

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	76
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	PG-MQFP-100-2
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161pilmcafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C161PI Revision History: 1999-07 Preliminary		eliminary			
Previous V	ersions:	1998-05	(C161RI / Preliminary)		
		1998-01	(C161RI / Advance Information)		
		1997-12	(C161RI / Advance Information)		
Page	Subjec	ts			
	3 V spe	cification intro	duced		
4, 5, 7	Signal I	OUT added			
14	XRAM	XRAM description added			
15	Unlatch	Unlatched CS description added			
23	Block D	iagram correc	ted		
24	Descrip	tion of divider	chain improved		
25, 51, 52	ADC de	escription upda	ated to 10-bit		
36, 37	Revise	d description o	f Absolute Max. Ratings and Operating Conditions		
39, 44	Powers	supply values	improved		
45 - 50	Revise	d description for	or clock generation including PLL		
54 ff.	Standa	rd 25-MHz tim	ing		

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

 \ge

The C161PI is the successor of the C161RI. Therefore this data sheet also replaces the C161RI data sheet (see also revision history).

Edition 1999-07

Published by Infineon Technologies AG i. Gr., St.-Martin-Strasse 53 D-81541 München [©] Infineon Technologies AG 1999. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Table 1	Table 1 Pin Definitions and Functions									
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function	Function					
P5			1	Port 5 is a 6-bit input-only port with Schmitt-Trigger characteristics. The pins of Port 5 also serve as (up to 4) analog input channels for the A/D converter, or they serve as timer inputs:						
P5.0	97	99	1	AN0	•					
P5.1	98	100	1	AN1						
P5.2	99	1	1	AN2						
P5.3	100	2	1	AN3						
P5.14	1	3	1	T4EUD	GPT1 Timer T4 Ext. Up/Down Ctrl. Input					
P5.15	2	4	1	T2EUD	GPT1 Timer T5 Ext. Up/Down Ctrl. Input					
XTAL1	4	6	I	XTAL1:	Input to the oscillator amplifier and input to the internal clock generator					
XTAL2	5	7	Ο	XTAL1, wh and maxim	Output of the oscillator amplifier circuit. e device from an external source, drive ile leaving XTAL2 unconnected. Minimum um high/low and rise/fall times specified in aracteristics must be observed.					

Table 1	Ie 1 Pin Definitions and Functions (continued)								
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function					
P3			IO	Port 3 is a 15-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 3 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 3 is selectable (TTL or special). The following Port 3 pins also serve for alternate functions:					
P3.0	7	9	I/O	SCL0	I2C Bus Clock Line 0				
P3.1	8	10	I/O	SDA0	I2C Bus Data Line 0				
P3.2	9	11	1	CAPIN	GPT2 Register CAPREL Capture Input				
P3.3	10	12	0	T3OUT	GPT1 Timer T3 Toggle Latch Output				
P3.4	11	13	1	T3EUD	GPT1 Timer T3 External Up/Down Ctrl.Inp				
P3.5	12	14	I	T4IN	GPT1 Timer T4 Count/Gate/Reload/ Capture Input				
P3.6	13	15	1	T3IN	GPT1 Timer T3 Count/Gate Input				
P3.7	14	16	I	T2IN	GPT1 Timer T2 Count/Gate/Reload/ Capture Input				
P3.8	15	17	I/O	MRST	SSC Master-Rec. / Slave-Trans. Inp/Outp.				
P3.9	16	18	I/O	MTSR	SSC Master-Trans. / Slave-Rec. Outp/Inp.				
P3.10	17	19	0	T×D0	ASC0 Clock/Data Output (Async./Sync.)				
P3.11	18	20	I/O	R×D0	ASC0 Data Input (Async.) or I/O (Sync.)				
P3.12	19	21	0 0	BHE WRH	External Memory High Byte Enable Signal, External Memory High Byte Write Strobe				
P3.13	20	22	I/O	SCLK	SSC Master Clock Outp. / Slave Clock Inp.				
P3.15	21	23	0	CLKOUT	System Clock Output (=CPU Clock)				
			0	FOUT	Programmable Frequency Output				
				Note: Pins	P3.0 and P3.1 are open drain outputs only.				

Table 1	Pin Definitions and Functions (continued)						
Symbol	Pin Num. TQFP	Pin Num. MQFP	Input Outp.	Function			
P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P6.6 P6.7	79 80 81 82 83 84 85 86	81 82 83 84 85 86 87 88	IO O O O I/O I/O I/O I/O	Port 6 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 6 outputs can be configured as push/pull or open drain drivers.The Port 6 pins also serve for alternate functions: $\underline{CS0}$ Chip Select 0 Output $\underline{CS1}$ Chip Select 1 Output $\underline{CS2}$ Chip Select 2 Output $\underline{CS3}$ Chip Select 3 Output $\underline{CS4}$ Chip Select 4 Output $\underline{SDA1}$ 1^2 C Bus Data Line 1 $\underline{SDA2}$ 1^2 C Bus Data Line 2			
				Note: Pins P6.7-5 are open drain outputs only.			
P2			IO	Port 2 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. Port 2 outputs can be configured as push/pull or open drain drivers. The input threshold of Port 2 is selectable (TTL or special). The Port 2 pins also serve for alternate functions:			
P2.8	87	89	1	EX0IN Fast External Interrupt 0 Input			
P2.9	88	90		EX1IN Fast External Interrupt 1 Input			
P2.10	89	91		EX2IN Fast External Interrupt 2 Input			
P2.11 P2.12	90 91	92 93		EX3IN Fast External Interrupt 3 Input EX4IN Fast External Interrupt 4 Input			
P2.12 P2.13	91 92	93 94		EX4IN Fast External Interrupt 4 Input EX5IN Fast External Interrupt 5 Input			
P2.13 P2.14	92 93	94 95		EX6IN Fast External Interrupt 6 Input			
P2.15	94	96	I	EX7IN Fast External Interrupt 7 Input			
V _{AREF}	95	97	-	Reference voltage for the A/D converter.			
V_{AGND}	96	98	-	Reference ground for the A/D converter.			

General Purpose Timer (GPT) Unit

The GPT unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 16 TCL.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate eg. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on a port pin (T3OUT) eg. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 are captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

The state of this latch may be used to clock timer T5. The overflows/underflows of timer T6 can additionally be used to cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows absolute time differences to be measured or pulse multiplication to be performed without software overhead.

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

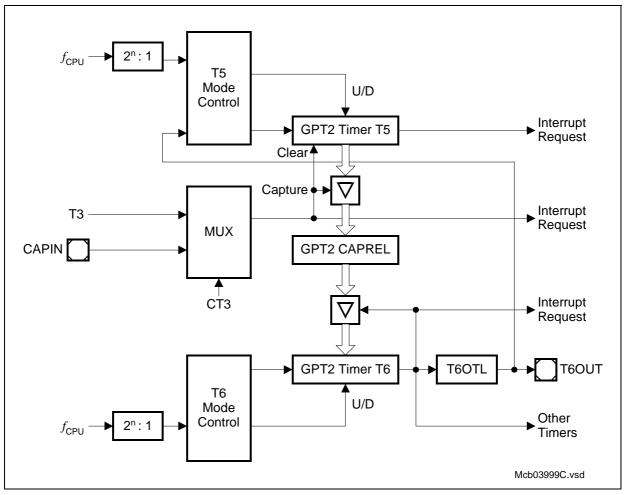


Figure 7 Block Diagram of GPT2

Instruction Set Summary

The table below lists the instructions of the C161PI in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the **"C166 Family Instruction Set Manual"**.

This document also provides a detailled description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 4Instruction Set Summary

Table 5	ble 5 C161PI Registers, Ordered by Name (continued)						
Name		Physica Address		8-Bit Addr.	Description	Reset Value	
IDPROG		F078 _H	Ε	3C _H	Identifier	0000 _H	
ISNC	b	F1DE _H	Ε	EF _H	Interrupt Subnode Control Register	0000 _H	
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H	
MDH		$FE0C_{H}$		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H	
MDL		$FE0E_{H}$		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H	
ODP2	b	F1C2 _H	Ε	E1 _H	Port 2 Open Drain Control Register	0000 _H	
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H	
ODP6	b	F1CE _H	Ε	E7 _H	Port 6 Open Drain Control Register	00 _H	
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H	
POL	b	FF00 _H		80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H	
P0H	b	FF02 _H		81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H	
P1L	b	FF04 _H		82 _H	Port 1 Low Reg. (Lower half of PORT1)	00 _H	
P1H	b	FF06 _H		83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H	
P2	b	FFC0 _H		E0 _H	Port 2 Register	0000 _H	
P3	b	$FFC4_{H}$		E2 _H	Port 3 Register	0000 _H	
P4	b	FFC8 _H		E4 _H	Port 4 Register (7 bits)	00 _H	
P5	b	FFA2 _H		D1 _H	Port 5 Register (read only)	XXXX _H	
P5DIDIS	b	FFA4 _H		D2 _H	Port 5 Digital Input Disable Register	0000 _H	
P6	b	$FFCC_{H}$		E6 _H	Port 6 Register (8 bits)	00 _H	
PECC0		$FEC0_{H}$		60 _H	PEC Channel 0 Control Register	0000 _H	
PECC1		FEC2 _H		61 _H	PEC Channel 1 Control Register	0000 _H	
PECC2		$FEC4_{H}$		62 _H	PEC Channel 2 Control Register	0000 _H	
PECC3		$FEC6_{H}$		63 _H	PEC Channel 3 Control Register	0000 _H	
PECC4		FEC8 _H		64 _H	PEC Channel 4 Control Register	0000 _H	
PECC5		$FECA_{H}$		65 _H	PEC Channel 5 Control Register	0000 _H	
PECC6		$FECC_{H}$		66 _H	PEC Channel 6 Control Register	0000 _H	
PECC7		$FECE_H$		67 _H	PEC Channel 7 Control Register	0000 _H	
PSW	b	FF10 _H		88 _H	CPU Program Status Word	0000 _H	
PDCR		F0AA _H	Ε	55 _H	Pin Driver Control Register	0000 _H	
RP0H	b	F108 _H	Ε	84 _H	System Startup Config. Reg. (Rd. only)	XX _H	

Tabla 5 Ordered by Name (continued) 404 01 1 -

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C161PI and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C161PI will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C161PI.

DC Characteristics (Standard Supply Voltage Range)

(Operating Conditions apply)

Parameter	Symbol	Limit V	Values	Unit	Test Condition
		min.	max.		
Input low voltage XTAL1, P3.0, P3.1, P6.5, P6.6, P6.7	V _{IL1} SR	- 0.5	0.3 V _{DD}	V	_
Input low voltage (TTL)	V _{IL} SR	- 0.5	0.2 V _{DD} - 0.1	V	-
Input low voltage (Special Threshold)	$V_{\rm ILS}$ SR	- 0.5	2.0	V	_
Input high voltage RSTIN	V _{IH1} SR	0.6 V _{DD}	V _{DD} + 0.5	V	-
Input high voltage XTAL1, P3.0, P3.1, P6.5, P6.6, P6.7	V _{IH2} SR	0.7 V _{DD}	V _{DD} + 0.5	V	-
Input high voltage (TTL)	V _{IH} SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	-
Input high voltage (Special Threshold)	V _{IHS} SR	0.8 V _{DD} - 0.2	V _{DD} + 0.5	V	-
Input Hysteresis (Special Threshold)	HYS	400	_	mV	-
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, CLKOUT, RSTOUT)	V _{OL} CC	-	0.45	V	I _{OL} = 2.4 mA
Output low voltage (P3.0, P3.1, P6.5, P6.6, P6.7)	V _{OL2} CC	-	0.4	V	<i>I</i> _{OL2} = 3 mA

DC Characteristics (Standard Supply Voltage Range) (continued)

(Operating Conditions apply)

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.		
Power-down mode supply current (5V) with RTC running	I _{PDR5} ⁸⁾	-	200 + 25*f _{OSC}	μA	$V_{\text{DD}} = V_{\text{DDmax}}$ f_{OSC} in [MHz] ⁹⁾
Power-down mode supply current (5V) with RTC disabled	I _{PDO5}	-	50	μA	$V_{\rm DD} = V_{\rm DDmax}^{9)}$

1) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

2) These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 K Ω .

3) The maximum current may be drawn while the respective signal line remains inactive.

4) The minimum current must be drawn in order to drive the respective signal line active.

5) This specification is only valid during Reset, or during Hold- or Adapt-mode. During Hold mode Port 6 pins are only affected, if they are used (configured) for \overline{CS} output and the open drain function is not enabled.

- 6) Not 100% tested, guaranteed by design characterization.
- 7) The supply current is a function of the operating frequency. This dependency is illustrated in the figure below. These parameters are tested at V_{DDmax} and maximum CPU clock with all outputs disconnected and all inputs at V_{IL} or V_{IH} .

The oscillator also contributes to the total supply current. The given values refer to the worst case, ie. I_{PDRmax} . For lower oscillator frequencies the respective supply current can be reduced accordingly.

- 8) This parameter is determined mainly by the current consumed by the oscillator. This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The values given refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.
- 9) This parameter is tested including leakage currents. All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DD} 0.1 V to V_{DD} , V_{REF} = 0 V, all outputs (including pins configured as outputs) disconnected.

AC Characteristics Definition of Internal Timing

The internal operation of the C161PI is controlled by the internal CPU clock f_{CPU} . Both edges of the CPU clock can trigger internal (e.g. pipeline) or external (e.g. bus cycles) operations.

The specification of the external timing (AC Characteristics) therefore depends on the time between two consecutive edges of the CPU clock, called "TCL" (see figure below).

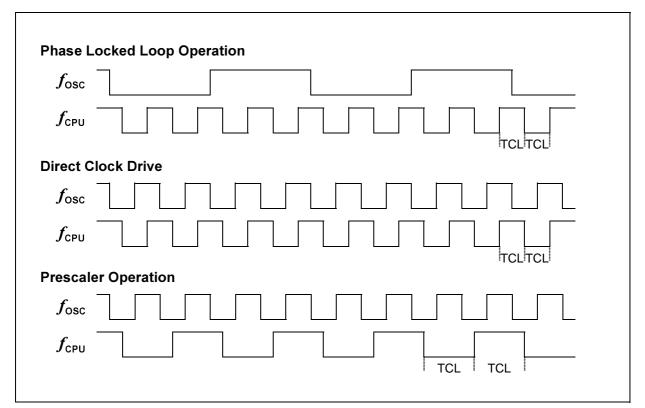


Figure 11 Generation Mechanisms for the CPU Clock

The CPU clock signal f_{CPU} can be generated from the oscillator clock signal f_{OSC} via different mechanisms. The duration of TCLs and their variation (and also the derived external timing) depends on the used mechanism to generate f_{CPU} . This influence must be regarded when calculating the timings for the C161PI.

Note: The example for PLL operation shown in the fig. above refers to a PLL factor of 4.

The used mechanism to generate the CPU clock is selected during reset via the logic levels on pins P0.15-13 (P0H.7-5).

The table below associates the combinations of these three bits with the respective clock generation mode.

Table 8	C161PI Clock Generation Modes								
P0.15-13 (P0H.7-5)	CPU Frequency $f_{CPU} = f_{OSC} * F$	External Clock Input Range ¹⁾	Notes						
1 1 1	<i>f</i> _{OSC} * 4	2.5 to 6.25 MHz	Default configuration						
1 1 0	<i>f</i> _{OSC} * 3	3.33 to 8.33 MHz							
1 0 1	<i>f</i> _{OSC} * 2	5 to 12.5 MHz							
1 0 0	<i>f</i> _{OSC} * 5	2 to 5 MHz							
0 1 1	<i>f</i> _{OSC} * 1	1 to 25 MHz	Direct drive ²⁾						
0 1 0	<i>f</i> _{OSC} * 1.5	6.66 to 16.6 MHz							
0 0 1	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler						
0 0 0	f _{OSC} * 2.5	4 to 10 MHz							

1) The external clock input range refers to a CPU clock range of 10...25 MHz.

2) The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When pins P0.15-13 (P0H.7-5) equal 001_B during reset the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Phase Locked Loop

For all combinations of pins P0.15-13 (P0H.7-5) except for 001_B and 011_B the on-chip phase locked loop is enabled and provides the CPU clock (see table above). The PLL multiplies the input frequency by the factor **F** which is selected via the combination of pins P0.15-13 (i.e. $f_{CPU} = f_{OSC} * F$). With every **F**'th transition of f_{OSC} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, i.e. the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of $f_{\rm CPU}$ is constantly adjusted so it is locked to $f_{\rm OSC}$. The slight variation causes a jitter of $f_{\rm CPU}$ which also effects the duration of individual TCLs.

AC Characteristics

Multiplexed Bus (Reduced Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	-
ALE high time	<i>t</i> ₅	CC	$11 + t_A$	-	TCL - 14 + <i>t</i> _A	-	ns
Address setup to ALE	t ₆	CC	$5 + t_{A}$	_	TCL - 20 + <i>t</i> _A	-	ns
Address hold after ALE	<i>t</i> ₇	CC	$15 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (with RW-delay)	t ₈	CC	$15 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	-	$-10 + t_{A}$	-	ns
Address float after RD, WR (with RW-delay)	<i>t</i> ₁₀	CC	_	6	-	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	_	31	-	TCL + 6	ns
RD, WR low time (with RW-delay)	<i>t</i> ₁₂	CC	$34 + t_{\rm C}$	-	2TCL - 16 + <i>t</i> _C	-	ns
RD, WR low time (no RW-delay)	<i>t</i> ₁₃	CC	59 + $t_{\rm C}$	-	3TCL - 16 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	22 + $t_{\rm C}$	_	2TCL - 28 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$47 + t_{\rm C}$	-	3TCL - 28 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	-	$49 + t_A + t_C$	-	$3\text{TCL} - 30 \\ + t_{\text{A}} + t_{\text{C}}$	ns
Address to valid data in	t ₁₇	SR	_	$57 + 2t_A + t_C$	-	$4TCL - 43 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	-	0	-	ns
Data float after \overline{RD}	<i>t</i> ₁₉	SR	-	$36 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	ns

Multiplexed Bus (Reduced Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbo		Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		
		min.	max.	min.	max.		
Data hold after RdCS	t ₅₁ SF	R 0	-	0	-	ns	
Data float after RdCS	<i>t</i> ₅₂ SF	-	$30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	ns	
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	$2 30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns	
Data hold after WrCS	<i>t</i> ₅₆ CC	$30 + t_{\rm F}$	-	2TCL - 20 + <i>t</i> _F	-	ns	

1) These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

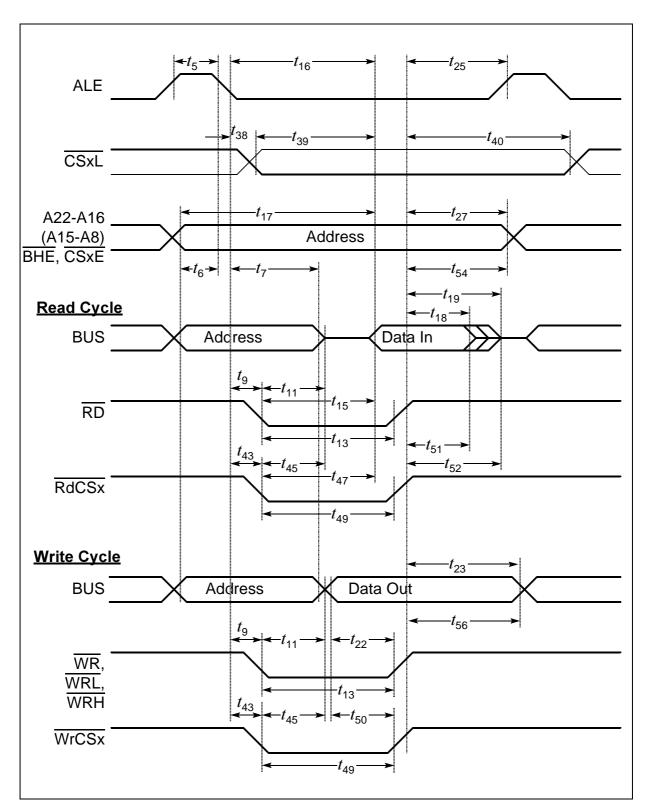


Figure 18 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE

C161PI

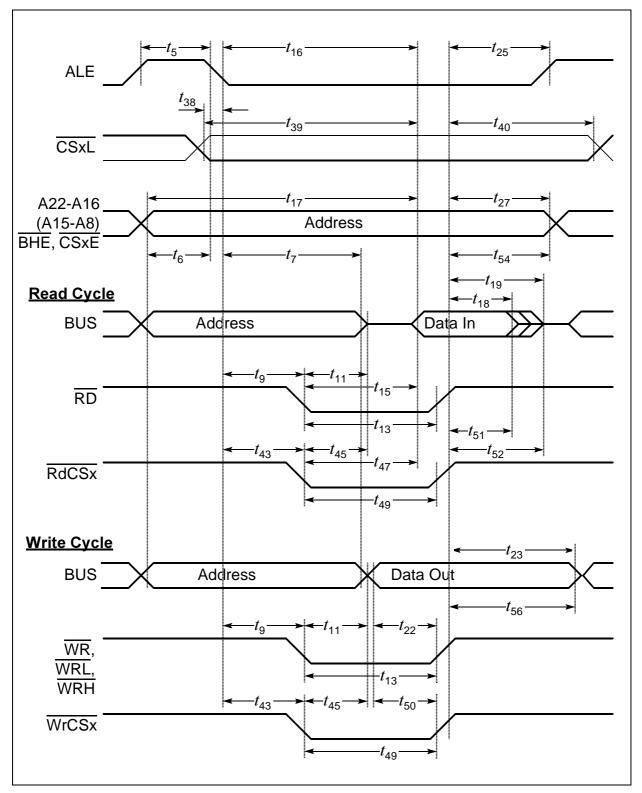


Figure 19 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Extended ALE

Demultiplexed Bus (Reduced Supply Voltage Range) (continued)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
			min.	max.	min.	max.	
Data hold after WR	<i>t</i> ₂₄	CC	15 + <i>t</i> _F	-	TCL - 10 + <i>t</i> _F	-	ns
$\frac{\text{ALE rising edge after } \overline{\text{RD}},}{\text{WR}}$	t ₂₆	CC	-12 + <i>t</i> _F	-	-12 + <i>t</i> _F	-	ns
Address hold after WR 2)	<i>t</i> ₂₈	CC	$0 + t_{F}$	_	$0 + t_{F}$	_	ns
ALE falling edge to $\overline{\text{CS}}^{3)}$	<i>t</i> ₃₈	CC	-8 - <i>t</i> _A	10 - <i>t</i> _A	-8 - <i>t</i> _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ³⁾	t ₃₉	SR	_	$47 + t_{\rm C} + 2t_{\rm A}$	-	$3TCL - 28 + t_{C} + 2t_{A}$	ns
CS hold after RD, WR 3)	<i>t</i> ₄₁	CC	9 + $t_{\rm F}$	-	TCL - 16 + <i>t</i> _F	-	ns
ALE falling edge to RdCS, WrCS (with RW- delay)	t ₄₂	CC	19 + <i>t</i> _A	_	TCL - 6 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW- delay)	t ₄₃	CC	$-6 + t_{A}$	_	-6 + t_A	-	ns
RdCS to Valid Data In (with RW-delay)	t ₄₆	SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇	SR	_	$45 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	$38 + t_{\rm C}$	-	2TCL - 12 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	t ₄₉	CC	$63 + t_{\rm C}$	-	3TCL - 12 + <i>t</i> _C	-	ns
Data valid to WrCS	<i>t</i> ₅₀	CC	$28 + t_{\rm C}$	-	2TCL - 22 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁	SR	0	-	0	-	ns
Data float after RdCS (with RW-delay) ¹⁾	<i>t</i> ₅₃	SR	_	$30 + t_{\rm F}$	-	2TCL - 20 + $2t_{\text{A}} + t_{\text{F}}^{-1}$	ns
Data float after RdCS (no RW-delay) ¹⁾	t ₆₈	SR	-	$5 + t_{\rm F}$	-	TCL - 20 + $2t_{A}$ + t_{F} ¹⁾	ns

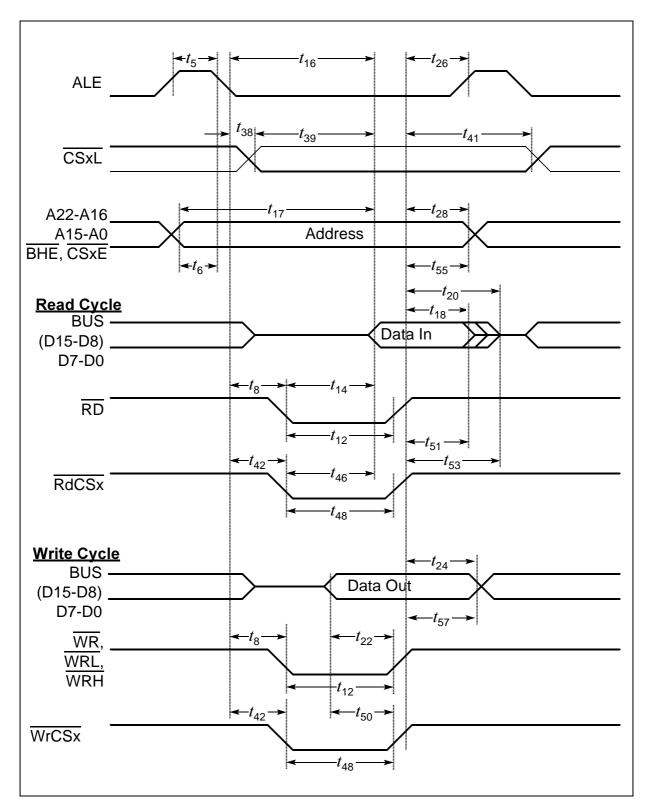


Figure 20 External Memory Cycle: Demultiplexed Bus, With Read/Write Delay, Normal ALE

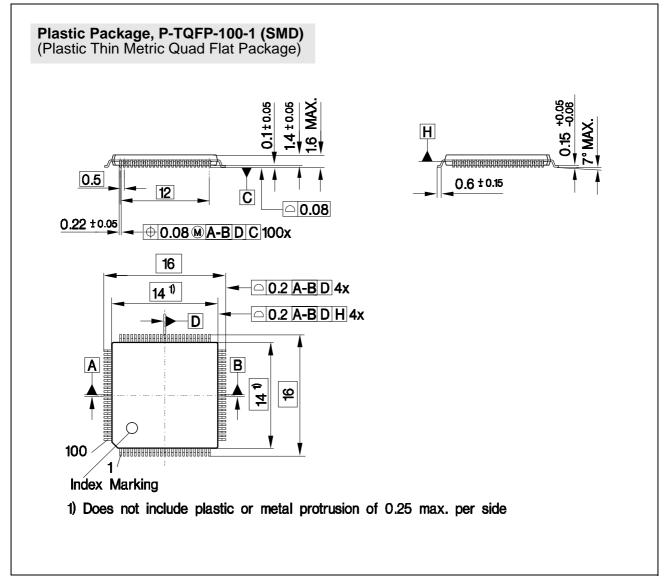
AC Characteristics

CLKOUT and READY (Standard Supply Voltage Range)

(Operating Conditions apply)

Parameter		nbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
CLKOUT cycle time	t ₂₉	CC	40	40	2TCL	2TCL	ns
CLKOUT high time	<i>t</i> ₃₀	CC	14	-	TCL-6	-	ns
CLKOUT low time	<i>t</i> ₃₁	CC	10	-	TCL – 10	-	ns
CLKOUT rise time	<i>t</i> ₃₂	CC	_	4	-	4	ns
CLKOUT fall time	<i>t</i> ₃₃	CC	_	4	-	4	ns
CLKOUT rising edge to ALE falling edge	<i>t</i> ₃₄	CC	$0 + t_A$	$10 + t_{A}$	$0 + t_A$	$10 + t_{A}$	ns
Synchronous READY setup time to CLKOUT	<i>t</i> ₃₅	SR	14	-	14	-	ns
Synchronous READY hold time after CLKOUT	<i>t</i> ₃₆	SR	4	-	4	-	ns
Asynchronous READY low time	<i>t</i> ₃₇	SR	54	-	2TCL + <i>t</i> ₅₈	-	ns
Asynchronous READY setup time ¹⁾	<i>t</i> ₅₈	SR	14	-	14	-	ns
Asynchronous READY hold time ¹⁾	<i>t</i> ₅₉	SR	4	-	4	-	ns
Async. READY hold time after RD, WR high (Demultiplexed Bus) ²⁾	<i>t</i> ₆₀	SR	0	$ \begin{array}{c} 0 \\ + 2t_{A} + \\ t_{C} + t_{F} \\ \end{array} $	0	TCL - 20 + $2t_{A} + t_{C}$ + $t_{F}^{2)}$	ns

1) These timings are given for test purposes only, in order to assure recognition at a specific clock edge.


2) Demultiplexed bus is the worst case. For multiplexed bus 2TCL are to be added to the maximum values. This adds even more time for deactivating READY.

The $2t_A$ and t_C refer to the next following bus cycle, t_F refers to the current <u>bus cycle</u>.

The maximum limit for t_{60} must be fulfilled if the next following bus cycle is **READY** controlled.

Package Outlines (continued)

Sorts of Packing

Package outlines for tubes, trays, etc. are contained in our Data Book "Package Information"

SMD = Surface Mounted Device

Dimensions in mm