

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	76
Program Memory Size	•
Program Memory Type	ROMIess
EEPROM Size	•
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	PG-MQFP-100-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161pilmcabxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C161PI

Functional Description

The architecture of the C161PI combines advantages of both RISC and CISC processors and of advanced peripheral subsystems in a very well-balanced way. The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the C161PI.

Note: All time specifications refer to a CPU clock of 25 MHz (see definition in the AC Characteristics section).

Figure 4 Block Diagram

Table 2 C161Pl Interrupt Nodes

Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
External Interrupt 0	CC8IR	CC8IE	CC8INT	00'0060 _H	18 _H
External Interrupt 1	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
External Interrupt 2	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
External Interrupt 3	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
External Interrupt 4	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
External Interrupt 5	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
External Interrupt 6	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
External Interrupt 7	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
GPT2 Timer 5	T5IR	T5IE	T5INT	00'0094 _H	25 _H
GPT2 Timer 6	T6IR	T6IE	T6INT	00'0098 _H	26 _H
GPT2 CAPREL Register	CRIR	CRIE	CRINT	00'009C _H	27 _H
A/D Conversion Complete	ADCIR	ADCIE	ADCINT	00'00A0 _H	28 _H

General Purpose Timer (GPT) Unit

The GPT unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 16 TCL.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate eg. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on a port pin (T3OUT) eg. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 are captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

Table 5			eyi	51015, C		
Name		Physica Address		8-Bit Addr.	Description	Reset Value
CC12IC	b	FF90 _H		C8 _H	External Interrupt 4 Control Register	0000 _H
CC13IC	b	FF92 _H		C9 _H	External Interrupt 5 Control Register	0000 _H
CC14IC	b	FF94 _H		CA _H	External Interrupt 6 Control Register	0000 _H
CC15IC	b	FF96 _H		CB _H	External Interrupt 7 Control Register	0000 _H
СР		FE10 _H		08 _H	CPU Context Pointer Register	FC00 _H
CRIC	b	FF6A _H		B5 _H	GPT2 CAPREL Interrupt Ctrl. Register	0000 _H
CSP		FE08 _H		04 _H	CPU Code Segment Pointer Register (8 bits, not directly writeable)	0000 _H
DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H
DP0H	b	F102 _H	Ε	81 _H	P0H Direction Control Register	00 _H
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H
DP6	b	FFCE _H		E7 _H	Port 6 Direction Control Register	00 _H
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Register (10 bits)	0000 _H
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H
ICADR		ED06 _H	Χ		I ² C Address Register	0XXX _H
ICCFG		ED00 _H	Χ		I ² C Configuration Register	XX00 _H
ICCON		ED02 _H	Χ		I ² C Control Register	0000 _H
ICRTB		ED08 _H	Χ		I ² C Receive/Transmit Buffer	XX _H
ICST		ED04 _H	Χ		I ² C Status Register	0000 _H
IDCHIP		F07C _H	Ε	3E _H	Identifier	09XX _H
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H
IDMEM		F07A _H	Ε	3D _H	Identifier	0000 _H

Table 5 C161PI Registers, Ordered by Name (continued)

Absolute Maximum Ratings

-											
Parameter	Symbol	Limit	Values	Unit	Notes						
		min.	max.								
Storage temperature	T _{ST}	-65	150	°C							
Voltage on $V_{\rm DD}$ pins with respect to ground ($V_{\rm SS}$)	V _{DD}	-0.5	6.5	V							
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} +0.5	V							
Input current on any pin during overload condition		-10	10	mA							
Absolute sum of all input currents during overload condition		-	100	mA							
Power dissipation	P_{DISS}	-	1.5	W							

 Table 6
 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions (V_{IN} > V_{DD} or V_{IN} < V_{SS}) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

DC Characteristics (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

Parameter	Symbol Lin		nit Values		Test Condition
		min.	max.		
Power-down mode supply current (5V) with RTC running	I _{PDR5} ⁸⁾	-	200 + 25*f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ⁹⁾
Power-down mode supply current (5V) with RTC disabled	$I_{\rm PDO5}$	-	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{9)}$

1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

2) These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 K Ω .

3) The maximum current may be drawn while the respective signal line remains inactive.

4) The minimum current must be drawn in order to drive the respective signal line active.

5) This specification is only valid during Reset, or during Hold- or Adapt-mode. During Hold mode Port 6 pins are only affected, if they are used (configured) for \overline{CS} output and the open drain function is not enabled.

- 6) Not 100% tested, guaranteed by design characterization.
- 7) The supply current is a function of the operating frequency. This dependency is illustrated in the figure below. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH} .

The oscillator also contributes to the total supply current. The given values refer to the worst case, ie. I_{PDRmax} . For lower oscillator frequencies the respective supply current can be reduced accordingly.

- 8) This parameter is determined mainly by the current consumed by the oscillator. This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.
- 9) This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

DC Characteristics (continued) (Reduced Supply Voltage Range)

(Operating Conditions apply)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.		
RSTIN active current 2)	I _{RSTL} ⁴⁾	-100	-	μA	$V_{\rm IN} = V_{\rm IL}$
Read/Write inactive current ⁵⁾	I _{RWH} ³⁾	_	-10	μΑ	$V_{\rm OUT}$ = 2.4 V
Read/Write active current ⁵⁾	I _{RWL} ⁴⁾	-500	-	μΑ	$V_{\rm OUT} = V_{\rm OLmax}$
ALE inactive current 5)	I _{ALEL} ³⁾	-	20	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE active current ⁵⁾	I _{ALEH} ⁴⁾	500	-	μΑ	$V_{\rm OUT}$ = 2.4 V
Port 6 inactive current ⁵⁾	I _{P6H} ³⁾	-	-10	μΑ	$V_{\rm OUT}$ = 2.4 V
Port 6 active current ⁵⁾	I _{P6L} ⁴⁾	-500	-	μΑ	$V_{\rm OUT} = V_{\rm OL1max}$
PORT0 configuration current ⁵⁾	I _{P0H} ³⁾	-	-5	μA	$V_{\rm IN} = V_{\rm IHmin}$
	I _{P0L} ⁴⁾	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	-	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁶⁾ (digital inputs/outputs)	C _{IO} CC	-	10	pF	f = 1 MHz T _A = 25 ℃
Power supply current (3V active) with all peripherals active	I _{DD3}	-	1 + 1.1*ƒ _{СРU}	mA	$\overline{\text{RSTIN}} = V_{\text{IL2}}$ $f_{\text{CPU}} \text{ in [MHz]}^{7)}$
Idle mode supply current (3V) with all peripherals active	I _{IDX3}	_	1 + 0.5* <i>f</i> _{CPU}	mA	$\overline{\text{RSTIN}} = V_{\text{IH1}}$ $f_{\text{CPU}} \text{ in [MHz]}^{7)}$
Idle mode supply current (3V) with all peripherals deactivated, PLL off, SDD factor = 32	I _{IDO3} ⁸⁾	-	300 + 30* <i>f</i> _{OSC}	μA	$\frac{\text{RSTIN}}{f_{\text{OSC}} \text{ in [MHz]}^{7)}}$
Power-down mode supply current (3V) with RTC running	I _{PDR3} ⁸⁾	-	100 + 10* <i>f</i> _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ⁹⁾
Power-down mode supply current (3V) with RTC disabled	I _{PDO3}	-	30	μA	$V_{\rm DD} = V_{\rm DDmax}^{9)}$

1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

2) These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 K Ω .

3) The maximum current may be drawn while the respective signal line remains inactive.

- 4) The minimum current must be drawn in order to drive the respective signal line active.
- 5) This specification is only valid during Reset, or during Hold- or Adapt-mode. During Hold mode Port 6 pins are only affected, if they are used (configured) for \overline{CS} output and the open drain function is not enabled.

6) Not 100% tested, guaranteed by design characterization.

I [mA]

50

Figure 10 Supply/Idle Current as a Function of Operating Frequency

C161PI

Tabl	le 8	B	C161PI Clock G	eneration Modes			
P0.1 (P0H	P0.15-13 (P0H.7-5)		CPU Frequency $f_{CPU} = f_{OSC} * F$	External Clock Input Range ¹⁾	Notes		
1	1	1	<i>f</i> _{OSC} * 4	2.5 to 6.25 MHz	Default configuration		
1	1	0	f _{osc} * 3	3.33 to 8.33 MHz			
1	0	1	<i>f</i> _{OSC} * 2	5 to 12.5 MHz			
1	0	0	<i>f</i> _{OSC} * 5	2 to 5 MHz			
0	1	1	<i>f</i> _{osc} * 1	1 to 25 MHz	Direct drive ²⁾		
0	1	0	f _{OSC} * 1.5	6.66 to 16.6 MHz			
0	0	1	<i>f</i> _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler		
0	0	0	f _{OSC} * 2.5	4 to 10 MHz			

1) The external clock input range refers to a CPU clock range of 10...25 MHz.

2) The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When pins P0.15-13 (P0H.7-5) equal 001_B during reset the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

For all combinations of pins P0.15-13 (P0H.7-5) except for 001_B and 011_B the on-chip phase locked loop is enabled and provides the CPU clock (see table above). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} * F$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of $f_{\rm CPU}$ is constantly adjusted so it is locked to $f_{\rm OSC}$. The slight variation causes a jitter of $f_{\rm CPU}$ which also effects the duration of individual TCLs.

Direct Drive

When pins P0.15-13 (P0H.7-5) equal 011_B during reset the on-chip phase locked loop is disabled and the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of $f_{\rm CPU}$ directly follows the frequency of $f_{\rm OSC}$ so the high and low time of $f_{\rm CPU}$ (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock $f_{\rm OSC}$.

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} * DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1,3,...). Timings that require an even number of TCLs (2,4,...) may use the formula 2TCL = $1/f_{OSC}$.

Note: The address float timings in Multiplexed bus mode (t_{11} and t_{45}) use the maximum duration of TCL (TCL_{max} = 1/ f_{OSC} * DC_{max}) instead of TCL_{min}.

A/D Converter Characteristics

(Operating Conditions apply)

4.0V (2.6V) $\leq V_{\rm AREF} \leq V_{\rm DD}$ + 0.1V (Note the influence on TUE.)

 $V_{\rm SS}$ - 0.1V $\leq V_{\rm AGND} \leq V_{\rm SS}$ + 0.2V

Parameter	Symbol		Limit	Values	Unit	Test Condition	
			min.	max.			
Analog input voltage range	V_{AIN}	SR	V _{AGND}	V_{AREF}	V	1)	
Basic clock frequency	$f_{\rm BC}$		0.5	6.25	MHz	2)	
Conversion time	t _C	CC	-	40 <i>t</i> _{BC} +		3)	
				$t_{\rm S}$ +2 $t_{\rm CPU}$		$t_{\rm CPU} = 1 / f_{\rm CPU}$	
Total unadjusted error	TUE	CC	-	± 2	LSB	$V_{\sf AREF} \ge 4.0$ V $^{5)}$	
	4)		-	± 4	LSB	$V_{AREF} \ge 2.6 \text{ V}$	
Internal resistance of	R _{AREF}	SR	-	t _{BC} / 60	kΩ	<i>t</i> _{BC} in [ns] ^{6) 7)}	
reference voltage source				- 0.25			
Internal resistance of analog	R _{ASRC}	SR	_	t _S / 450	kΩ	<i>t</i> _S in [ns] ^{7) 8)}	
source				- 0.25			
ADC input capacitance	C_{AIN}	CC	-	33	рF	7)	

V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

- 2) The limit values for f_{BC} must not be exceeded when selecting the CPU frequency and the ADCTC setting.
- 3) This parameter includes the sample time t_s , the time for determining the digital result and the time to load the result register with the conversion result.

Values for the basic clock $t_{\rm BC}$ depend on the conversion time programming.

This parameter depends on the ADC control logic. It is not a real maximum value, but rather a fixum.

TUE is tested at V_{AREF}=5.0V (3.3V), V_{AGND}=0V, V_{DD}=4.9V (3.2V). It is guaranteed by design for all other voltages within the defined voltage range.

The specified TUE is guaranteed only if an overload condition (see I_{OV} specification) occurs on maximum 2 not selected analog input pins and the absolute sum of input overload currents on all analog input pins does not exceed 10 mA.

During the reset calibration sequence the maximum TUE may be ±4 LSB (±8 LSB @ 3V).

- 5) This case is not applicable for the reduced supply voltage range.
- 6) During the conversion the ADC's capacitance must be repeatedly charged or discharged. The internal resistance of the reference voltage source must allow the capacitance to reach its respective voltage level within each conversion step. The maximum internal resistance results from the programmed conversion timing.
- 7) Not 100% tested, guaranteed by design.
- 8) During the sample time the input capacitance C_1 can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_s . After the end of the sample time t_s , changes of the analog input voltage have no effect on the conversion result. Values for the sample time t_s depend on programming and can be taken from the table below.

AC Characteristics

Multiplexed Bus (Reduced Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter		nbol	Max. CF = 20	PU Clock MHz	Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$11 + t_A$	-	TCL - 14 + <i>t</i> _A	-	ns
Address setup to ALE	<i>t</i> ₆	CC	$5 + t_{A}$	-	TCL - 20 + <i>t</i> _A	-	ns
Address hold after ALE	<i>t</i> ₇	CC	$15 + t_{A}$	-	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to RD, WR (with RW-delay)	<i>t</i> ₈	CC	$15 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	<i>t</i> 9	CC	$-10 + t_{A}$	-	$-10 + t_{A}$	-	ns
Address float after RD, WR (with RW-delay)	t ₁₀	CC	-	6	-	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	-	31	-	TCL + 6	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$34 + t_{\rm C}$	-	2TCL - 16 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	t ₁₃	CC	59 + $t_{\rm C}$	-	3TCL - 16 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	$22 + t_{\rm C}$	-	2TCL - 28 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$47 + t_{\rm C}$	-	3TCL - 28 + <i>t</i> _C	ns
ALE low to valid data in	t ₁₆	SR	_	$49 + t_A + t_C$	-	$3TCL - 30 + t_A + t_C$	ns
Address to valid data in	t ₁₇	SR	-	$57 + 2t_A + t_C$	-	$4TCL - 43 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	-	0	-	ns
Data float after RD	t ₁₉	SR	-	$36 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	ns

Multiplexed Bus (Reduced Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter		nbol	Max. CF = 20	PU Clock MHz	Variable (1 / 2TCL = 7	Unit	
			min.	max.	min.	max.	
Data valid to WR	t ₂₂	CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after WR	t ₂₃	СС	$36 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	_	ns
$\frac{\text{ALE rising edge after } \overline{\text{RD}},}{\text{WR}}$	t ₂₅	CC	$36 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	$36 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{\text{CS}}^{(1)}$	<i>t</i> ₃₈	CC	-8 - <i>t</i> _A	10 - <i>t</i> _A	-8 - <i>t</i> _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	_	47 + $t_{\rm C}$ + 2 $t_{\rm A}$	-	$3TCL - 28 + t_{C} + 2t_{A}$	ns
CS hold after RD, WR ¹⁾	t ₄₀	CC	57 + $t_{\rm F}$	-	3TCL - 18 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	t ₄₂	CC	19 + t_{A}	-	TCL - 6 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	t ₄₃	CC	$-6 + t_{A}$	-	-6 + <i>t</i> _A	-	ns
Address float after RdCS, WrCS (with RW delay)	t ₄₄	CC	-	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	t ₄₅	CC	_	25	-	TCL	ns
RdCS to Valid Data In (with RW delay)	t ₄₆	SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	t ₄₇	SR	_	$45 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	$38 + t_{\rm C}$	-	2TCL - 12 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	СС	$63 + t_{\rm C}$	-	3TCL - 12 + <i>t</i> _C	_	ns
Data valid to WrCS	<i>t</i> ₅₀	СС	$28 + t_{\rm C}$	-	2TCL - 22 + <i>t</i> _C	_	ns

Multiplexed Bus (Reduced Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CP = 20	PU Clock MHz	Variable C 1 / 2TCL = 7	Unit	
			min.	max.	min.	max.	
Data hold after RdCS	<i>t</i> ₅₁	SR	0	-	0	-	ns
Data float after RdCS	<i>t</i> ₅₂	SR	_	$30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	t ₅₄	СС	$30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	t ₅₆	CC	$30 + t_{\rm F}$	_	2TCL - 20 + <i>t</i> _F	-	ns

1) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Figure 18 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE

C161PI

Figure 19 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE

Figure 20 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE

Figure 21 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Extended ALE

Published by Infineon Technologies AG