

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2011.0	
Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	76
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161pil25fcafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C161PI Revision H	listory:	1999-07 Pr	eliminary				
Previous V	ersions:	1998-05	(C161RI / Preliminary)				
		1998-01	(C161RI / Advance Information)				
		1997-12	(C161RI / Advance Information)				
Page	Subjec	ts					
	3 V spe	cification intro	duced				
4, 5, 7	Signal I	OUT added					
14	XRAM	XRAM description added					
15	Unlatch	Unlatched CS description added					
23	Block D	iagram correc	ted				
24	Descrip	tion of divider	chain improved				
25, 51, 52	ADC de	escription upda	ated to 10-bit				
36, 37	Revise	d description o	f Absolute Max. Ratings and Operating Conditions				
39, 44	Powers	supply values	improved				
45 - 50	Revise	d description for	or clock generation including PLL				
54 ff.	Standa	rd 25-MHz tim	ing				

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

 \ge

The C161PI is the successor of the C161RI. Therefore this data sheet also replaces the C161RI data sheet (see also revision history).

Edition 1999-07

Published by Infineon Technologies AG i. Gr., St.-Martin-Strasse 53 D-81541 München [©] Infineon Technologies AG 1999. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

This document describes the SAB-C161PI-LM, the SAB-C161PI-LF, the SAF-C161PI-LM and the SAF-C161PI-LF.

For simplicity all versions are referred to by the term **C161PI** throughout this document.

Ordering Information

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set
- the specified temperature range
- the package
- the type of delivery.

For the available ordering codes for the **C161PI** please refer to the

"**Product Catalog Microcontrollers**", which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.

Table 1	Pi	n Defini	itions a	and Functio	ons
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function	
P5			1	characteris	6-bit input-only port with Schmitt-Trigger stics. The pins of Port 5 also serve as (up to nput channels for the A/D converter, or they mer inputs:
P5.0	97	99	1	AN0	
P5.1	98	100	1	AN1	
P5.2	99	1	1	AN2	
P5.3	100	2	1	AN3	
P5.14	1	3	1	T4EUD	GPT1 Timer T4 Ext. Up/Down Ctrl. Input
P5.15	2	4	1	T2EUD	GPT1 Timer T5 Ext. Up/Down Ctrl. Input
XTAL1	4	6	I	XTAL1:	Input to the oscillator amplifier and input to the internal clock generator
XTAL2	5	7	Ο	XTAL1, wh and maxim	Output of the oscillator amplifier circuit. e device from an external source, drive ile leaving XTAL2 unconnected. Minimum um high/low and rise/fall times specified in aracteristics must be observed.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C161PI's instructions can be executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', reduces the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

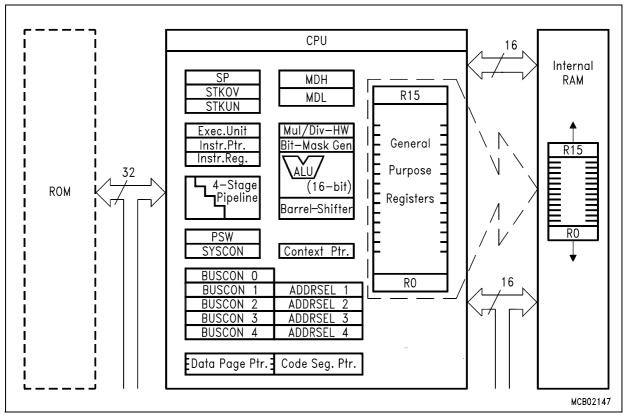


Figure 5 CPU Block Diagram

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 bytes is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C161PI instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

The C161PI also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

The following table shows all of the possible exceptions or error conditions that can arise during run-time:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Prio
Reset Functions: Hardware Reset Software Reset Watchdog Timer Overflow		RESET RESET RESET	00'0000 _H 00'0000 _H 00'0000 _H	00 _H 00 _H 00 _H	
Class A Hardware Traps: Non-Maskable Interrupt Stack Overflow Stack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	
Class B Hardware Traps: Undefined Opcode Protected Instruction Fault Illegal Word Operand Access Illegal Instruction Access Illegal External Bus Access	UNDOPC PRTFLT ILLOPA ILLINA ILLBUS	BTRAP BTRAP BTRAP BTRAP BTRAP BTRAP	00'0028 _H 00'0028 _H 00'0028 _H 00'0028 _H 00'0028 _H	OA _H OA _H OA _H OA _H OA _H	
Reserved			[2C _H – 3C _H]	[0В _н – 0F _н]	
Software Traps: TRAP Instruction			Any [00'0000 _H 00'01FC _H] in steps of 4 _H	Any [00 _H – 7F _H]	Current CPU Priority

Table 3Hardware Trap Summary

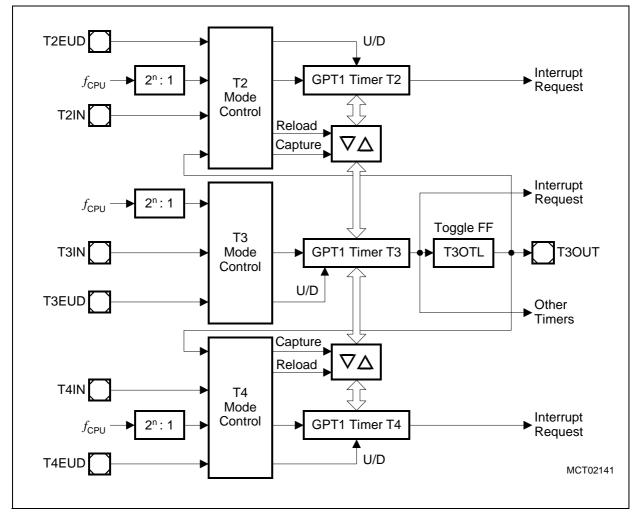


Figure 6 Block Diagram of GPT1

With its maximum resolution of 8 TCL, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler. The count direction (up/down) for each timer is programmable by software. Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/ underflow.

Real Time Clock

The Real Time Clock (RTC) module of the C161PI consists of a chain of 3 divider blocks, a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer (accessible via registers RTCH and RTCL). The RTC module is directly clocked with the on-chip oscillator frequency divided by 32 via a separate clock driver ($f_{\rm RTC} = f_{\rm OSC}$ / 32) and is therefore independent from the selected clock generation mode of the C161PI. All timers count up.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time based interrupt
- 48-bit timer for long term measurements

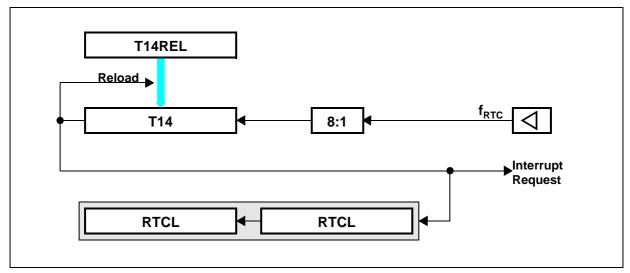


Figure 8 RTC Block Diagram

Note: The registers associated with the RTC are not effected by a reset in order to maintain the correct system time even when intermediate resets are executed.

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 4 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 4 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C161PI supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted and converted and converted. In the Auto Scan Continuous mode, the number of a specific channels is repeatedly sampled and converted in a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via registers P5DIDIS (Port 5 Digital Input Disable).

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 780 KBaud and half-duplex synchronous communication at up to 3.1 MBaud @ 25 MHz CPU clock.

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25 Mbaud @ 25 MHz CPU clock. It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 3 separate interrupt vectors are provided.

The SSC transmits or receives characters of 2...16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

NamePhysical Address8-Bit Addr.DescriptionReset ValueCC12ICbFF99 _H C8 _H External Interrupt 4 Control Register0000 _H CC13ICbFF92 _H C9 _H External Interrupt 5 Control Register0000 _H CC14ICbFF94 _H CA _H External Interrupt 6 Control Register0000 _H CC15ICbFF96 _H CB _H External Interrupt 7 Control Register0000 _H CC15ICbFF96 _H CB _H External Interrupt 7 Control Register0000 _H CRIbFF6A _H B5 _H GPT2 CAPREL Interrupt Ctrl. Register0000 _H CSPFE08 _H 04 _H CPU Code Segment Pointer Register000 _H DP0LbF100 _H E80 _H POL Direction Control Register000 _H DP1LbF104 _H E82 _H P1L Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1bF104 _H E83 _H P1H Direction Control Register000 _H DP2bFFC2 _H E1 _H Port 2 Direction Control Register000 _H DP3bFFC6 _H E3 _H <td< th=""><th>Table 5</th><th>(</th><th>C161PI R</th><th>egi</th><th>sters, C</th><th>Ordered by Name (continued)</th><th></th></td<>	Table 5	(C161PI R	egi	sters, C	Ordered by Name (continued)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Name		-			Description	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CC12IC	b	FF90 _H		C8 _H	External Interrupt 4 Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC13IC	b	FF92 _H		C9 _H	External Interrupt 5 Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC14IC	b	FF94 _H		CA_{H}	External Interrupt 6 Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC15IC	b	FF96 _H		CB_{H}	External Interrupt 7 Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H
DPOLbF100 _H E 80_H POL Direction Control Register 00_H DPOHbF102 _H E 81_H POH Direction Control Register 00_H DP1LbF104 _H E 82_H P1L Direction Control Register 00_H DP1HbF106_HE 83_H P1H Direction Control Register 00_H DP2bFFC2_HE1_HPort 2 Direction Control Register 000_H DP3bFFC6_HE3_HPort 3 Direction Control Register 0000_H DP4bFFC6_HE5_HPort 4 Direction Control Register 000_H DP6bFFCE_HE7_HPort 6 Direction Control Register 000_H DP6bFFCE_HE7_HPort 6 Direction Control Register 000_H DP7FE00_H 00_H CPU Data Page Pointer 0 Register (10) 0000_H DP90FE02_H01_HCPU Data Page Pointer 2 Reg. (10 bits) 0001_H DP91FE02_H 01_H CPU Data Page Pointer 3 Reg. (10 bits) 0002_H DP93FE06_H 03_H CPU Data Page Pointer 3 Reg. (10 bits) 0003_H EXICONbF1C0_HEE0_HExternal Interrupt Control Register 0000_H ICADRED06_HXI²C Address Register $0XXX_H$ ICCFGED08_HXI²C Control Register 0000_H ICADRED08_HXI²C Receive/Transmit Buffer XX_H ICCNED08_H<	CRIC	b	FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CSP		FE08 _H		04 _H	5 5	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP3	b	$FFC6_{H}$		E3 _H	Port 3 Direction Control Register	0000 _H
DPP0 $FE00_H$ 00_H CPU Data Page Pointer 0 Register (10 bits) 0000_H DPP1 $FE02_H$ 01_H CPU Data Page Pointer 1 Reg. (10 bits) 0001_H DPP2 $FE04_H$ 02_H CPU Data Page Pointer 2 Reg. (10 bits) 0002_H DPP3 $FE06_H$ 03_H CPU Data Page Pointer 3 Reg. (10 bits) 0003_H EXICONb $F1C0_H$ E $E0_H$ External Interrupt Control Register 0000_H ICADR $ED06_H$ X I^2C Address Register $0XXX_H$ ICCFG $ED00_H$ X I^2C Configuration Register 0000_H ICCN $ED02_H$ X I^2C Control Register 0000_H ICRTB $ED08_H$ X I^2C Receive/Transmit Buffer XX_H IDCHIP $F07C_H$ E $3E_H$ Identifier $09XX_H$ IDMANUF $F07E_H$ E $3F_H$ Identifier 1820_H	DP4	b	$FFCA_{H}$		E5 _H	Port 4 Direction Control Register	00 _H
DPP1FE02 _H 01 _H CPU Data Page Pointer 1 Reg. (10 bits)0001 _H DPP2FE04 _H 02 _H CPU Data Page Pointer 2 Reg. (10 bits)0002 _H DPP3FE06 _H 03 _H CPU Data Page Pointer 3 Reg. (10 bits)0003 _H EXICONbF1C0 _H EE0 _H External Interrupt Control Register0000 _H ICADRED06 _H XI²C Address Register0XXX _H ICCFGED00 _H XI²C Configuration Register0000 _H ICCONED02 _H XI²C Control Register0000 _H ICRTBED08 _H XI²C Receive/Transmit BufferXX _H ICSTED04 _H XI²C Status Register0000 _H IDCHIPF07C _H E3E _H Identifier09XX _H IDMANUFF07E _H E3F _H Identifier1820 _H	DP6	b	$FFCE_{H}$		E7 _H	Port 6 Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DPP0		FE00 _H		00 _H	U U U	0000 _H
DPP3FE06 _H 03 _H CPU Data Page Pointer 3 Reg. (10 bits)0003 _H EXICONbF1C0 _H EE0 _H External Interrupt Control Register0000 _H ICADRED06 _H XI²C Address Register0XXX _H ICCFGED00 _H XI²C Configuration RegisterXX00 _H ICCONED02 _H XI²C Control Register0000 _H ICRTBED08 _H XI²C Receive/Transmit BufferXX _H ICSTED04 _H XI²C Status Register0000 _H IDCHIPF07C _H E3E _H Identifier09XX _H IDMANUFF07E _H E3F _H Identifier1820 _H	DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
ICADRED06 _H XI²C Address Register $0XXX_H$ ICCFGED00 _H XI²C Configuration Register $XX00_H$ ICCONED02 _H XI²C Control Register 0000_H ICRTBED08 _H XI²C Receive/Transmit Buffer XX_H ICSTED04 _H XI²C Status Register 0000_H IDCHIPF07C _H E $3E_H$ Identifier $09XX_H$ IDMANUFF07E_HE $3F_H$ Identifier 1820_H	DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICADR		ED06 _H	Χ		I ² C Address Register	0XXX _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICCFG		ED00 _H	Χ		I ² C Configuration Register	XX00 _H
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ICCON		ED02 _H	Χ		I ² C Control Register	0000 _H
IDCHIP $F07C_H$ E $3E_H$ Identifier $09XX_H$ IDMANUF $F07E_H$ E $3F_H$ Identifier 1820_H	ICRTB		ED08 _H	Χ		I ² C Receive/Transmit Buffer	XX _H
IDMANUFF07E _H E $3F_H$ Identifier1820_H	ICST		ED04 _H	Χ		I ² C Status Register	0000 _H
	IDCHIP		F07C _H	Ε	ЗЕ _Н	Identifier	09XX _H
IDMEM F07A _H E $3D_H$ Identifier 0000_H	IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H
	IDMEM		F07A _H	Ε	3D _H	Identifier	0000 _H

Table 5 C161PI Registers, Ordered by Name (continued)

Table 5	(C161PI R	legi	sters, C	Ordered by Name (continued)	
Name		Physica Addres		8-Bit Addr.	Description	Reset Value
RTCH		F0D6 _H	Ε	6B _H	RTC High Register	no
RTCL		F0D4 _H	Ε	6A _H	RTC Low Register	no
S0BG		FEB4 _H		5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H
S0CON	b	FFB0 _H		D8 _H	Serial Channel 0 Control Register	0000 _H
SOEIC	b	FF70 _H		B8 _H	Serial Channel 0 Error Interrupt Control Register	0000 _H
SORBUF		FEB2 _H		59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	XXXX _H
SORIC	b	FF6E _H		В7 _Н	Serial Channel 0 Receive Interrupt Control Register	0000 _H
SOTBIC	b	F19C _H	Ε	CE _H	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H
S0TBUF		FEB0 _H		58 _H	Serial Channel 0 Transmit Buffer Reg. (write only)	0000 _H
SOTIC	b	FF6C _H		B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H
SP		FE12 _H		09 _H	CPU System Stack Pointer Register	FC00 _H
SSCBR		F0B4 _H	Ε	5A _H	SSC Baudrate Register	0000 _H
SSCCON	b	FFB2 _H		D9 _H	SSC Control Register	0000 _H
SSCEIC	b	FF76 _H		BB _H	SSC Error Interrupt Control Register	0000 _H
SSCRB		F0B2 _H	Ε	59 _H	SSC Receive Buffer	XXXX _H
SSCRIC	b	FF74 _H		BA _H	SSC Receive Interrupt Control Register	0000 _H
SSCTB		F0B0 _H	Ε	58 _H	SSC Transmit Buffer	0000 _H
SSCTIC	b	FF72 _H		B9 _H	SSC Transmit Interrupt Control Register	0000 _H
STKOV		FE14 _H		0A _H	CPU Stack Overflow Pointer Register	FA00 _H
STKUN		FE16 _H		0B _H	CPU Stack Underflow Pointer Register	FC00 _H
SYSCON	b	FF12 _H		89 _H	CPU System Configuration Register	¹⁾ 0xx0 _H
SYSCON2	b	F1D0 _H	Ε	E8 _H	CPU System Configuration Register 2	0000 _H
SYSCON3	b	F1D4 _H	Ε	EA _H	CPU System Configuration Register 3	0000 _H
T14		F0D2 _H	Ε	69 _H	RTC Timer 14 Register	no

Table 5 C161Pl Pegisters Ordered by Name (continued)

Absolute Maximum Ratings

Parameter	Symbol	Limit	Values	Unit	Notes
		min.	max.		
Storage temperature	T _{ST}	-65	150	°C	
Voltage on $V_{\rm DD}$ pins with respect to ground ($V_{\rm SS}$)	V _{DD}	-0.5	6.5	V	
Voltage on any pin with espect to ground ($V_{\rm SS}$)	V _{IN}	-0.5	V _{DD} +0.5	V	
nput current on any pin during overload condition		-10	10	mA	
Absolute sum of all input currents during overload condition		-	100	mA	
Power dissipation	P _{DISS}	-	1.5	W	

 Table 6
 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (V_{IN} > V_{DD} or V_{IN} < V_{SS}) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C161PI. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit	Values	Unit	Notes	
		min.	max.			
Standard digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, $f_{CPUmax} = 25 \text{ MHz}$	
		2.5 ¹⁾	5.5	V	PowerDown mode	
Reduced digital supply voltage	V _{DD}	3.0	3.6	V	Active mode, $f_{CPUmax} = 20 \text{ MHz}$	
		2.5 ¹⁾	3.6	V	PowerDown mode	
Digital ground voltage	V _{SS}		0	V	Reference voltage	
Overload current	I _{OV}	-	±5	mA	Per pin ²⁾³⁾	
Absolute sum of overload currents	$\Sigma I_{OV} $	-	50	mA	3)	
External Load Capacitance	С	-	100	pF	Pin drivers in fast edge mode (PDCR.BIPEC = '0')	
		-	50	pF	Pin drivers in reduced edge mode (PDCR.BIPEC = '1') ³⁾	
Ambient temperature	T _A	0	70	°C	SAB-C161PI	
		-40	85	°C	SAF-C161PI	
		-40	125	°C	SAK-C161PI	

Table 7	Operating	Condition	Parameters

1) Output voltages and output currents will be reduced when V_{DD} leaves the range defined for active mode.

2) Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. $V_{OV} > V_{DD}$ +0.5V or $V_{OV} < V_{SS}$ -0.5V). The absolute sum of input overload currents on all port pins may not exceed **50 mA**. The supply voltage must remain within the specified limits.

3) Not 100% tested, guaranteed by design characterization.

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and figure below).

For a period of N * TCL the minimum value is computed using the corresponding deviation D_N :

 $(N * TCL)_{min} = N * TCL_{NOM} - D_N$ $D_N [ns] = \pm(13.3 + N*6.3) / f_{CPU} [MHz],$ where N = number of consecutive TCLs and $1 \le N \le 40$.

So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D₃ = (13.3 + 3 * 6.3) / 25 = 1.288 ns, and (3TCL)_{min} = 3TCL_{NOM} - 1.288 ns = 58.7 ns (@ f_{CPU} = 25 MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.

Note: For all periods longer than 40 TCL the N=40 value can be used (see figure below).

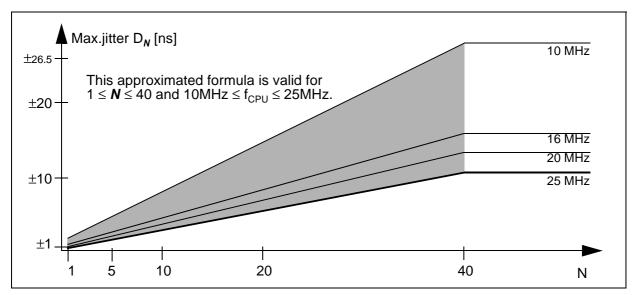


Figure 12 Approximated Maximum Accumulated PLL Jitter

Multiplexed Bus (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		PU Clock MHz	Variable (1 / 2TCL =	Unit	
		min.	max.	min.	max.	-
Data valid to WrCS	<i>t</i> ₅₀ CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	-	ns
Data float after RdCS	<i>t</i> ₅₂ SR	-	20 + $t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	20 + $t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₆ CC	20 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	-	ns

1) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Demultiplexed Bus (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		PU Clock 5 MHz	Variable (1 / 2TCL =	Unit	
		min.	max.	min.	max.	-
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	$-6 + t_{\rm F}$	-	$-6 + t_{\rm F}$	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	$6 + t_{\rm F}$	-	TCL - 14 + <i>t</i> _F	-	ns

1) RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

2) Read data are latched with the same clock edge that triggers the address change and the rising $\overline{\text{RD}}$ edge. Therefore address changes before the end of $\overline{\text{RD}}$ have no impact on read cycles.

3) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

AC Characteristics

Demultiplexed Bus (Reduced Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$11 + t_A$	-	TCL - 14 + <i>t</i> _A	-	ns
Address setup to ALE	t ₆	CC	$5 + t_A$	-	TCL - 20 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	t ₈	CC	$15 + t_A$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	-	-10 + <i>t</i> _A	-	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	CC	$34 + t_{\rm C}$	-	2TCL - 16 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	59 + $t_{\rm C}$	-	3TCL - 16 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	22 + $t_{\rm C}$	-	2TCL - 28 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	-	$47 + t_{\rm C}$	-	3TCL - 28 + <i>t</i> _C	ns
ALE low to valid data in	t ₁₆	SR	-	$49 + t_{A} + t_{C}$	_	3TCL - 30 + t_{A} + t_{C}	ns
Address to valid data in	<i>t</i> ₁₇	SR	-	$57 + 2t_A + t_C$	_	$4TCL - 43 + 2t_A + t_C$	ns
Data hold after RD rising edge	<i>t</i> ₁₈	SR	0	-	0	-	ns
Data float after RD rising edge (with RW-delay ¹⁾)	<i>t</i> ₂₀	SR	-	$36 + 2t_A + t_F$	-	2TCL - 14 + $2t_A + t_F$	ns
Data float after RD rising edge (no RW-delay ¹⁾)	<i>t</i> ₂₁	SR	-	$15 + 2t_{\rm A} + t_{\rm F}^{-1}$	-	TCL - 10 + $2t_{A}$ + t_{F}^{-1}	ns
Data valid to WR	<i>t</i> ₂₂	CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns

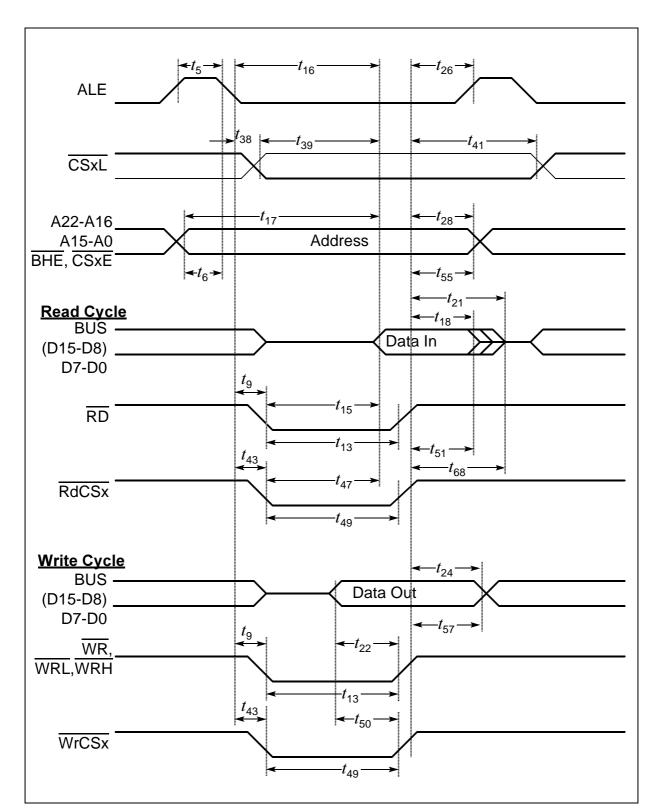


Figure 22 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE

C161PI

