E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	76
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161pilfcafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Configuration MQFP Package

(top view)

Figure 2

C161PI

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C161PI's instructions can be executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', reduces the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

Figure 5 CPU Block Diagram

The C161PI also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

The following table shows all of the possible exceptions or error conditions that can arise during run-time:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Prio
Reset Functions: Hardware Reset Software Reset Watchdog Timer Overflow		RESET RESET RESET	00'0000 _H 00'0000 _H 00'0000 _H	00 _H 00 _H 00 _H	
Class A Hardware Traps: Non-Maskable Interrupt Stack Overflow Stack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	
Class B Hardware Traps: Undefined Opcode Protected Instruction Fault Illegal Word Operand Access Illegal Instruction Access Illegal External Bus Access	UNDOPC PRTFLT ILLOPA ILLINA ILLBUS	BTRAP BTRAP BTRAP BTRAP BTRAP BTRAP	00'0028 _H 00'0028 _H 00'0028 _H 00'0028 _H 00'0028 _H	OA _H OA _H OA _H OA _H OA _H	
Reserved			[2C _H – 3C _H]	[0В _н – 0F _н]	
Software Traps: TRAP Instruction			Any [00'0000 _H 00'01FC _H] in steps of 4 _H	Any [00 _H – 7F _H]	Current CPU Priority

Table 3Hardware Trap Summary

Parallel Ports

The C161PI provides up to 76 IO lines which are organized into six input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of three IO ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. The other IO ports operate in push/pull mode, except for the I²C interface pins which are open drain pins only. During the internal reset, all port pins are configured as inputs.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

PORT0 and PORT1 may be used as address and data lines when accessing external memory, while Port 4 outputs the additional segment address bits A22/19/17...A16 in systems where segmentation is enabled to access more than 64 KBytes of memory.

Port 3 includes alternate functions of timers, serial interfaces, the optional bus control signal BHE and the system clock output CLKOUT (or the programmable frequency output FOUT).

Port 5 is used for the analog input channels to the A/D converter or timer control signals.

Port 6 provides the optional chip select signals and interface lines for the I²C module.

The edge characteristics (transition time) of the C161PI's port drivers can be selected via the Port Driver Control Register (PDCR).

Table 4	Instruction Set Summary (continued)	
Mnemonic	Description	Bytes
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand. with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALL CALLR	I, Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack und update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT	Disable Watchdog Timer	4
EINIT	Signify End-of-Initialization on RSTOUT-pin	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4
NOP	Null operation	2

NamePhysical Address8-Bit Addr.DescriptionReset ValueCC12ICbFF99 _H C8 _H External Interrupt 4 Control Register0000 _H CC13ICbFF92 _H C9 _H External Interrupt 5 Control Register0000 _H CC14ICbFF94 _H CA _H External Interrupt 6 Control Register0000 _H CC15ICbFF96 _H CB _H External Interrupt 7 Control Register0000 _H CC15ICbFF96 _H CB _H External Interrupt 7 Control Register0000 _H CRIbFF6A _H B5 _H GPT2 CAPREL Interrupt Ctrl. Register0000 _H CSPFE08 _H 04 _H CPU Code Segment Pointer Register000 _H DP0LbF100 _H E80 _H POL Direction Control Register000 _H DP1LbF104 _H E82 _H P1L Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1LbF104 _H E83 _H P1H Direction Control Register000 _H DP1bF104 _H E83 _H P1H Direction Control Register000 _H DP2bFFC2 _H E1 _H Port 2 Direction Control Register000 _H DP3bFFC6 _H E3 _H <td< th=""><th>Table 5</th><th colspan="9">Table 5C161PI Registers, Ordered by Name (continued)</th></td<>	Table 5	Table 5C161PI Registers, Ordered by Name (continued)								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Name		-			Description				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CC12IC	b	FF90 _H		C8 _H	External Interrupt 4 Control Register	0000 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC13IC	b	FF92 _H		C9 _H	External Interrupt 5 Control Register	0000 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC14IC	b	FF94 _H		CA_{H}	External Interrupt 6 Control Register	0000 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CC15IC	b	FF96 _H		CB_H	External Interrupt 7 Control Register	0000 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H			
DPOLbF100 _H E 80_H POL Direction Control Register 00_H DPOHbF102 _H E 81_H POH Direction Control Register 00_H DP1LbF104 _H E 82_H P1L Direction Control Register 00_H DP1HbF106_HE 83_H P1H Direction Control Register 00_H DP2bFFC2_HE1_HPort 2 Direction Control Register 000_H DP3bFFC6_HE3_HPort 3 Direction Control Register 0000_H DP4bFFC6_HE5_HPort 4 Direction Control Register 000_H DP6bFFCE_HE7_HPort 6 Direction Control Register 000_H DP6bFFCE_HE7_HPort 6 Direction Control Register 000_H DP7FE00_H 00_H CPU Data Page Pointer 0 Register (10) 0000_H DP90FE02_H01_HCPU Data Page Pointer 2 Reg. (10 bits) 0001_H DP91FE02_H 01_H CPU Data Page Pointer 3 Reg. (10 bits) 0002_H DP93FE06_H 03_H CPU Data Page Pointer 3 Reg. (10 bits) 0003_H EXICONbF1C0_HEE0_HExternal Interrupt Control Register 0000_H ICADRED06_HXI²C Address Register $0XXX_H$ ICCFGED08_HXI²C Control Register 0000_H ICADRED08_HXI²C Receive/Transmit Buffer XX_H ICCNED08_H<	CRIC	b	FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Register	0000 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CSP		FE08 _H		04 _H	5 5	0000 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DP3	b	$FFC6_{H}$		E3 _H	Port 3 Direction Control Register	0000 _H			
DPP0 $FE00_H$ 00_H CPU Data Page Pointer 0 Register (10 bits) 0000_H DPP1 $FE02_H$ 01_H CPU Data Page Pointer 1 Reg. (10 bits) 0001_H DPP2 $FE04_H$ 02_H CPU Data Page Pointer 2 Reg. (10 bits) 0002_H DPP3 $FE06_H$ 03_H CPU Data Page Pointer 3 Reg. (10 bits) 0003_H EXICONb $F1C0_H$ E $E0_H$ External Interrupt Control Register 0000_H ICADR $ED06_H$ X I^2C Address Register $0XXX_H$ ICCFG $ED00_H$ X I^2C Configuration Register 0000_H ICCN $ED02_H$ X I^2C Control Register 0000_H ICRTB $ED08_H$ X I^2C Receive/Transmit Buffer XX_H IDCHIP $F07C_H$ E $3E_H$ Identifier $09XX_H$ IDMANUF $F07E_H$ E $3F_H$ Identifier 1820_H	DP4	b	$FFCA_{H}$		E5 _H	Port 4 Direction Control Register	00 _H			
DPP1FE02 _H 01 _H CPU Data Page Pointer 1 Reg. (10 bits)0001 _H DPP2FE04 _H 02 _H CPU Data Page Pointer 2 Reg. (10 bits)0002 _H DPP3FE06 _H 03 _H CPU Data Page Pointer 3 Reg. (10 bits)0003 _H EXICONbF1C0 _H EE0 _H External Interrupt Control Register0000 _H ICADRED06 _H XI²C Address Register0XXX _H ICCFGED00 _H XI²C Configuration Register0000 _H ICCONED02 _H XI²C Control Register0000 _H ICRTBED08 _H XI²C Receive/Transmit BufferXX _H ICSTED04 _H XI²C Status Register0000 _H IDCHIPF07C _H E3E _H Identifier09XX _H IDMANUFF07E _H E3F _H Identifier1820 _H	DP6	b	$FFCE_{H}$		E7 _H	Port 6 Direction Control Register	00 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DPP0		FE00 _H		00 _H	č č ,	0000 _H			
DPP3FE06 _H 03 _H CPU Data Page Pointer 3 Reg. (10 bits)0003 _H EXICONbF1C0 _H EE0 _H External Interrupt Control Register0000 _H ICADRED06 _H XI²C Address Register0XXX _H ICCFGED00 _H XI²C Configuration RegisterXX00 _H ICCONED02 _H XI²C Control Register0000 _H ICRTBED08 _H XI²C Receive/Transmit BufferXX _H ICSTED04 _H XI²C Status Register0000 _H IDCHIPF07C _H E3E _H Identifier09XX _H IDMANUFF07E _H E3F _H Identifier1820 _H	DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H			
ICADRED06 _H XI²C Address Register $0XXX_H$ ICCFGED00 _H XI²C Configuration Register $XX00_H$ ICCONED02 _H XI²C Control Register 0000_H ICRTBED08 _H XI²C Receive/Transmit Buffer XX_H ICSTED04 _H XI²C Status Register 0000_H IDCHIPF07C _H E $3E_H$ Identifier $09XX_H$ IDMANUFF07E_HE $3F_H$ Identifier 1820_H	DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICADR		ED06 _H	Χ		I ² C Address Register	0XXX _H			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ICCFG		ED00 _H	Χ		I ² C Configuration Register	XX00 _H			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ICCON		ED02 _H	Χ		I ² C Control Register	0000 _H			
IDCHIP $F07C_H$ E $3E_H$ Identifier $09XX_H$ IDMANUF $F07E_H$ E $3F_H$ Identifier 1820_H	ICRTB		ED08 _H	Χ		I ² C Receive/Transmit Buffer	XX _H			
IDMANUFF07E _H E $3F_H$ Identifier1820_H	ICST		ED04 _H	Χ		I ² C Status Register	0000 _H			
	IDCHIP		F07C _H	Ε	ЗЕ _Н	Identifier	09XX _H			
IDMEM F07A _H E $3D_H$ Identifier 0000_H	IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H			
	IDMEM		F07A _H	Ε	3D _H	Identifier	0000 _H			

Table 5 C161PI Registers, Ordered by Name (continued)

DC Characteristics (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

Parameter	Symbol	Limit	Values	Unit	Test Condition	
		min.	max.			
Output low voltage (all other outputs)	V _{OL1} CC	-	0.45	V	I _{OL} = 1.6 mA	
Output high voltage ¹⁾ (PORT0, PORT1, Port 4, ALE,	V _{OH} CC	2.4	-	V	I _{OH} = -2.4 mA	
RD, WR, BHE, CLKOUT, RSTOUT)		0.9 V _{DD}	-	V	I _{ОН} = -0.5 mA	
Output high voltage 1)	V _{OH1} CC	2.4	_	V	I _{он} = -1.6 mA	
(all other outputs)		0.9 V _{DD}	-	V	I _{он} = -0.5 mA	
Input leakage current (Port 5)	I _{OZ1} CC	-	±200	nA	$0.45V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2} CC	-	±500	nA	$0.45 \mathrm{V} < V_{\mathrm{IN}} < V_{\mathrm{DD}}$	
RSTIN inactive current ²⁾	I _{RSTH} ³⁾	-	-10	μA	$V_{\rm IN} = V_{\rm IH1}$	
RSTIN active current ²⁾	I _{RSTL} ⁴⁾	-100	-	μA	$V_{\rm IN} = V_{\rm IL}$	
Read/Write inactive current ⁵⁾	I _{RWH} ³⁾	-	-40	μA	$V_{\rm OUT}$ = 2.4 V	
Read/Write active current ⁵⁾	$I_{\rm RWL}^{4)}$	-500	-	μA	$V_{\rm OUT} = V_{\rm OLmax}$	
ALE inactive current 5)	I _{ALEL} ³⁾	-	40	μA	$V_{\rm OUT} = V_{\rm OLmax}$	
ALE active current ⁵⁾	$I_{\rm ALEH}$ ⁴⁾	500	_	μA	$V_{\rm OUT}$ = 2.4 V	
Port 6 inactive current ⁵⁾	I _{P6H} ³⁾	-	-40	μA	$V_{\rm OUT}$ = 2.4 V	
Port 6 active current ⁵⁾	I _{P6L} ⁴⁾	-500	_	μA	$V_{\rm OUT} = V_{\rm OL1max}$	
PORT0 configuration current ⁵⁾	I _{P0H} ³⁾	-	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$	
	I _{POL} ⁴⁾	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$	
XTAL1 input current	I _{IL} CC	-	±20	μA	$0 V < V_{IN} < V_{DD}$	
Pin capacitance ⁶⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f = 1 MHz T _A = 25 ℃	
Power supply current (5V active) with all peripherals active	$I_{\rm DD5}$	_	1 + 2* <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL2}}$ $f_{\text{CPU}} \text{ in [MHz]}^{7)}$	
Idle mode supply current (5V) with all peripherals active	I _{IDX5}	_	1 + 0.8* <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{7)}$	
Idle mode supply current (5V) with all peripherals deactivated, PLL off, SDD factor = 32	<i>I</i> _{IDO5} ⁸⁾	-	500 + 50*f _{OSC}	μA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ f_{OSC} in [MHz] ⁷⁾	

DC Characteristics (Reduced Supply Voltage Range)

(Operating Conditions apply)

Parameter	Symbol	Limit '	Values	Unit	Test Condition	
		min.	min. max.			
Input low voltage XTAL1, P3.0, P3.1, P6.5, P6.6, P6.7	V _{IL1} SR	- 0.5	0.3 V _{DD}	V	-	
Input low voltage (TTL)	V _{IL} SR	- 0.5	0.8	V	-	
Input low voltage (Special Threshold)	V _{ILS} SR	- 0.5	1.3	V	-	
Input high voltage RSTIN	V _{IH1} SR	0.6 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage XTAL1, P3.0, P3.1, P6.5, P6.6, P6.7	V _{IH2} SR	0.7 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage (TTL)	V _{IH} SR	1.8	V _{DD} + 0.5	V	-	
Input high voltage (Special Threshold)	V _{IHS} SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	-	
Input Hysteresis (Special Threshold)	HYS	250	_	mV	-	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT)	V _{OL} CC	_	0.45	V	I _{OL} = 1.6 mA	
Output low voltage P3.0, P3.1, P6.5, P6.6, P6.7	V _{OL2} CC	-	0.4	V	<i>I</i> _{OL2} = 1.6 mA	
Output low voltage (all other outputs)	V _{OL1} CC	-	0.45	V	<i>I</i> _{OL} = 1.0 mA	
Output high voltage ¹⁾ (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT)	V _{OH} CC	0.9 V _{DD}	-	V	I _{OH} = -0.5 mA	
Output high voltage ¹⁾ (all other outputs)	V _{OH1} CC	0.9 V _{DD}	-	V	I _{OH} = -0.25 mA	
Input leakage current (Port 5)	I _{OZ1} CC	-	±200	nA	$0.45V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2} CC	-	±500	nA	$0.45V < V_{IN} < V_{DD}$	
RSTIN inactive current ²⁾	I _{RSTH} ³⁾	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$	

AC Characteristics Definition of Internal Timing

The internal operation of the C161PI is controlled by the internal CPU clock f_{CPU} . Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations.

The specification of the external timing (AC Characteristics) therefore depends on the time between two consecutive edges of the CPU clock, called "TCL" (see figure below).

Figure 11 Generation Mechanisms for the CPU Clock

The CPU clock signal f_{CPU} can be generated from the oscillator clock signal f_{OSC} via different mechanisms. The duration of TCLs and their variation (and also the derived external timing) depends on the used mechanism to generate f_{CPU} . This influence must be regarded when calculating the timings for the C161PI.

Note: The example for PLL operation shown in the fig. above refers to a PLL factor of 4.

The used mechanism to generate the CPU clock is selected during reset via the logic levels on pins P0.15-13 (P0H.7-5).

The table below associates the combinations of these three bits with the respective clock generation mode.

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The actual minimum value for TCL depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCL is lower than for one single TCL (see formula and figure below).

For a period of N * TCL the minimum value is computed using the corresponding deviation D_N :

 $(N * TCL)_{min} = N * TCL_{NOM} - D_N$ $D_N [ns] = \pm(13.3 + N*6.3) / f_{CPU} [MHz],$ where N = number of consecutive TCLs and $1 \le N \le 40$.

So for a period of 3 TCLs @ 25 MHz (i.e. N = 3): D₃ = (13.3 + 3×6.3) / 25 = 1.288 ns, and (3TCL)_{min} = 3TCL_{NOM} - 1.288 ns = 58.7 ns (@ $f_{CPU} = 25$ MHz).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is neglectible.

Note: For all periods longer than 40 TCL the N=40 value can be used (see figure below).

Figure 12 Approximated Maximum Accumulated PLL Jitter

Sample time and conversion time of the C161PI's A/D Converter are programmable. The table below should be used to calculate the above timings.

Table 9 A	/D Converter Comput	ation Table	
ADCON.15 14 (ADCTC)	A/D Converter Basic clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample time <i>t</i> s
00	<i>f</i> _{СРU} / 4	00	t _{BC} * 8
01	f _{сри} / 2	01	t _{BC} * 16
10	<i>f</i> _{СРU} / 16	10	t _{BC} * 32
11	f _{сри} / 8	11	t _{BC} * 64

The limit values for f_{BC} must not be exceeded when selecting ADCTC.

Converter Timing Example:

Assumptions:	$f_{\rm CPU}$	= 25 MHz (i.e. t_{CPU} = 40 ns), ADCTC = '00', ADSTC = '00'.
Basic clock	$f_{\rm BC}$	$= f_{CPU} / 4 = 6.25 \text{ MHz}$, i.e. $t_{BC} = 160 \text{ ns}$.
Sample time	t _S	$= t_{\rm BC} * 8 = 1280 \rm ns.$
Conversion time	t _C	= $t_{\rm S}$ + 40 $t_{\rm BC}$ + 2 $t_{\rm CPU}$ = (1280 + 6400 + 80) ns = 7.8 µs.

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

Description	Symbol	Values
ALE Extension	t _A	TCL * <alectl></alectl>
Memory Cycle Time Waitstates	t _C	2TCL * (15 - <mctc>)</mctc>
Memory Tristate Time	t _F	2TCL * (1 - <mttc>)</mttc>

Table 10Memory Cycle Variables

Testing Waveforms

Figure 14 Input Output Waveforms

Figure 15 Float Waveforms

Multiplexed Bus (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
		min.	max.	min.	max.	-
Data valid to WrCS	<i>t</i> ₅₀ CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	-	ns
Data float after RdCS	<i>t</i> ₅₂ SR	-	20 + $t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	20 + $t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₆ CC	20 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	-	ns

Multiplexed Bus (Reduced Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbo		Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		
		min.	max.	min.	max.		
Data hold after RdCS	t ₅₁ SF	R 0	-	0	-	ns	
Data float after RdCS	<i>t</i> ₅₂ SF	-	$30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns	
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	$2 30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns	
Data hold after WrCS	<i>t</i> ₅₆ CC	$30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns	

Figure 18 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE

C161PI

Demultiplexed Bus (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol	Symbol Max. CPU Clo = 25 MHz		ck Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		
		min.	max.	min.	max.	-
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	$-6 + t_{\rm F}$	-	$-6 + t_{\rm F}$	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	$6 + t_{\rm F}$	-	TCL - 14 + <i>t</i> _F	-	ns

1) RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

2) Read data are latched with the same clock edge that triggers the address change and the rising $\overline{\text{RD}}$ edge. Therefore address changes before the end of $\overline{\text{RD}}$ have no impact on read cycles.

Demultiplexed Bus (Reduced Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
		min.	max.	min.	max.	
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	-16 + <i>t</i> _F	-	-16 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	9 + <i>t</i> _F	-	TCL - 16 + <i>t</i> _F	-	ns

1) RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

2) Read data are latched with the same clock edge that triggers the address change and the rising $\overline{\text{RD}}$ edge. Therefore address changes before the end of $\overline{\text{RD}}$ have no impact on read cycles.

Figure 20 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE

AC Characteristics

CLKOUT and READY (Standard Supply Voltage Range)

(Operating Conditions apply)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
CLKOUT cycle time	t ₂₉	CC	40	40	2TCL	2TCL	ns
CLKOUT high time	<i>t</i> ₃₀	CC	14	-	TCL-6	-	ns
CLKOUT low time	<i>t</i> ₃₁	CC	10	-	TCL – 10	-	ns
CLKOUT rise time	<i>t</i> ₃₂	CC	_	4	-	4	ns
CLKOUT fall time	<i>t</i> ₃₃	CC	_	4	-	4	ns
CLKOUT rising edge to ALE falling edge	<i>t</i> ₃₄	CC	$0 + t_A$	$10 + t_{A}$	$0 + t_A$	$10 + t_{A}$	ns
Synchronous READY setup time to CLKOUT	<i>t</i> ₃₅	SR	14	-	14	-	ns
Synchronous READY hold time after CLKOUT	<i>t</i> ₃₆	SR	4	-	4	-	ns
Asynchronous READY low time	<i>t</i> ₃₇	SR	54	-	2TCL + <i>t</i> ₅₈	-	ns
Asynchronous READY setup time ¹⁾	<i>t</i> ₅₈	SR	14	-	14	-	ns
Asynchronous READY hold time ¹⁾	<i>t</i> ₅₉	SR	4	-	4	-	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ²⁾	<i>t</i> ₆₀	SR	0	$ \begin{array}{c} 0 \\ + 2t_{A} + \\ t_{C} + t_{F} \\ \end{array} $	0	TCL - 20 + $2t_{A} + t_{C}$ + $t_{F}^{2)}$	ns

1) These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

2) Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY.

The $2t_A$ and t_C refer to the next following bus cycle, t_F refers to the current <u>bus cycle</u>.

The maximum limit for t_{60} must be fulfilled if the next following bus cycle is **READY** controlled.

