

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

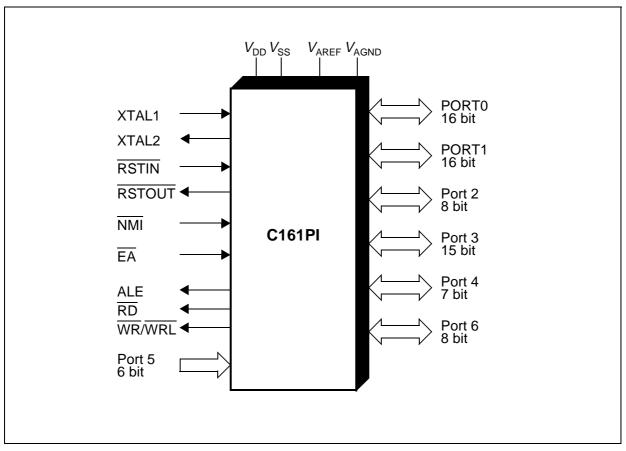
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	76
Program Memory Size	- ·
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	PG-MQFP-100-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161pil25mcabxuma1

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C161PI

Introduction

The C161PI is a derivative of the Infineon C166 Family of 16-bit single-chip CMOS microcontrollers. It combines high CPU performance (up to 8 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. The C161PI derivative is especially suited for cost sensitive applications.

Figure 1 Logic Symbol

Table 1	Pin Definitions and Functions (continued)									
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function						
ĒĀ	35	37	I	External Access Enable pin. A low level at this pin during and after Reset forces the C161PI to begin instruction execution out of external memory. A high level forces execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'.						
PORT0			10	PORT0 consists of	the two 8-bit bi	directional I/O ports				
P0L.0-7	38- 45	40- 47		P0L and P0H. It is b output via direction		•				
P0H.0-7	48-	50-		the output driver is p	•	.				
	55	57		In case of external b	•					
				as the address (A) a						
				multiplexed bus model demultiplexed bus r		data (D) bus in				
				Demultiplexed bus						
				Data Path Width:	8-bit	16-bit				
				P0L.0 – P0L.7:	D0 – D7	D0 - D7				
				P0H.0 – P0H.7: Multiplexed bus m	I/O adas:	D8 - D15				
				Data Path Width:	8-bit	16-bit				
				P0L.0 – P0L.7:	AD0 – AD7	AD0 - AD7				
				P0H.0 – P0H.7:	A8 - A15	AD8 - AD15				
PORT1			IO	PORT1 consists of	the two 8-bit bi	directional I/O ports				
P1L.0-7	56-	58-		P1L and P1H. It is b		•				
P1H.0-7	63 66-	65 68-		output via direction the output driver is p	•	u				
1 111.0-7	73	75		PORT1 is used as t	-	•				
	-			demultiplexed bus m						
				a demultiplexed bus	s mode to a mu	Iltiplexed bus mode.				

External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/23-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/23-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/23-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/23-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/ output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which allow to access different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 5 external \overline{CS} signals (4 windows plus default) can be generated in order to save external glue logic. The C161PI offers the possibility to switch the \overline{CS} outputs to an unlatched mode. In this mode the internal filter logic is switched off and the \overline{CS} signals are directly generated from the address. The unlatched \overline{CS} mode is enabled by setting CSCFG (SYSCON.6).

Access to very slow memories is supported via a particular 'Ready' function.

For applications which require less than 8 MBytes of external memory space, this address space can be restricted to 1 MByte, 256 KByte or to 64 KByte. In this case Port 4 outputs four, two or no address lines at all. It outputs all 7 address lines, if an address space of 8 MBytes is used.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C161PI's instructions can be executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', reduces the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

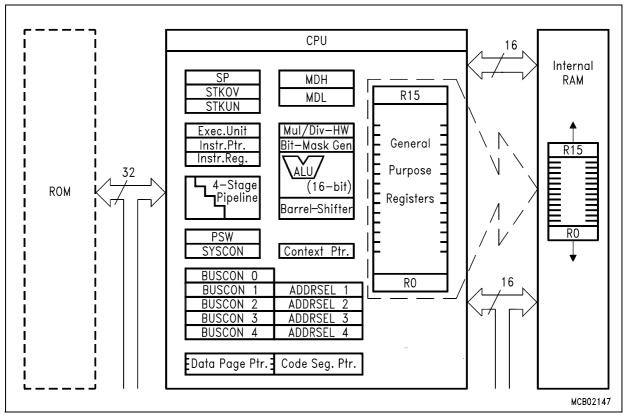


Figure 5 CPU Block Diagram

Table 2 C161PI Interrupt Nodes

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
External Interrupt 0	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
External Interrupt 1	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
External Interrupt 2	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
External Interrupt 3	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
External Interrupt 4	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
External Interrupt 5	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
External Interrupt 6	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
External Interrupt 7	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
GPT2 Timer 5	T5IR	T5IE	T5INT	00'0094 _H	25 _H
GPT2 Timer 6	T6IR	T6IE	T6INT	00'0098 _H	26 _H
GPT2 CAPREL Register	CRIR	CRIE	CRINT	00'009C _H	27 _H
A/D Conversion Complete	ADCIR	ADCIE	ADCINT	00'00A0 _H	28 _H
A/D Overrun Error	ADEIR	ADEIE	ADEINT	00'00A4 _H	29 _H
ASC0 Transmit	SOTIR	SOTIE	SOTINT	00'00A8 _H	2A _H
ASC0 Transmit Buffer	S0TBIR	S0TBIE	S0TBINT	00'011C _H	47 _H
ASC0 Receive	SORIR	SORIE	SORINT	00'00AC _H	2B _H
ASC0 Error	S0EIR	SOEIE	SOEINT	00'00B0 _H	2C _H
SSC Transmit	SCTIR	SCTIE	SCTINT	00'00B4 _H	2D _H
SSC Receive	SCRIR	SCRIE	SCRINT	00'00B8 _H	2E _H
SSC Error	SCEIR	SCEIE	SCEINT	00'00BC _H	2F _H
I ² C Data Transfer Event	XP0IR	XP0IE	XP0INT	00'0100 _H	40 _H
I ² C Protocol Event	XP1IR	XP1IE	XP1INT	00'0104 _H	41 _H
X-Peripheral Node 2	XP2IR	XP2IE	XP2INT	00'0108 _H	42 _H
PLL Unlock / RTC	XP3IR	XP3IE	XP3INT	00'010C _H	43 _H

Real Time Clock

The Real Time Clock (RTC) module of the C161PI consists of a chain of 3 divider blocks, a fixed 8:1 divider, the reloadable 16-bit timer T14, and the 32-bit RTC timer (accessible via registers RTCH and RTCL). The RTC module is directly clocked with the on-chip oscillator frequency divided by 32 via a separate clock driver ($f_{\rm RTC} = f_{\rm OSC}$ / 32) and is therefore independent from the selected clock generation mode of the C161PI. All timers count up.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time based interrupt
- 48-bit timer for long term measurements

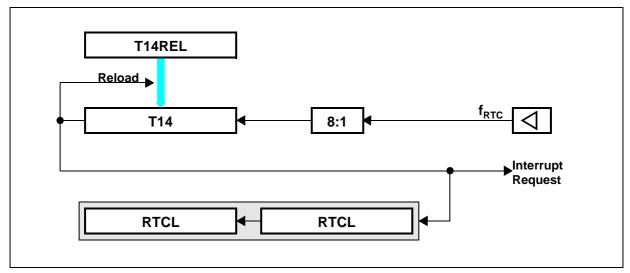


Figure 8 RTC Block Diagram

Note: The registers associated with the RTC are not effected by a reset in order to maintain the correct system time even when intermediate resets are executed.

A/D Converter

For analog signal measurement, a 10-bit A/D converter with 4 multiplexed input channels and a sample and hold circuit has been integrated on-chip. It uses the method of successive approximation. The sample time (for loading the capacitors) and the conversion time is programmable and can so be adjusted to the external circuitry.

Overrun error detection/protection is provided for the conversion result register (ADDAT): either an interrupt request will be generated when the result of a previous conversion has not been read from the result register at the time the next conversion is complete, or the next conversion is suspended in such a case until the previous result has been read.

For applications which require less than 4 analog input channels, the remaining channel inputs can be used as digital input port pins.

The A/D converter of the C161PI supports four different conversion modes. In the standard Single Channel conversion mode, the analog level on a specified channel is sampled once and converted to a digital result. In the Single Channel Continuous mode, the analog level on a specified channel is repeatedly sampled and converted without software intervention. In the Auto Scan mode, the analog levels on a prespecified number of channels are sequentially sampled and converted. In the Auto Scan Continuous mode, the number of prespecified channels is repeatedly sampled and converted and converted and converted. In the Auto Scan Continuous mode, the number of a specific channels is repeatedly sampled and converted in a running sequence without disturbing this sequence. This is called Channel Injection Mode.

The Peripheral Event Controller (PEC) may be used to automatically store the conversion results into a table in memory for later evaluation, without requiring the overhead of entering and exiting interrupt routines for each data transfer.

After each reset and also during normal operation the ADC automatically performs calibration cycles. This automatic self-calibration constantly adjusts the converter to changing operating conditions (e.g. temperature) and compensates process variations.

These calibration cycles are part of the conversion cycle, so they do not affect the normal operation of the A/D converter.

In order to decouple analog inputs from digital noise and to avoid input trigger noise those pins used for analog input can be disconnected from the digital IO or input stages under software control. This can be selected for each pin separately via registers P5DIDIS (Port 5 Digital Input Disable).

I²C Module

The integrated I^2C Bus Module handles the transmission and reception of frames over the two-line I^2C bus in accordance with the I^2C Bus specification. The on-chip I^2C Module can receive and transmit data using 7-bit or 10-bit addressing and it can operate in slave mode, in master mode or in multi-master mode.

Several physical interfaces (port pins) can be established under software control. Data can be transferred at speeds up to 400 Kbit/sec.

Two interrupt nodes dedicated to the I²C module allow efficient interrupt service and also support operation via PEC transfers.

Note: The port pins associated with the l^2C interfaces feature open drain drivers only, as required by the l^2C specification.

Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can only be disabled in the time interval until the EINIT (end of initialization) instruction has been executed. Thus, the chip's start-up procedure is always monitored. The software has to be designed to service the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided either by 2 or by 128. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded. Thus, time intervals between 20 µs and 336 ms can be monitored (@ 25 MHz).

The default Watchdog Timer interval after reset is 5.24 ms (@ 25 MHz).

Parallel Ports

The C161PI provides up to 76 IO lines which are organized into six input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of three IO ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. The other IO ports operate in push/pull mode, except for the I²C interface pins which are open drain pins only. During the internal reset, all port pins are configured as inputs.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A22/19/17...A16 in systems where segmentation is enabled to access more than 64 KBytes of memory.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE and the system clock output CLKOUT (or the programmable frequency output FOUT).

Port 5 is used for the analog input channels to the A/D converter or timer control signals.

Port 6 provides the optional chip select signals and interface lines for the I²C module.

The edge characteristics (transition time) of the C161PI's port drivers can be selected via the Port Driver Control Register (PDCR).

Special Function Registers Overview

The following table lists all SFRs which are implemented in the C161PI in alphabetical order.

Bit-addressable SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-Peripherals (I²C) are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Name		Physical Address	8-Bit Addr.	Description	Reset Value
ADCIC	b	FF98 _H	CC _H	A/D Converter End of Conversion Interrupt Control Register	0000 _H
ADCON	b	FFA0 _H	D0 _H	A/D Converter Control Register	0000 _H
ADDAT		FEA0 _H	50 _H	A/D Converter Result Register	0000 _H
ADDAT2		F0A0 _H E	50 _H	A/D Converter 2 Result Register	0000 _H
ADDRSEL1		FE18 _H	0C _H	Address Select Register 1	0000 _H
ADDRSEL2	2	FE1A _H	0D _H	Address Select Register 2	0000 _H
ADDRSEL3	\$	FE1C _H	0E _H	Address Select Register 3	0000 _H
ADDRSEL4	ŀ	FE1E _H	0F _H	Address Select Register 4	0000 _H
ADEIC	b	FF9A _H	CD _H	A/D Converter Overrun Error Interrupt Control Register	0000 _H
BUSCON0	b	FF0C _H	86 _H	Bus Configuration Register 0	0000 _H
BUSCON1	b	FF14 _H	8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H	8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H	8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H	8D _H	Bus Configuration Register 4	0000 _H
CAPREL		FE4A _H	25 _H	GPT2 Capture/Reload Register	0000 _H
CC8IC	b	FF88 _H	C4 _H	External Interrupt 0 Control Register	0000 _H
CC9IC	b	FF8A _H	C5 _H	External Interrupt 1 Control Register	0000 _H
CC10IC	b	FF8C _H	C6 _H	External Interrupt 2 Control Register	0000 _H
CC11IC	b	FF8E _H	C7 _H	External Interrupt 3 Control Register	0000 _H

Table 5 C161PI Registers, Ordered by Name

NamePhysical Address8-Bit Addr.DescriptionReset ValueCC12ICbFF99 _H C8 _H External Interrupt 4 Control Register0000 _H CC13ICbFF92 _H C9 _H External Interrupt 5 Control Register0000 _H CC14ICbFF94 _H CA _H External Interrupt 6 Control Register0000 _H CC15ICbFF96 _H CB _H External Interrupt 7 Control Register0000 _H CC15ICbFF96 _H CB _H External Interrupt 7 Control Register0000 _H CRIbFF6A _H B5 _H GPT2 CAPREL Interrupt Ctrl. Register0000 _H CSPFE08 _H 04 _H CPU Code Segment Pointer Register000 _H DP0LbF100 _H E80 _H POL Direction Control Register000 _H DP1LbF104 _H E82 _H P1L Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1bF104 _H E83 _H P1H Direction Control Register000 _H DP2bFFC2 _H E1 _H Port 2 Direction Control Register000 _H DP3bFFC6 _H E3 _H <td< th=""><th>Table 5</th><th>(</th><th>C161PI R</th><th>egi</th><th>sters, C</th><th>Ordered by Name (continued)</th><th></th></td<>	Table 5	(C161PI R	egi	sters, C	Ordered by Name (continued)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Name		-			Description	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CC12IC	b	FF90 _H		C8 _H	External Interrupt 4 Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC13IC	b	FF92 _H		C9 _H	External Interrupt 5 Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC14IC	b	FF94 _H		CA_{H}	External Interrupt 6 Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC15IC	b	FF96 _H		CB_H	External Interrupt 7 Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H
DPOLbF100 _H E 80_H POL Direction Control Register 00_H DPOHbF102 _H E 81_H POH Direction Control Register 00_H DP1LbF104 _H E 82_H P1L Direction Control Register 00_H DP1HbF106_HE 83_H P1H Direction Control Register 00_H DP2bFFC2_HE1_HPort 2 Direction Control Register 000_H DP3bFFC6_HE3_HPort 3 Direction Control Register 0000_H DP4bFFC6_HE5_HPort 4 Direction Control Register 000_H DP6bFFCE_HE7_HPort 6 Direction Control Register 000_H DP6bFFCE_HE7_HPort 6 Direction Control Register 000_H DP7FE00_H 00_H CPU Data Page Pointer 0 Register (10) 0000_H DP90FE02_H01_HCPU Data Page Pointer 2 Reg. (10 bits) 0001_H DP91FE02_H 01_H CPU Data Page Pointer 3 Reg. (10 bits) 0002_H DP93FE06_H 03_H CPU Data Page Pointer 3 Reg. (10 bits) 0003_H EXICONbF1C0_HEE0_HExternal Interrupt Control Register 0000_H ICADRED06_HXI²C Address Register $0XXX_H$ ICCFGED08_HXI²C Control Register 0000_H ICADRED08_HXI²C Receive/Transmit Buffer XX_H ICCNED08_H<	CRIC	b	FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CSP		FE08 _H		04 _H	5 5	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP3	b	$FFC6_{H}$		E3 _H	Port 3 Direction Control Register	0000 _H
DPP0 $FE00_H$ 00_H CPU Data Page Pointer 0 Register (10 bits) 0000_H DPP1 $FE02_H$ 01_H CPU Data Page Pointer 1 Reg. (10 bits) 0001_H DPP2 $FE04_H$ 02_H CPU Data Page Pointer 2 Reg. (10 bits) 0002_H DPP3 $FE06_H$ 03_H CPU Data Page Pointer 3 Reg. (10 bits) 0003_H EXICONb $F1C0_H$ E $E0_H$ External Interrupt Control Register 0000_H ICADR $ED06_H$ X I^2C Address Register $0XXX_H$ ICCFG $ED00_H$ X I^2C Configuration Register 0000_H ICCN $ED02_H$ X I^2C Control Register 0000_H ICRTB $ED08_H$ X I^2C Receive/Transmit Buffer XX_H IDCHIP $F07C_H$ E $3E_H$ Identifier $09XX_H$ IDMANUF $F07E_H$ E $3F_H$ Identifier 1820_H	DP4	b	$FFCA_{H}$		E5 _H	Port 4 Direction Control Register	00 _H
DPP1FE02 _H 01 _H CPU Data Page Pointer 1 Reg. (10 bits)0001 _H DPP2FE04 _H 02 _H CPU Data Page Pointer 2 Reg. (10 bits)0002 _H DPP3FE06 _H 03 _H CPU Data Page Pointer 3 Reg. (10 bits)0003 _H EXICONbF1C0 _H EE0 _H External Interrupt Control Register0000 _H ICADRED06 _H XI²C Address Register0XXX _H ICCFGED00 _H XI²C Configuration Register0000 _H ICCONED02 _H XI²C Control Register0000 _H ICRTBED08 _H XI²C Receive/Transmit BufferXX _H ICSTED04 _H XI²C Status Register0000 _H IDCHIPF07C _H E3E _H Identifier09XX _H IDMANUFF07E _H E3F _H Identifier1820 _H	DP6	b	$FFCE_H$		E7 _H	Port 6 Direction Control Register	00 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DPP0		FE00 _H		00 _H	č č ,	0000 _H
DPP3FE06 _H 03 _H CPU Data Page Pointer 3 Reg. (10 bits)0003 _H EXICONbF1C0 _H EE0 _H External Interrupt Control Register0000 _H ICADRED06 _H XI²C Address Register0XXX _H ICCFGED00 _H XI²C Configuration RegisterXX00 _H ICCONED02 _H XI²C Control Register0000 _H ICRTBED08 _H XI²C Receive/Transmit BufferXX _H ICSTED04 _H XI²C Status Register0000 _H IDCHIPF07C _H E3E _H Identifier09XX _H IDMANUFF07E _H E3F _H Identifier1820 _H	DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
ICADRED06 _H XI²C Address Register $0XXX_H$ ICCFGED00 _H XI²C Configuration Register $XX00_H$ ICCONED02 _H XI²C Control Register 0000_H ICRTBED08 _H XI²C Receive/Transmit Buffer XX_H ICSTED04 _H XI²C Status Register 0000_H IDCHIPF07C _H E $3E_H$ Identifier $09XX_H$ IDMANUFF07E_HE $3F_H$ Identifier 1820_H	DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICADR		ED06 _H	Χ		I ² C Address Register	0XXX _H
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICCFG		ED00 _H	Χ		I ² C Configuration Register	XX00 _H
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ICCON		ED02 _H	Χ		I ² C Control Register	0000 _H
IDCHIP $F07C_H$ E $3E_H$ Identifier $09XX_H$ IDMANUF $F07E_H$ E $3F_H$ Identifier 1820_H	ICRTB		ED08 _H	Χ		I ² C Receive/Transmit Buffer	XX _H
IDMANUFF07E _H E $3F_H$ Identifier1820_H	ICST		ED04 _H	Χ		I ² C Status Register	0000 _H
	IDCHIP		F07C _H	Ε	ЗЕ _Н	Identifier	09XX _H
IDMEM F07A _H E $3D_H$ Identifier 0000_H	IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H
	IDMEM		F07A _H	Ε	3D _H	Identifier	0000 _H

Table 5 C161PI Registers, Ordered by Name (continued)

Name	-	Physical Address		Description	Reset Value	
T14REL		F0D0 _H	Ε	68 _H	RTC Timer 14 Reload Register	no
T2		FE40 _H		20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H		A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H		B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H		21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H		A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H		B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
T4		FE44 _H		22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H		A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H		B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H
Т5		FE46 _H		23 _H	GPT2 Timer 5 Register	0000 _H
T5CON	b	FF46 _H		A3 _H	GPT2 Timer 5 Control Register	0000 _H
T5IC	b	FF66 _H		B3 _H	GPT2 Timer 5 Interrupt Control Register	0000 _H
Т6		FE48 _H		24 _H	GPT2 Timer 6 Register	0000 _H
T6CON	b	FF48 _H		A4 _H	GPT2 Timer 6 Control Register	0000 _H
T6IC	b	FF68 _H		B4 _H	GPT2 Timer 6 Interrupt Control Register	0000 _H
TFR	b	FFAC _H		D6 _H	Trap Flag Register	0000 _H
WDT		FEAE _H		57 _H	Watchdog Timer Register (read only)	0000 _H
WDTCON		FFAE _H		D7 _H	Watchdog Timer Control Register	²⁾ 00xx _H
XPOIC	b	F186 _H	Е	C3 _H	I ² C Data Interrupt Control Register	0000 _H
XP1IC	b	F18E _H	Ε	C7 _H	I ² C Protocol Interrupt Control Register	0000 _H
XP2IC	b	F196 _н	Ε	CB _H	X-Peripheral 2 Interrupt Control Register	0000 _H
XP3IC	b	F19E _H	Ε	CF _H	RTC Interrupt Control Register	0000 _H
ZEROS	b	FF1C _H		8E _H	Constant Value 0's Register (read only)	0000 _H

Table 5 C161PI Registers, Ordered by Name (continued)

1) The system configuration is selected during reset.

2) The reset value depends on the indicated reset source.

DC Characteristics (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.		
Power-down mode supply current (5V) with RTC running	I _{PDR5} ⁸⁾	-	200 + 25*f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ⁹⁾
Power-down mode supply current (5V) with RTC disabled	I _{PDO5}	-	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{9)}$

1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

2) These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 K Ω .

3) The maximum current may be drawn while the respective signal line remains inactive.

4) The minimum current must be drawn in order to drive the respective signal line active.

5) This specification is only valid during Reset, or during Hold- or Adapt-mode. During Hold mode Port 6 pins are only affected, if they are used (configured) for \overline{CS} output and the open drain function is not enabled.

- 6) Not 100% tested, guaranteed by design characterization.
- 7) The supply current is a function of the operating frequency. This dependency is illustrated in the figure below. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH} .

The oscillator also contributes to the total supply current. The given values refer to the worst case, ie. I_{PDRmax} . For lower oscillator frequencies the respective supply current can be reduced accordingly.

- 8) This parameter is determined mainly by the current consumed by the oscillator. This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.
- 9) This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and figure below).

For a period of N * TCL the minimum value is computed using the corresponding deviation D_N :

 $(N * TCL)_{min} = N * TCL_{NOM} - D_N$ $D_N [ns] = \pm(13.3 + N*6.3) / f_{CPU} [MHz],$ where N = number of consecutive TCLs and $1 \le N \le 40$.

So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D₃ = (13.3 + 3 * 6.3) / 25 = 1.288 ns, and (3TCL)_{min} = 3TCL_{NOM} - 1.288 ns = 58.7 ns (@ f_{CPU} = 25 MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.

Note: For all periods longer than 40 TCL the N=40 value can be used (see figure below).

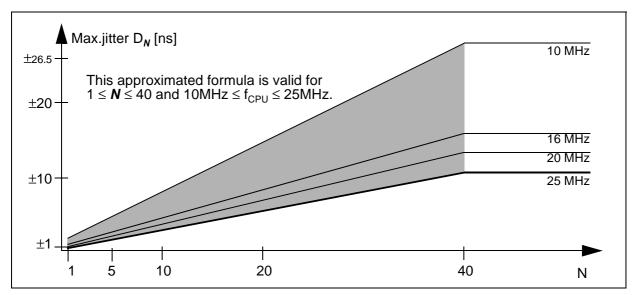


Figure 12 Approximated Maximum Accumulated PLL Jitter

Sample time and conversion time of the C161PI's A/D Converter are programmable. The table below should be used to calculate the above timings.

Table 9 A/D Converter Computation Table									
ADCON.15 14 (ADCTC)	A/D Converter Basic clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample time <i>t</i> s						
00	<i>f</i> _{СРU} / 4	00	t _{BC} * 8						
01	f _{сри} / 2	01	t _{BC} * 16						
10	<i>f</i> _{СРU} / 16	10	t _{BC} * 32						
11	f _{сри} / 8	11	t _{BC} * 64						

The limit values for f_{BC} must not be exceeded when selecting ADCTC.

Converter Timing Example:

Assumptions:	$f_{\rm CPU}$	= 25 MHz (i.e. t_{CPU} = 40 ns), ADCTC = '00', ADSTC = '00'.
Basic clock	$f_{\rm BC}$	= <i>f</i> _{CPU} / 4 = 6.25 MHz, i.e. <i>t</i> _{BC} = 160 ns.
Sample time	t _S	$= t_{\rm BC} * 8 = 1280 \rm ns.$
Conversion time	t _C	= $t_{\rm S}$ + 40 $t_{\rm BC}$ + 2 $t_{\rm CPU}$ = (1280 + 6400 + 80) ns = 7.8 µs.

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

Description	Symbol	Values
ALE Extension	t _A	TCL * <alectl></alectl>
Memory Cycle Time Waitstates	t _C	2TCL * (15 - <mctc>)</mctc>
Memory Tristate Time	t _F	2TCL * (1 - <mttc>)</mttc>

Table 10Memory Cycle Variables

AC Characteristics

Multiplexed Bus (Standard Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
Address setup to ALE	t ₆	CC	$4 + t_A$	-	TCL - 16 + <i>t</i> _A	-	ns
Address hold after ALE	<i>t</i> ₇	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	t ₈	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	-	$-10 + t_{A}$	-	ns
Address float after RD, WR (with RW-delay)	<i>t</i> ₁₀	CC	-	6	-	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	-	26	-	TCL + 6	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL- 10+ <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	-	$40 + t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	-	$40 + t_{A} + t_{C}$	-	3TCL - 20 + t_{A} + t_{C}	ns
Address to valid data in	t ₁₇	SR	-	$50 + 2t_A + t_C$	-	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	<i>t</i> ₁₈	SR	0	-	0	-	ns
Data float after RD	t ₁₉	SR	-	26 + $t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	ns

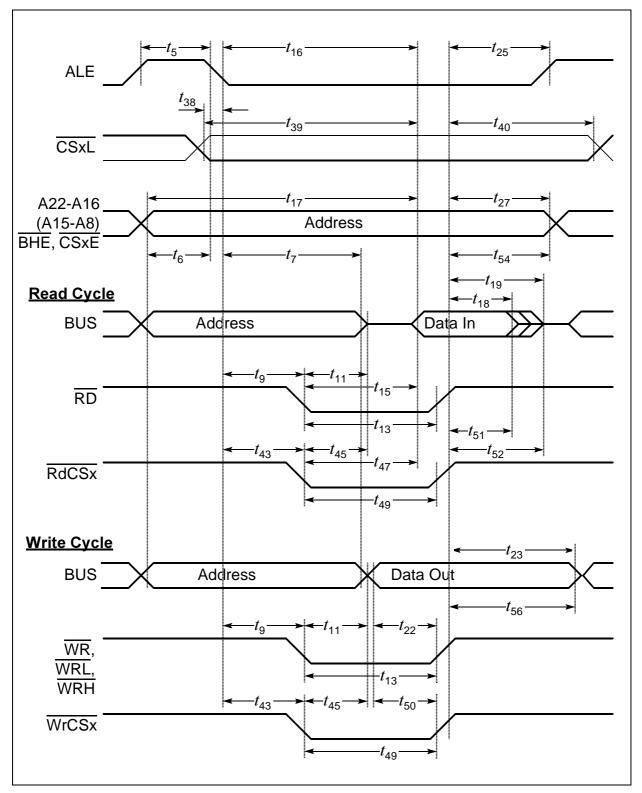
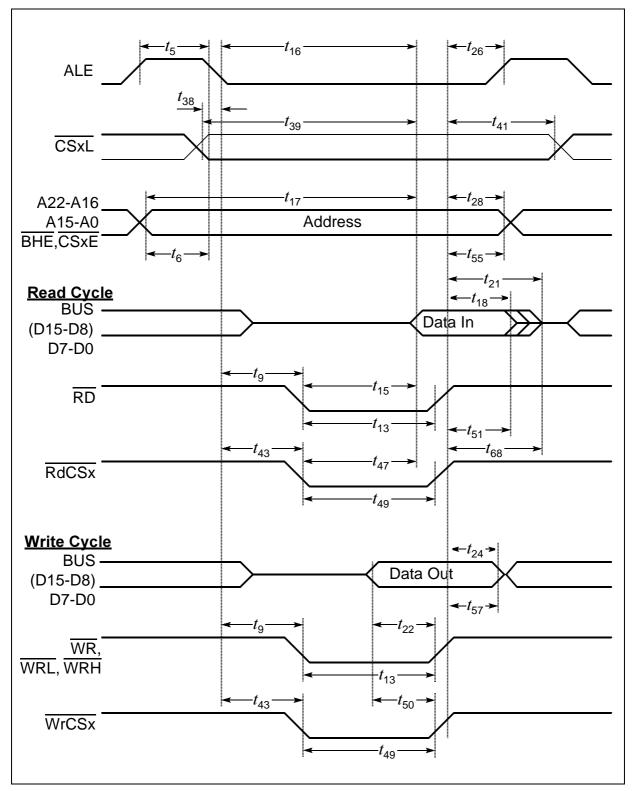


Figure 19 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE

AC Characteristics


Demultiplexed Bus (Standard Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_A$	-	TCL - 16 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	<i>t</i> ₈	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	-	-10 + <i>t</i> _A	-	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	-	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	_	$40 + t_{A} + t_{C}$	-	$\begin{array}{l} \text{3TCL - 20} \\ \text{+} t_{\text{A}} + t_{\text{C}} \end{array}$	ns
Address to valid data in	<i>t</i> ₁₇	SR	_	$50 + 2t_A + t_C$	_	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	-	0	-	ns
Data float after RD rising edge (with RW-delay ¹⁾)	<i>t</i> ₂₀	SR	_	$26 + 2t_A + t_F$	-	2TCL - 14 + $22t_A$ + $t_F^{(1)}$	ns
Data float after RD rising edge (no RW-delay ¹⁾)	<i>t</i> ₂₁	SR	_	$10 + 2t_{A} + t_{F}^{(1)}$	_	TCL - 10 + $22t_A$ + $t_F^{(1)}$	ns
Data valid to \overline{WR}	<i>t</i> ₂₂	CC	20 + $t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns

Figure 23 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Extended ALE

AC Characteristics

CLKOUT and READY (Standard Supply Voltage Range)

(Operating Conditions apply)

Parameter		nbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
CLKOUT cycle time	t ₂₉	CC	40	40	2TCL	2TCL	ns
CLKOUT high time	<i>t</i> ₃₀	CC	14	-	TCL-6	-	ns
CLKOUT low time	<i>t</i> ₃₁	CC	10	-	TCL – 10	-	ns
CLKOUT rise time	<i>t</i> ₃₂	CC	_	4	-	4	ns
CLKOUT fall time	<i>t</i> ₃₃	CC	_	4	-	4	ns
CLKOUT rising edge to ALE falling edge	<i>t</i> ₃₄	CC	$0 + t_A$	$10 + t_{A}$	$0 + t_A$	$10 + t_{A}$	ns
Synchronous READY setup time to CLKOUT	<i>t</i> ₃₅	SR	14	-	14	-	ns
Synchronous READY hold time after CLKOUT	<i>t</i> ₃₆	SR	4	-	4	-	ns
Asynchronous READY low time	<i>t</i> ₃₇	SR	54	-	2TCL + <i>t</i> ₅₈	-	ns
Asynchronous READY setup time ¹⁾	<i>t</i> ₅₈	SR	14	-	14	-	ns
Asynchronous READY hold time ¹⁾	<i>t</i> ₅₉	SR	4	-	4	-	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ²⁾	<i>t</i> ₆₀	SR	0	$ \begin{array}{c} 0 \\ + 2t_{A} + \\ t_{C} + t_{F} \\ \end{array} $	0	TCL - 20 + $2t_{A} + t_{C}$ + $t_{F}^{2)}$	ns

1) These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

2) Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY.

The $2t_A$ and t_C refer to the next following bus cycle, t_F refers to the current <u>bus cycle</u>.

The maximum limit for t_{60} must be fulfilled if the next following bus cycle is **READY** controlled.