

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	76
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	PG-MQFP-100-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161pilm3vcafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Configuration MQFP Package

(top view)

Figure 2

C161PI

Table 1	Pi	n Defini	itions a	and Function	ons
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function	
P5			1	Port 5 is a characteris 4) analog i serve as ti	6-bit input-only port with Schmitt-Trigger stics. The pins of Port 5 also serve as (up to nput channels for the A/D converter, or they mer inputs:
P5.0	97	99	1	AN0	•
P5.1	98	100	1	AN1	
P5.2	99	1	1	AN2	
P5.3	100	2	1	AN3	
P5.14	1	3	1	T4EUD	GPT1 Timer T4 Ext. Up/Down Ctrl. Input
P5.15	2	4	1	T2EUD	GPT1 Timer T5 Ext. Up/Down Ctrl. Input
XTAL1	4	6	I	XTAL1:	Input to the oscillator amplifier and input to the internal clock generator
XTAL2	5	7	Ο	XTAL2: To clock th XTAL1, wh and maxim the AC Ch	Output of the oscillator amplifier circuit. ne device from an external source, drive nile leaving XTAL2 unconnected. Minimum num high/low and rise/fall times specified in aracteristics must be observed.

Table 1	Pi	n Defini	tions a	Ind Functions (continued)
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function
P4			IO	Port 4 is a 7-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 4 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 4 is selectable (TTL or special). Port 4 can be used to output the segment address lines:
P4.0	24	26	0	A16 Least Significant Segment Address Line
P4.1	25	27	0	A17 Segment Address Line
P4.2	26	28	0	A18 Segment Address Line
P4.3	27	29	0	A19 Segment Address Line
P4.4	28	30	0	A20 Segment Address Line
P4.5	29	31	0	A21 Segment Address Line
P4.6	30	32	0	A22 Most Significant Segment Address Line
RD	31	33	0	External Memory Read Strobe. \overline{RD} is activated for every external instruction or data read access.
WR/ WRL	32	34	0	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL- mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in register SYSCON for mode selection.
READY	33	35	1	Ready Input. When the Ready function is enabled, a high level at this pin during an external memory access will force the insertion of memory cycle time waitstates until the pin returns to a low level. An internal pullup device will hold this pin high when nothing is driving it.
ALE	34	36	0	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.

l able 1	PI	n Defin	tions a	and Functions (continued)
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function
RSTIN	76	78	I/O	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the C161PI. An internal pullup resistor permits power-on reset using only a capacitor connected to V_{SS} . A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. In bidirectional reset mode (enabled <u>by setting bit</u> BDRSTEN in register SYSCON) the RSTIN line is internally pulled low for the duration of the internal reset sequence upon any reset (HW, SW, WDT). See note below this table.
				Note: To let the reset configuration of PORTO settle and to let the PLL lock a reset duration of ca. 1 ms is recommended.
RST OUT	77	79	0	Internal Reset Indication Output. This pin is set to a low level when the part is executing either a hardware-, a software- or a watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed.
NMI	78	80	1	Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the C161PI to go into power down mode. If NMI is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally.

Table 1	Pi	n Defin	itions a	and Functions (continued)
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function
V _{DD}	6, 23, 37, 47, 65, 75	8, 25, 39, 49, 67, 77	-	Digital Supply Voltage: + 5 V or + 3 V during normal operation and idle mode. ≥ 2.5 V during power down mode
V _{SS}	3, 22, 36, 46, 64, 74	5, 24, 38, 48, 66, 76	-	Digital Ground.

Note: The following behaviour differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap loader may be activated when P0L.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

Memory Organization

The memory space of the C161PI is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which includes 16 MBytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bitaddressable.

1 KByte of on-chip Internal RAM (IRAM) is provided as a storage for user defined variables, for the system stack, general purpose register banks and even for code. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, ..., RL7, RH7) so-called General Purpose Registers (GPRs).

1024 bytes (2 * 512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the C166 Family.

2 KBytes of on-chip Extension RAM (XRAM) are provided to store user data, user stacks, or code. The XRAM is accessed like external memory and therefore cannot be used for the system stack or for register banks and is not bitaddressable. The XRAM permits 16-bit accesses with maximum speed.

In order to meet the needs of designs where more memory is required than is provided on chip, up to 8 MBytes of external RAM and/or ROM can be connected to the microcontroller.

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C161PI's instructions can be executed in just one machine cycle which requires 2 CPU clocks (4 TCL). For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', reduces the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

Figure 5 CPU Block Diagram

General Purpose Timer (GPT) Unit

The GPT unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 16 TCL.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate eg. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on a port pin (T3OUT) eg. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 are captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 780 KBaud and half-duplex synchronous communication at up to 3.1 MBaud @ 25 MHz CPU clock.

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25 Mbaud @ 25 MHz CPU clock. It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 3 separate interrupt vectors are provided.

The SSC transmits or receives characters of 2...16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

Table 5	(egi	sters, C		
Name		Physica Address	1 5	8-Bit Addr.	Description	Reset Value
IDPROG		F078 _H	Ε	3C _H	Identifier	0000 _H
ISNC	b	F1DE _H	Ε	EF _H	Interrupt Subnode Control Register	0000 _H
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H
MDH		$FE0C_{H}$		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H
ODP2	b	F1C2 _H	Ε	E1 _H	Port 2 Open Drain Control Register	0000 _H
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H
ODP6	b	F1CE _H	Ε	E7 _H	Port 6 Open Drain Control Register	00 _H
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H
P0L	b	FF00 _H		80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P0H	b	FF02 _H		81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P1L	b	FF04 _H		82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H
P1H	b	FF06 _H		83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P2	b	FFC0 _H		E0 _H	Port 2 Register	0000 _H
P3	b	FFC4 _H		E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H		E4 _H	Port 4 Register (7 bits)	00 _H
P5	b	FFA2 _H		D1 _H	Port 5 Register (read only)	XXXX _H
P5DIDIS	b	FFA4 _H		D2 _H	Port 5 Digital Input Disable Register	0000 _H
P6	b	$FFCC_{H}$		E6 _H	Port 6 Register (8 bits)	00 _H
PECC0		FEC0 _H		60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H		61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H		62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H		63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H		64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H		65 _Н	PEC Channel 5 Control Register	0000 _H
PECC6		FECC _H		66 _H	PEC Channel 6 Control Register	0000 _H
PECC7		FECE _H		67 _H	PEC Channel 7 Control Register	0000 _H
PSW	b	FF10 _H		88 _H	CPU Program Status Word	0000 _H
PDCR		F0AA _H	Ε	55 _H	Pin Driver Control Register	0000 _H
RP0H	b	F108 _H	Ε	84 _H	System Startup Config. Reg. (Rd. only)	XХ _н

Tabla 5 Ordered by Name (continued) 40401 -

DC Characteristics (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

Parameter	Symbol	Limit \	/alues	Unit	Test Condition
		min.	max.		
Output low voltage (all other outputs)	V _{OL1} CC	_	0.45	V	I _{OL} = 1.6 mA
Output high voltage ¹⁾ (PORT0, PORT1, Port 4, ALE,	V _{OH} CC	2.4	-	V	I _{OH} = -2.4 mA
<u>RD, WR,</u> BHE, CLKOUT, RSTOUT)		0.9 V _{DD}	_	V	I _{OH} = -0.5 mA
Output high voltage 1)	V _{OH1} CC	2.4	_	V	I _{OH} = -1.6 mA
(all other outputs)		0.9 V _{DD}	_	V	I _{OH} = -0.5 mA
Input leakage current (Port 5)	I _{OZ1} CC	-	±200	nA	$0.45V < V_{IN} < V_{DD}$
Input leakage current (all other)	I _{OZ2} CC	-	±500	nA	$0.45V < V_{IN} < V_{DD}$
RSTIN inactive current ²⁾	I _{RSTH} ³⁾	-	-10	μA	$V_{\rm IN} = V_{\rm IH1}$
RSTIN active current ²⁾	I _{RSTL} ⁴⁾	-100	_	μA	$V_{\rm IN} = V_{\rm IL}$
Read/Write inactive current ⁵⁾	I _{RWH} ³⁾	_	-40	μA	$V_{\rm OUT}$ = 2.4 V
Read/Write active current ⁵⁾	I _{RWL} ⁴⁾	-500	_	μΑ	$V_{\rm OUT} = V_{\rm OLmax}$
ALE inactive current 5)	I _{ALEL} ³⁾	-	40	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE active current ⁵⁾	I _{ALEH} ⁴⁾	500	_	μΑ	$V_{\rm OUT}$ = 2.4 V
Port 6 inactive current ⁵⁾	I _{P6H} ³⁾	-	-40	μA	$V_{\rm OUT}$ = 2.4 V
Port 6 active current ⁵⁾	I _{P6L} ⁴⁾	-500	_	μΑ	$V_{\rm OUT} = V_{\rm OL1max}$
PORT0 configuration current ⁵⁾	I _{P0H} ³⁾	-	-10	μΑ	$V_{\rm IN} = V_{\rm IHmin}$
	I _{POL} ⁴⁾	-100	_	μΑ	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	-	±20	μΑ	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁶⁾ (digital inputs/outputs)	C _{IO} CC	-	10	pF	f = 1 MHz T _A = 25 ℃
Power supply current (5V active) with all peripherals active	$I_{\rm DD5}$	_	1 + 2* <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL2}}$ $f_{\text{CPU}} \text{ in [MHz]}^{7)}$
Idle mode supply current (5V) with all peripherals active	I_{IDX5}	_	1 + 0.8* <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{7)}$
Idle mode supply current (5V) with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDO5} ⁸⁾	-	500 + 50*f _{OSC}	μΑ	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ f_{OSC} in [MHz] ⁷⁾

Table	e 8		C161PI Clock G	eneration Modes	
P0.15 (P0H	5-13 .7-5	3 5)	CPU Frequency $f_{CPU} = f_{OSC} * F$	External Clock Input Range ¹⁾	Notes
1	1 1	1	$f_{\rm OSC}$ * 4	2.5 to 6.25 MHz	Default configuration
1	1 ()	f _{OSC} * 3	3.33 to 8.33 MHz	
1 (0 1	1	$f_{ m OSC}$ * 2	5 to 12.5 MHz	
1 (0 0)	$f_{\rm OSC}$ * 5	2 to 5 MHz	
0	1 1	1	<i>f</i> _{OSC} * 1	1 to 25 MHz	Direct drive ²⁾
0	1 ()	<i>f</i> _{OSC} * 1.5	6.66 to 16.6 MHz	
0	0 1	1	<i>f</i> _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler
0	0 0)	f _{OSC} * 2.5	4 to 10 MHz	

1) The external clock input range refers to a CPU clock range of 10...25 MHz.

2) The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When pins P0.15-13 (P0H.7-5) equal 001_B during reset the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

For all combinations of pins P0.15-13 (P0H.7-5) except for 001_B and 011_B the on-chip phase locked loop is enabled and provides the CPU clock (see table above). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} * F$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of $f_{\rm CPU}$ is constantly adjusted so it is locked to $f_{\rm OSC}$. The slight variation causes a jitter of $f_{\rm CPU}$ which also effects the duration of individual TCLs.

AC Characteristics

External Clock Drive XTAL1 (Standard Supply Voltage Range)

(Operating Conditions apply)

Parameter		mbol	Direct Drive 1:1		Prescaler 2:1		PLL 1:N		Unit
			min.	max.	min.	max.	min.	max.	
Oscillator period	tos	_c SR	40	-	20	-	60 ¹⁾	500 ¹⁾	ns
High time ²⁾	<i>t</i> ₁	SR	20 ³⁾	_	6	_	10	_	ns
Low time ²⁾	<i>t</i> ₂	SR	20 ³⁾	-	6	-	10	_	ns
Rise time ²⁾	<i>t</i> ₃	SR	_	10	-	6	_	10	ns
Fall time 2)	<i>t</i> ₄	SR	-	10	-	6	_	10	ns

1) The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

- 2) The clock input signal must reach the defined levels $V_{\rm IL}$ and $V_{\rm IH2}$.
- 3) The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

AC Characteristics

External Clock Drive XTAL1 (Reduced Supply Voltage Range) (Operating Conditions apply)

(Operating Condit	lions	appiy)							
Parameter	Symbol		Symbol Direct Drive 1:1		t Drive :1	Prescaler 2:1		PLL 1:N		Unit
			min.	max.	min.	max.	min.	max.		
Oscillator period	tos	_c SR	50	-	25	_	60 ¹⁾	500 ¹⁾	ns	
High time ²⁾	<i>t</i> ₁	SR	25 ³⁾	-	8	_	10	-	ns	
Low time ²⁾	<i>t</i> ₂	SR	25 ³⁾	-	8	_	10	-	ns	
Rise time ²⁾	<i>t</i> ₃	SR	-	10	-	6	-	10	ns	
Fall time ²⁾	<i>t</i> ₄	SR	-	10	-	6	-	10	ns	
 The sector instance and an 										

1) The minimum and maximum oscillator periods for PLL operation depend on the selected CPU clock generation mode. Please see respective table above.

2) The clock input signal must reach the defined levels $V_{\rm IL}$ and $V_{\rm IH2}$.

3) The minimum high and low time refers to a duty cycle of 50%. The maximum operating frequency (f_{CPU}) in direct drive mode depends on the duty cycle of the clock input signal.

A/D Converter Characteristics

(Operating Conditions apply)

4.0V (2.6V) $\leq V_{\rm AREF} \leq V_{\rm DD}$ + 0.1V (Note the influence on TUE.)

 $V_{\rm SS}$ - 0.1V $\leq V_{\rm AGND} \leq V_{\rm SS}$ + 0.2V

Parameter	Symb	loc	Limit	Values	Unit	Test Condition
			min.	max.		
Analog input voltage range	V_{AIN}	SR	V _{AGND}	V_{AREF}	V	1)
Basic clock frequency	$f_{\rm BC}$		0.5	6.25	MHz	2)
Conversion time	t _C	CC	-	40 <i>t</i> _{BC} +		3)
				$t_{\rm S}$ +2 $t_{\rm CPU}$		$t_{\rm CPU} = 1 / f_{\rm CPU}$
Total unadjusted error	TUE	CC	-	± 2	LSB	$V_{\sf AREF} \ge 4.0$ V $^{5)}$
	4)		_	± 4	LSB	$V_{AREF} \ge 2.6 \text{ V}$
Internal resistance of	R _{AREF}	SR	-	t _{BC} / 60	kΩ	<i>t</i> _{BC} in [ns] ^{6) 7)}
reference voltage source				- 0.25		
Internal resistance of analog	R _{ASRC}	SR	-	t _S / 450	kΩ	<i>t</i> _S in [ns] ^{7) 8)}
source				- 0.25		
ADC input capacitance	C_{AIN}	CC	-	33	рF	7)

V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

- 2) The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- 3) This parameter includes the sample time t_s , the time for determining the digital result and the time to load the result register with the conversion result.

Values for the basic clock $t_{\rm BC}$ depend on the conversion time programming.

This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.

TUE is tested at V_{AREF}=5.0V (3.3V), V_{AGND}=0V, V_{DD}=4.9V (3.2V). It is guaranteed by design for all other voltages within the defined voltage range.

The specified TUE is guaranteed only if an overload condition (see I_{OV} specification) occurs on maximum 2 not selected analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be ±4 LSB (±8 LSB @ 3V).

- 5) This case is not applicable for the reduced supply voltage range.
- 6) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- 7) Not 100% tested, guaranteed by design.
- 8) During the sample time the input capacitance C_1 can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sample time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample time t_s depend on programming and can be taken from the table below.

Figure 16 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Normal ALE

Figure 17 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Extended ALE

Demultiplexed Bus (Reduced Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CF = 20	PU Clock MHz	Variable (1 / 2TCL =	Unit	
		min.	max.	min.	max.	
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	-16 + <i>t</i> _F	-	-16 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	9 + $t_{\rm F}$	-	TCL - 16 + <i>t</i> _F	-	ns

1) RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

2) Read data are latched with the same clock edge that triggers the address change and the rising $\overline{\text{RD}}$ edge. Therefore address changes before the end of $\overline{\text{RD}}$ have no impact on read cycles.

3) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Figure 21 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE

AC Characteristics

CLKOUT and READY (Standard Supply Voltage Range)

(Operating Conditions apply)

Parameter		nbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
CLKOUT cycle time	t ₂₉	CC	40	40	2TCL	2TCL	ns
CLKOUT high time	<i>t</i> ₃₀	CC	14	-	TCL – 6	_	ns
CLKOUT low time	<i>t</i> ₃₁	CC	10	-	TCL – 10	_	ns
CLKOUT rise time	<i>t</i> ₃₂	CC	-	4	-	4	ns
CLKOUT fall time	<i>t</i> ₃₃	CC	-	4	_	4	ns
CLKOUT rising edge to ALE falling edge	<i>t</i> ₃₄	CC	$0 + t_A$	$10 + t_{A}$	$0 + t_A$	$10 + t_{A}$	ns
Synchronous READY setup time to CLKOUT	t ₃₅	SR	14	-	14	-	ns
Synchronous READY hold time after CLKOUT	t ₃₆	SR	4	-	4	-	ns
Asynchronous READY low time	t ₃₇	SR	54	-	2TCL + <i>t</i> ₅₈	-	ns
Asynchronous READY setup time ¹⁾	t ₅₈	SR	14	-	14	-	ns
Asynchronous READY hold time ¹⁾	t ₅₉	SR	4	_	4	-	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ²⁾	<i>t</i> ₆₀	SR	0	0 + $2t_{A}$ + t_{C} + t_{F} ²⁾	0	TCL - 20 + $2t_{A} + t_{C}$ + $t_{F}^{2)}$	ns

1) These timings are given for test purposes only, in order to assure recognition at a specific clock edge.

2) Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY.

The $2t_A$ and t_C refer to the next following bus cycle, t_F refers to the current <u>bus cycle</u>.

The maximum limit for t_{60} must be fulfilled if the next following bus cycle is **READY** controlled.

Published by Infineon Technologies AG