
E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

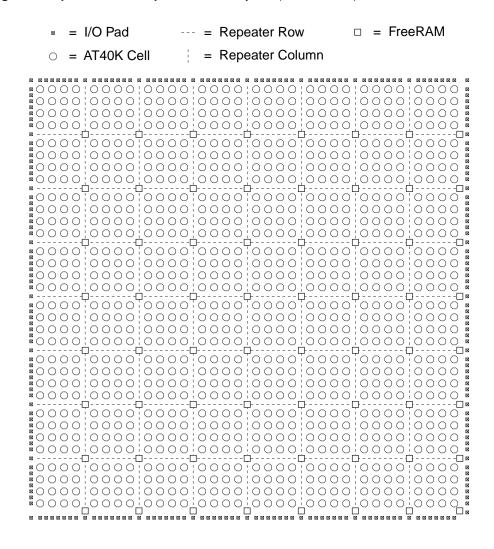
The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

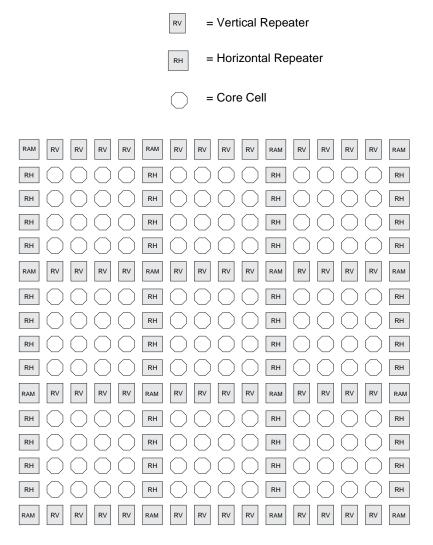
Details	
Product Status	Obsolete
Number of LABs/CLBs	-
Number of Logic Elements/Cells	2304
Total RAM Bits	18432
Number of I/O	193
Number of Gates	50000
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C
Package / Case	240-BFQFP
Supplier Device Package	240-PQFP (32x32)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at40k40al-1eqc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



The Symmetrical Array


At the heart of the Atmel architecture is a symmetrical array of identical cells, see Figure 1. The array is continuous from one edge to the other, except for bus repeaters spaced every four cells, see Figure 2 on page 5. At the intersection of each repeater row and column there is a 32×4 RAM block accessible by adjacent buses. The RAM can be configured as either a single-ported or dual-ported RAM⁽¹⁾, with either synchronous or asynchronous operation.

Note: 1. The right-most column can only be used as single-port RAM.

Figure 1. Symmetrical Array Surrounded by I/O (AT40K20AL)⁽¹⁾

Note: 1. AT40KAL has registered I/Os. Group enable on every sector for tri-states on obufe's.

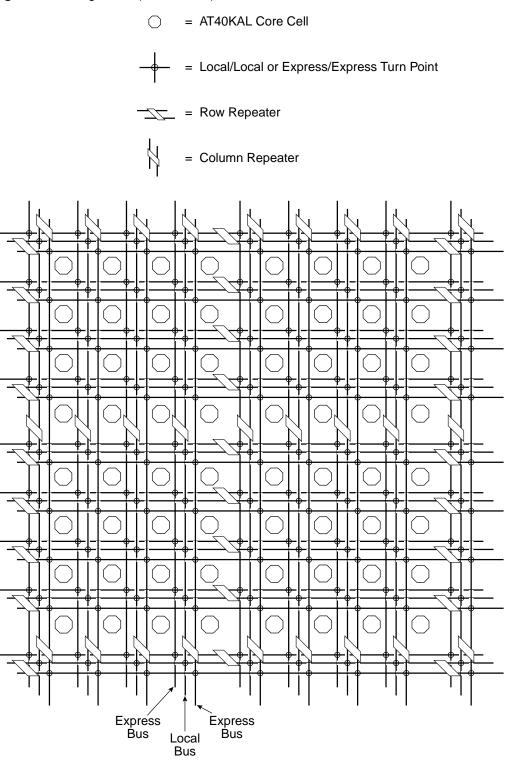
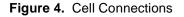
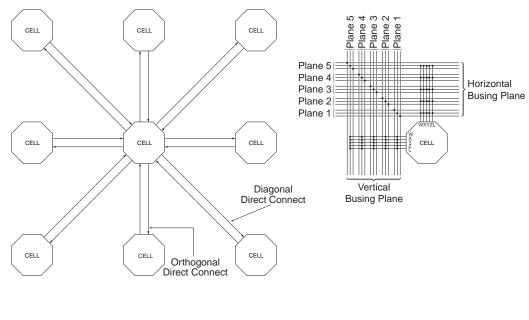


Figure 2. Floor Plan (Representative Portion)⁽¹⁾

- Note:
- Repeaters regenerate signals and can connect any bus to any other bus (all pathways are legal) on the same plane. Each repeater has connections to two adjacent local-bus segments and two express-bus segments. This is done automatically using the integrated development system (IDS) tool.





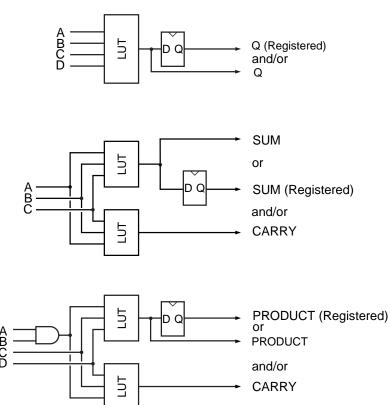
Cell Connections

Figure 4(a) depicts direct connections between a cell and its eight nearest neighbors. Figure 4(b) shows the connections between a cell and five horizontal local buses (1 per busing plane) and five vertical local buses (1 per busing plane).

(a) Cell-to-cell Connections

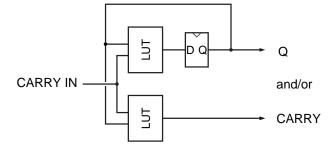
(b) Cell-to-bus Connections

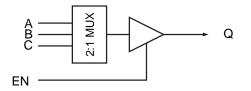
The Cell


Figure 5 depicts the AT40KAL cell. Configuration bits for separate muxes and pass gates are independent. All permutations of programmable muxes and pass gates are legal. $V_n (V_1 - V_5)$ is connected to the vertical local bus in plane n. $H_n (H_1 - H_5)$ is connected to the horizontal local bus in plane *n*. A local/local turn in plane n is achieved by turning on the two pass gates connected to V_n and H_n . Pass gates are opened to let signals into the cell from a local bus or to drive a signal out onto a local bus. Signals coming into the logic cell on one local bus plane can be switched onto another plane by opening two of the pass gates. This allows bus signals to switch planes to achieve greater route ability. Up to five simultaneous local/local turns are possible.

The AT40KAL FPGA core cell is a highly configurable logic block based around two 3input LUTs (8 x 1 ROM), which can be combined to produce one 4-input LUT. This means that any core cell can implement two functions of 3 inputs or one function of 4 inputs. There is a Set/Reset D flip-flop in every cell, the output of which may be tri-stated and fed back internally within the core cell. There is also a 2-to-1 multiplexer in every cell, and an upstream AND gate in the "front end" of the cell. This AND gate is an important feature in the implementation of efficient array multipliers.

With this functionality in each core cell, the core cell can be configured in several "modes". The core cell flexibility makes the AT40KAL architecture well suited to most digital design application areas, see Figure 6.

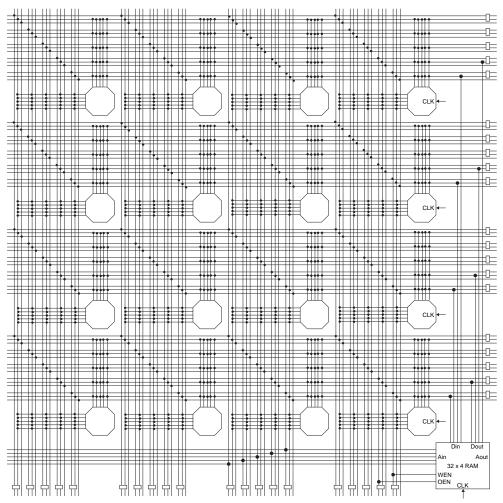

Figure 6. Some Single Cell Modes



Synthesis Mode. This mode is particularly important for the use of VHDL/Verilog design. VHDL/Verilog Synthesis tools generally will produce as their output large amounts of random logic functions. Having a 4-input LUT structure gives efficient random logic optimization without the delays associated with larger LUT structures. The output of any cell may be registered, tri-stated and/or fed back into a core cell.

Arithmetic Mode is frequently used in many designs. As can be seen in the figure, the AT40KAL core cell can implement a 1-bit full adder (2-input adder with both Carry In and Carry Out) in one core cell. Note that the sum output in this diagram is registered. This output could then be tri-stated and/or fed back into the cell.

DSP/Multiplier Mode. This mode is used to efficiently implement array multipliers. An array multiplier is an array of bitwise multipliers, each implemented as a full adder with an upstream AND gate. Using this AND gate and the diagonal interconnects between cells, the array multiplier structure fits very well into the AT40KAL architecture.


Counter Mode. Counters are fundamental to almost all digital designs. They are the basis of state machines, timing chains and clock dividers. A counter is essentially an increment by one function (i.e., an adder), with the input being an output (or a decode of an output) from the previous stage. A 1-bit counter can be implemented in one core cell. Again, the output can be registered, tri-stated and/or fed back.

Tri-state/Mux Mode. This mode is used in many telecommunications applications, where data needs to be routed through more than one possible path. The output of the core cell is very often tri-statable for many inputs to many outputs data switching.

RAM

32 x 4 dual-ported RAM blocks are dispersed throughout the array, see Figure 7. A 4-bit Input Data Bus connects to four horizontal local buses distributed over four sector rows (plane 1). A 4-bit Output Data Bus connects to four horizontal local buses distributed over four sector rows (plane 2). A 5-bit Input Address Bus connects to five vertical express buses in the same column. A 5-bit Output Address Bus connects to five vertical express buses in the same column. Ain (input address) and Aout (output address) alternate positions in horizontally aligned RAM blocks. For the left-most RAM blocks, Aout is on the left and Ain is on the right. For the right-most RAM blocks, Ain is on the left and Aout is tied off, thus it can only be configured as a single port. For single-ported RAM, Ain is the READ/WRITE address port and Din is the (bi-directional) data port. Right-most RAM blocks can be used only for single-ported memories. WEN and OEN connect to the vertical express buses in the same column.

Figure 7. RAM Connections (One Ram Block)

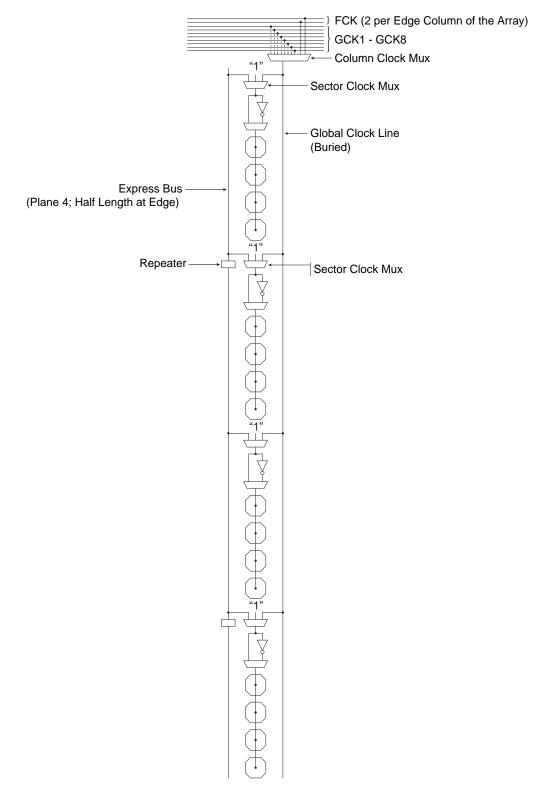
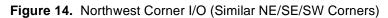
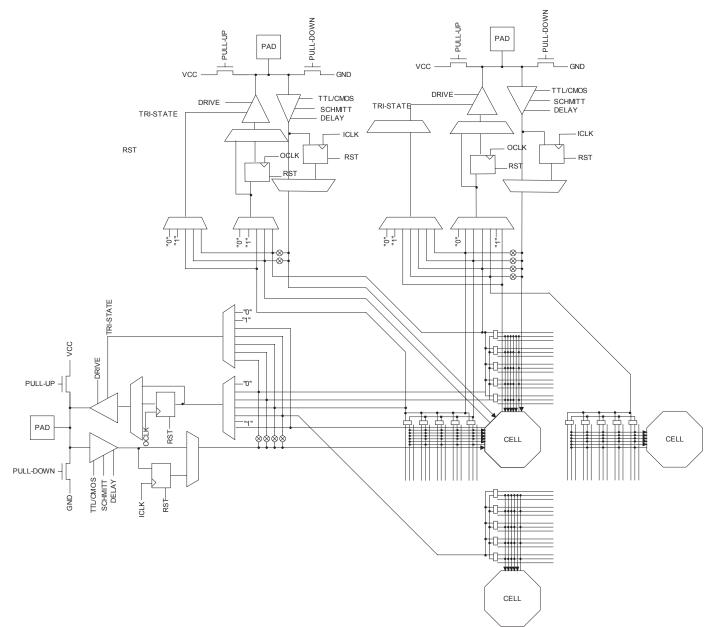




Figure 10. Clocking (for One Column of Cells)

<u>AMEL</u>

Power-On Power Supply Requirements

Atmel FPGAs require a minimum rated power supply current capacity to insure proper initialization, and the power supply ramp-up time does affect the current required. A fast ramp-up time requires more current than a slow ramp-up time.

Table 3. Power-On Power Supply Requirements⁽¹⁾

Device	Description	Maximum Current ⁽²⁾⁽³⁾
AT40K05AL AT40K10AL	Maximum Current Supply	50 mA
AT40K20AL AT40K40AL	Maximum Current Supply	100 mA

Notes: 1. This specification applies to Commercial and Industrial grade products only.

2. Devices are guaranteed to initialize properly at 50% of the minimum current listed above. A larger capacity power supply may result in a larger initialization current.

3. Ramp-up time is measured from 0 V DC to 3.6 V DC. Peak current required lasts less than 2 ms, and occurs near the internal power on reset threshold voltage.

AC Timing Characteristics – 3.3V Operation

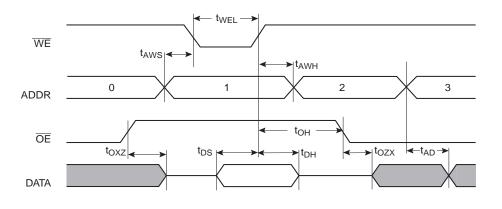
Delays are based on fixed loads and are described in the notes. Maximum times based on worst case: $V_{CC} = 3.00V$, temperature = 70°C Minimum times based on best case: $V_{CC} = 3.60V$, temperature = 0°C Maximum delays are the average of t_{PDLH} and t_{PDHL}.

Cell Function	Parameter	Path	-1	Units	Notes						
Core	Core										
2-input Gate	t _{PD} (Maximum)	x/y -> x/y	1.8	ns	1 unit load						
3-input Gate	t _{PD} (Maximum)	x/y/z -> x/y	2.1	ns	1 unit load						
3-input Gate	t _{PD} (Maximum)	x/y/w -> x/y	2.2	ns	1 unit load						
4-input Gate	t _{PD} (Maximum)	x/y/w/z -> x/y	2.2	ns	1 unit load						
Fast Carry	t _{PD} (Maximum)	y -> y	1.4	ns	1 unit load						
Fast Carry	t _{PD} (Maximum)	x -> y	1.7	ns	1 unit load						
Fast Carry	t _{PD} (Maximum)	y -> x	1.8	ns	1 unit load						
Fast Carry	t _{PD} (Maximum)	x -> x	1.5	ns	1 unit load						
Fast Carry	t _{PD} (Maximum)	w -> y	2.2	ns	1 unit load						
Fast Carry	t _{PD} (Maximum)	w -> x	2.3	ns	1 unit load						
Fast Carry	t _{PD} (Maximum)	z -> y	2.3	ns	1 unit load						
Fast Carry	t _{PD} (Maximum)	Z -> X	1.7	ns	1 unit load						
DFF	t _{PD} (Maximum)	q -> x/y	1.8	ns	1 unit load						
DFF	t _{PD} (Maximum)	R -> x/y	2.2	ns	1 unit load						
DFF	t _{PD} (Maximum)	S -> x/y	2.2	ns	1 unit load						
DFF	t _{PD} (Maximum)	q -> w	1.8	ns							
Incremental -> L	t _{PD} (Maximum)	x/y -> L	1.5	ns	1 unit load						
Local Output Enable	t _{PZX} (Maximum)	oe -> L	1.4	ns	1 unit load						
Local Output Enable	t _{PXZ} (Maximum)	oe -> L	1.8	ns							

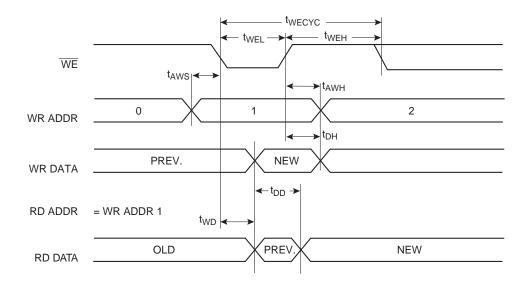
AC Timing Characteristics – 3.3V Operation

Delays are based on fixed loads and are described in the notes. Maximum times based on worst case: V_{CC} = 3.0V, temperature = 70°C Minimum times based on best case: V_{CC} = 3.6V, temperature = 0°C Maximum delays are the average of t_{PDLH} and t_{PDHL}.

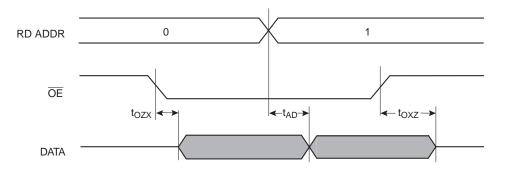
All input IO characteristics measured from a V_{IH} of 50% of V_{DD} at the pad (CMOS threshold) to the internal V_{IH} of 50% of V_{DD}. All output IO characteristics are measured as the average of t_{PDLH} and t_{PDHL} to the pad V_{IH} of 50% of V_{DD}.


Cell Function	Parameter	Path	-1	Units	Notes
Repeaters					
Repeater	t _{PD} (Maximum)	L -> E	1.3	ns	1 unit load
Repeater	t _{PD} (Maximum)	E -> E	1.3	ns	1 unit load
Repeater	t _{PD} (Maximum)	L -> L	1.3	ns	1 unit load
Repeater	t _{PD} (Maximum)	E -> L	1.3	ns	1 unit load
Repeater	t _{PD} (Maximum)	E -> IO	0.8	ns	1 unit load
Repeater	t _{PD} (Maximum)	L -> 10	0.8	ns	1 unit load

All input IO characteristics measured from a V_{IH} of 50% of V_{DD} at the pad (CMOS threshold) to the internal V_{IH} of 50% of V_{DD}. All output IO characteristics are measured as the average of t_{PDLH} and t_{PDHL} to the pad V_{IH} of 50% of V_{DD}.


Cell Function	Parameter	Path	-1	Units	Notes
ю					
Input	t _{PD} (Maximum)	pad -> x/y	1.2	ns	No extra delay
Input	t _{PD} (Maximum)	pad -> x/y	3.6	ns	1 extra delay
Input	t _{PD} (Maximum)	pad -> x/y	7.3	ns	2 extra delays
Input	t _{PD} (Maximum)	pad -> x/y	10.8	ns	3 extra delays
Output, Slow	t _{PD} (Maximum)	x/y/E/L -> pad	5.9	ns	50 pf load
Output, Medium	t _{PD} (Maximum)	x/y/E/L -> pad	4.8	ns	50 pf load
Output, Fast	t _{PD} (Maximum)	x/y/E/L -> pad	3.9	ns	50 pf load
Output, Slow	t _{PZX} (Maximum)	oe -> pad	6.2	ns	50 pf load
Output, Slow	t _{PXZ} (Maximum)	oe -> pad	1.3	ns	50 pf load
Output, Medium	t _{PZX} (Maximum)	oe -> pad	4.8	ns	50 pf load
Output, Medium	t _{PXZ} (Maximum)	oe -> pad	1.9	ns	50 pf load
Output, Fast	t _{PZX} (Maximum)	oe -> pad	3.7	ns	50 pf load
Output, Fast	t _{PXZ} (Maximum)	oe -> pad	1.6	ns	50 pf load

FreeRAM Asynchronous Timing Characteristics


Single-port Write/Read

Dual-port Read

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL		Left Si	ide (Top to B	ottom)	
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFF
I/O17	I/O25	I/O33	I/O49	23	13	19	27	31
I/O18	I/O26	I/O34	I/O50	24	14	20	28	32
			I/O51					
			I/O52					
I/O19	I/O27	I/O35	I/O53		15	21	29	33
I/O20	I/O28	I/O36	I/O54			22	30	34
			GND					
	I/O29	I/O37	I/O55				31	35
	I/O30	I/O38	I/O56				32	36
		I/O39	I/O57					
		I/O40	I/O58					
			I/O59					
			I/O60					
			VCC					
		GND	GND					37
		I/O41	I/O61					
		I/O42	I/O62					
			I/O63					
			I/O64					
			I/O65					
			I/O66					
			GND					
	I/O31	I/O43	I/O67					38
	I/O32	I/O44	I/O68					39
	VCC	VCC	VCC					40
I/O21	I/O33	I/O45	I/O69	25	16	23	33	41
I/O22	I/O34	I/O46	I/O70	26	17	24	34	42
I/O23	I/O35	I/O47	I/071			25	35	43
I/O24, FCK2	I/O36, FCK2	I/O48, FCK2	I/O72, FCK2			26	36	44
GND	GND	GND	GND			27	37	45
		I/O49	I/073					
		I/O50	I/074					
	I/O37	I/O51	I/075					46

AT40K05AL	AT40K10AL	AT40K20AL	AT40K40AL		Right Si	de (Bottom t	о Тор)	
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFP
I/O73, FCK3	l/O111, FCK3	I/O147, FCK3	I/O219, FCK3			82	120	138
I/074	I/O112	I/O148	I/O220			83	121	139
	VCC	VCC	VCC					140
I/O75 (D5)	I/O113 (D5)	l/O149 (D5)	I/O221 (D5)	59	57	84	122	141
I/O76 (CS0)	I/O114 (CS0)	I/O150 (CS0)	I/O222 (CS0)	60	58	85	123	142
			GND					
			I/O223					
			I/O224					
			I/O225					
			I/O226					
		I/O151	I/O227					
		I/O152	I/O228					
		GND	GND					143
			VCC					
			I/O229					
			I/O230					
		I/O153	I/O231					
		I/O154	I/O232					
	I/O115	I/O155	I/O233				124	144
	I/O116	I/O156	I/O234				125	145
			GND					
I/077	I/O117	I/O157	I/O235		59	86	126	146
I/078	I/O118	I/O158	I/O236		60	87	127	147
			I/O237					
			I/O238					
I/O79(D4)	I/O119(D4)	I/O159(D4)	I/O239(D4)	61	61	88	128	148
I/O80	I/O120	I/O160	I/O240	62	62	89	129	149
VCC	VCC	VCC	VCC	63	63	90	130	150
GND	GND	GND	GND	64	64	91	131	151
I/O81 (D3)	I/O121 (D3)	I/O161 (D3)	I/O241 (D3)	65	65	92	132	152
I/O82 (CHECK)	I/O122 (CHECK)	I/O162 (CHECK)	I/O242 (CHECK)	66	66	93	133	153

T40K05AL	AT40K10AL	AT40K20AL	AT40K40AL		Top Si	de (Right to	Left)	
128 I/O	192 I/O	256 I/O	384 I/O	84 PLCC	100 TQFP	144 LQFP	208 PQFP	240 PQFF
I/O113 (A8)	I/O169 (A8)	I/O225 (A8)	I/O337 (A8)	3	90	129	184	213
I/O114 (A9)	I/O170 (A9)	I/O226 (A9)	I/O338 (A9)	4	91	130	185	214
			I/O339					
			I/O340					
			I/O341					
			I/O342					
			GND					
I/O115	I/O171	I/O227	I/O343		92	131	186	215
I/O116	I/O172	I/O228	I/O344		93	132	187	216
	I/O173	I/O229	I/O345				188	217
	I/O174	I/O230	I/O346				189	218
I/O117 (A10)	I/O175 (A10)	I/O231 (A10)	I/O347 (A10)	5	94	133	190	220
I/O118 (A11)	I/O176 (A11)	I/O232 (A11)	I/O348 (A11)	6	95	134	191	221
			VCC					
		GND	GND					
		I/O233	I/O349					
		I/O234	I/O350					
			I/O351					
			I/O352					
			I/O353					
			I/O354					
			GND					
		I/O235	I/O355					
		I/O236	I/O356					
	VCC	VCC	VCC					222
	I/O177	I/O237	I/O357					223
	I/O178	I/O238	I/O358					224
I/O119	I/O179	I/O239	I/O359			135	192	225
I/O120	I/O180	I/O240	I/O360			136	193	226
GND	GND	GND	GND			137	194	227
		I/O241	I/O361					

AT40K05AL Ordering Information

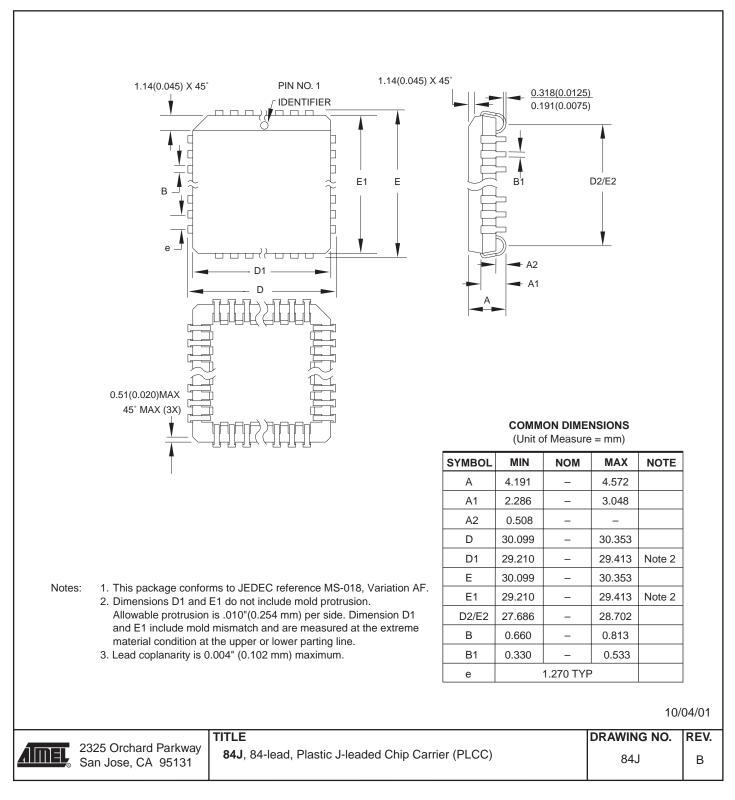
Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
5,000 - 10,000	3.3V	1	AT40K05AL-1AJC	84J	Commercial
			AT40K05AL-1AQC	100T1	(0°C to 70°C)
			AT40K05AL-1BQC	144L1	
			AT40K05AL-1DQC	208Q1	
5,000 - 10,000	3.3V	1	AT40K05AL-1AJI	84J	Industrial
			AT40K05AL-1AQI	100T1	(-40°C to 85°C)
			AT40K05AL-1BQI	144L1	
			AT40K05AL-1DQI	208Q1	

AT40K10AL Ordering Information

Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
10,000 - 20,000	3.3V	1	AT40K10AL-1AJC	84J	Commercial
			AT40K10AL-1AQC	100T1	(0°C to 70°C)
			AT40K10AL-1BQC	144L1	
			AT40K10AL-1DQC	208Q1	
10,000 - 20,000	3.3V	1	AT40K10AL-1AJI	84J	Industrial
			AT40K10AL-1AQI	100T1	(-40°C to 85°C)
			AT40K10AL-1BQI	144L1	
			AT40K10AL-1DQI	208Q1	

AT40K20AL Ordering Information

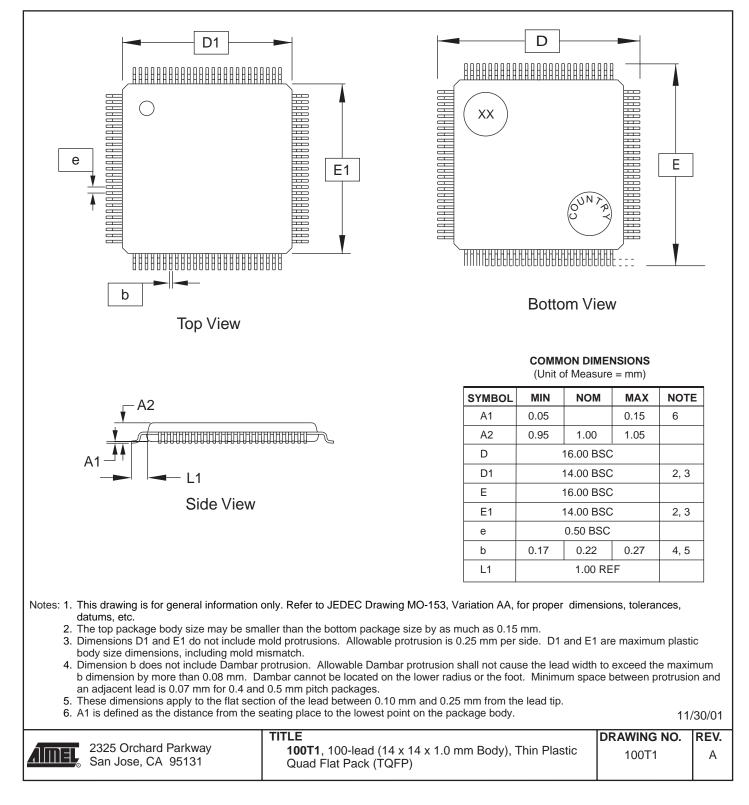
Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
20,000 - 30,000	3.3V	1	AT40K20AL-1AJC AT40K20AL-1AQC AT40K20AL-1BQC AT40K20AL-1DQC	84J 100T1 144L1 208Q1	Commercial (0°C to 70°C)
20,000 - 30,000	3.3V	1	AT40K20AL-1AJI AT40K20AL-1AQI AT40K20AL-1BQI AT40K20AL-1DQI	84J 100T1 144L1 208Q1	Industrial (-40°C to 85°C)

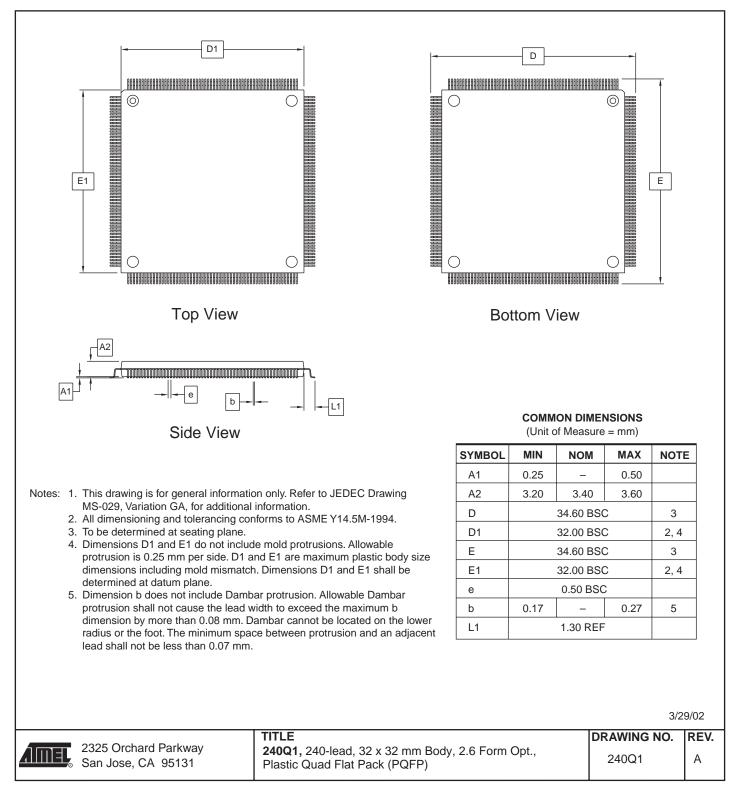

AT40K40AL Ordering Information

Usable Gates	Operating Voltage	Speed Grade (ns)	Ordering Code	Package	Operation Range ⁽¹⁾
40,000 - 50,000	3.3V	1	AT40K40AL-1BQC	144L1	Commercial
			AT40K40AL-1DQC	208Q1	(0°C to 70°C)
			AT40K40AL-1EQC	240Q1	
40,000 - 50,000	3.3V	1	AT40K40AL-1BQI	144L1	Industrial
			AT40K40AL-1DQI	208Q1	(-40°C to 85°C)
			AT40K40AL-1EQI	240Q1	

Note: 1. For military parts, contact Atmel at fpga@atmel.com.

Packaging Information


84J – PLCC



100T1 - TQFP

240Q1 – PQFP

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

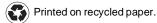
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

©Atmel Corporation 2004. All rights reserved. Atmel[®] and combinations thereof, Cache Logic[®] are the registered trademarks, and FreeRAM[™] and QuickChange[™] are the trademarks of Atmel Corporation or its subsidiaries. Verilog[®] and OrCAD[®] are the registered trademarks of Cadence Design Systems, Inc. Mentor[®] is the registered trademark, and Exemplar[™] is the trademark of Mentor Graphics. Synopsys[®] is the registered trademark of Viewlogic Systems, Inc. Synplicity[®] is the registered trademark of Synplify, Inc. Other terms and product names may be the trademarks of others.

