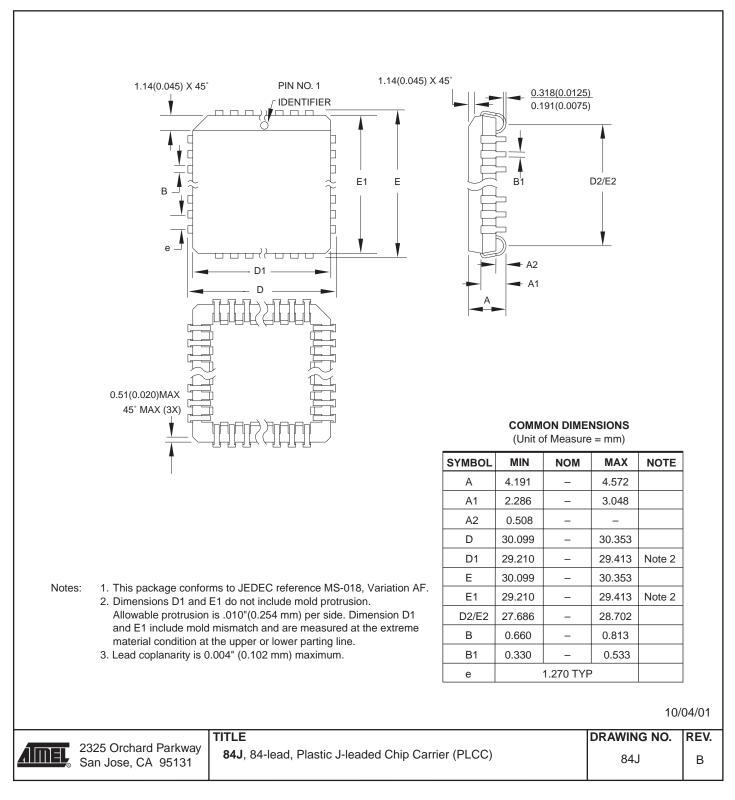
Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
5,000 - 10,000	3.3V	1	AT40K05AL-1AJC	84J	Commercial
			AT40K05AL-1AQC	100T1	(0°C to 70°C)
			AT40K05AL-1BQC	144L1	
			AT40K05AL-1DQC	208Q1	
5,000 - 10,000	3.3V	1	AT40K05AL-1AJI	84J	Industrial
			AT40K05AL-1AQI	100T1	(-40°C to 85°C)
			AT40K05AL-1BQI	144L1	
			AT40K05AL-1DQI	208Q1	

AT40K10AL Ordering Information

Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
10,000 - 20,000	3.3V	1	AT40K10AL-1AJC	84J	Commercial
			AT40K10AL-1AQC	100T1	(0°C to 70°C)
			AT40K10AL-1BQC	144L1	
			AT40K10AL-1DQC	208Q1	
10,000 - 20,000	3.3V	1	AT40K10AL-1AJI	84J	Industrial
			AT40K10AL-1AQI	100T1	(-40°C to 85°C)
			AT40K10AL-1BQI	144L1	
			AT40K10AL-1DQI	208Q1	

AT40K20AL Ordering Information

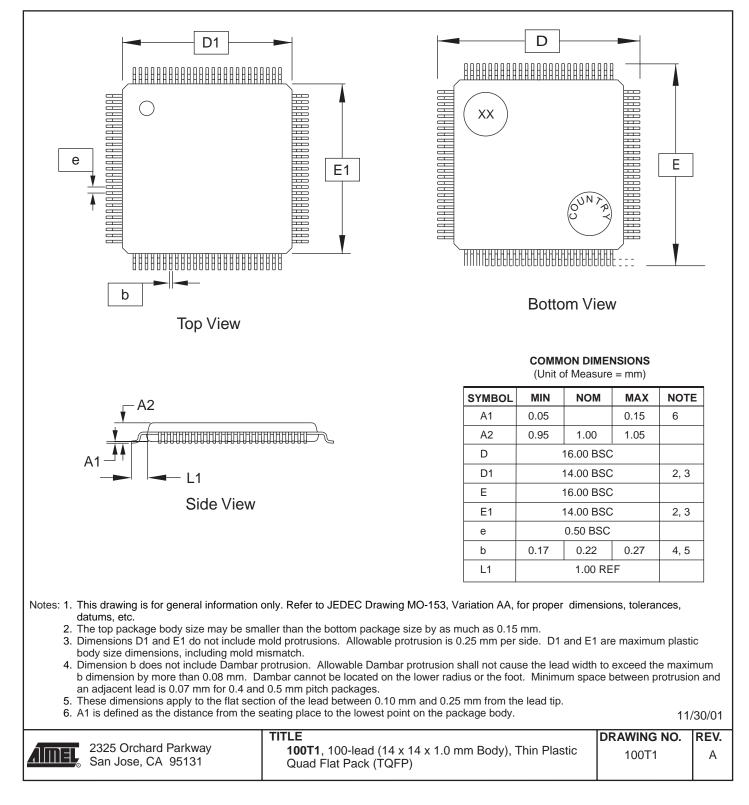
Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
20,000 - 30,000	3.3V	1	AT40K20AL-1AJC AT40K20AL-1AQC AT40K20AL-1BQC AT40K20AL-1DQC	84J 100T1 144L1 208Q1	Commercial (0°C to 70°C)
20,000 - 30,000	3.3V	1	AT40K20AL-1AJI AT40K20AL-1AQI AT40K20AL-1BQI AT40K20AL-1DQI	84J 100T1 144L1 208Q1	Industrial (-40°C to 85°C)


AT40K40AL Ordering Information

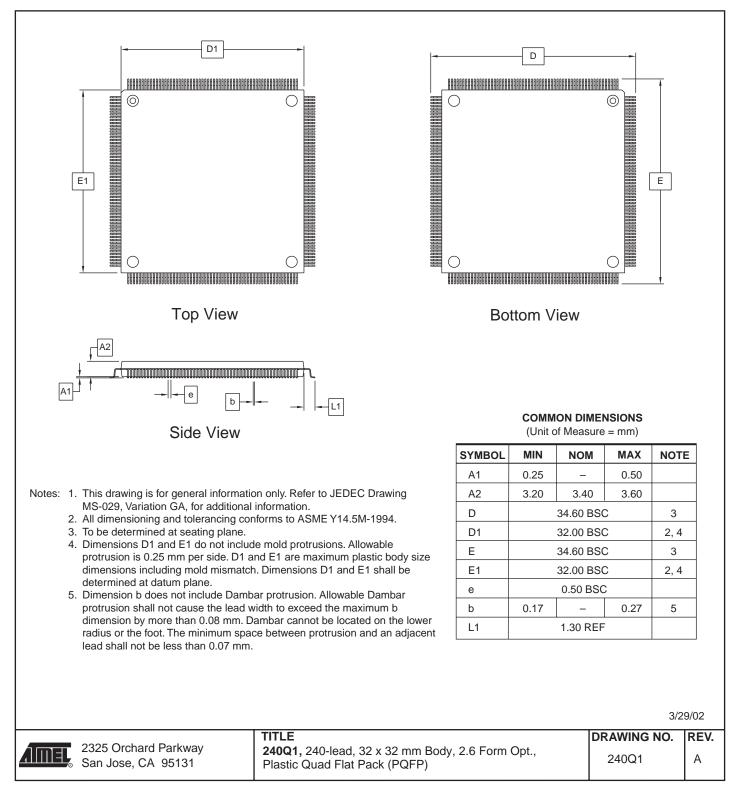
Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
40,000 - 50,000	3.3V	1	AT40K40AL-1BQC	144L1	Commercial
			AT40K40AL-1DQC	208Q1	(0°C to 70°C)
			AT40K40AL-1EQC	240Q1	
40,000 - 50,000	3.3V	1	AT40K40AL-1BQI	144L1	Industrial
			AT40K40AL-1DQI	208Q1	(-40°C to 85°C)
			AT40K40AL-1EQI	240Q1	

Note: 1. For military parts, contact Atmel at fpga@atmel.com.

Packaging Information


84J – PLCC

100T1 - TQFP



144L1 – LQFP

240Q1 – PQFP

