EXFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8347cvragdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- On-the-fly power management using CKE
- Registered DIMM support
- 2.5-V SSTL2 compatible I/O
- Dual three-speed (10/100/1000) Ethernet controllers (TSECs)
 - Dual controllers designed to comply with IEEE 802.3[®], 802.3^w, 802.3^w, 802.3^w, 802.3^w, 802.3^w
 - Ethernet physical interfaces:
 - 1000 Mbps IEEE Std. 802.3 GMII/RGMII, IEEE Std. 802.3z TBI/RTBI, full-duplex
 - 10/100 Mbps IEEE Std. 802.3 MII full- and half-duplex
 - Buffer descriptors are backward-compatible with MPC8260 and MPC860T 10/100 programming models
 - 9.6-Kbyte jumbo frame support
 - RMON statistics support
 - Internal 2-Kbyte transmit and 2-Kbyte receive FIFOs per TSEC module
 - MII management interface for control and status
 - Programmable CRC generation and checking
- PCI interface
 - Designed to comply with PCI Specification Revision 2.2
 - Data bus width:
 - 32-bit data PCI interface operating at up to 66 MHz
 - PCI 3.3-V compatible
 - PCI host bridge capabilities
 - PCI agent mode on PCI interface
 - PCI-to-memory and memory-to-PCI streaming
 - Memory prefetching of PCI read accesses and support for delayed read transactions
 - Posting of processor-to-PCI and PCI-to-memory writes
 - On-chip arbitration supporting five masters on PCI
 - Accesses to all PCI address spaces
 - Parity supported
 - Selectable hardware-enforced coherency
 - Address translation units for address mapping between host and peripheral
 - Dual address cycle for target
 - Internal configuration registers accessible from PCI
- Security engine is optimized to handle all the algorithms associated with IPSec, SSL/TLS, SRTP, IEEE Std. 802.11i[®], iSCSI, and IKE processing. The security engine contains four crypto-channels, a controller, and a set of crypto execution units (EUs):
 - Public key execution unit (PKEU) :
 - RSA and Diffie-Hellman algorithms

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8347E for the 3.3-V signals, respectively.

Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	40	OV _{DD} = 3.3 V
PCI signals (not including PCI output clocks)	25	
PCI output clocks (including PCI_SYNC_OUT)	40	
DDR signal	18	GV _{DD} = 2.5 V
TSEC/10/100 signals	40	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, JTAG, USB	40	OV _{DD} = 3.3 V
GPIO signals	40	OV _{DD} = 3.3 V, LV _{DD} = 2.5/3.3 V

Table 3. Output Drive Capability

2.2 Power Sequencing

MPC8347E does not require the core supply voltage and I/O supply voltages to be applied in any particular order. Note that during the power ramp up, before the power supplies are stable, there may be a period of time that I/O pins are actively driven. After the power is stable, as long as **PORESET** is asserted, most I/O pins are three-stated. To minimize the time that I/O pins are actively driven, it is recommended to apply core voltage before I/O voltage and assert **PORESET** before the power supplies fully ramp up.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8347E.

5.1 **RESET DC Electrical Characteristics**

Table 8 provides the DC electrical characteristics for the RESET pins of the MPC8347E.

Table 8.	RESET	Pins DC	Electrical	Characteristics'

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage ²	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

5.2 **RESET AC Electrical Characteristics**

Table 9 provides the reset initialization AC timing specifications of the MPC8347E.

Table 9. RESET Initialization Timing Specifications

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	—	t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8347E is in PCI host mode	32	—	^t CLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8347E is in PCI agent mode	32	—	t _{PCI_SYNC_IN}	1
HRESET/SRESET assertion (output)	512	—	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	—	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI host mode	4	_	^t CLKIN	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI agent mode	4	_	^t pci_sync_in	1

6 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8347E.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and earlier versions see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications*. See Section 23.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

6.1 DDR SDRAM DC Electrical Characteristics

Table 11 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8347E.

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	
Output leakage current	I _{OZ}	-10	10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{OH}	-15.2	—	mA	
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	
MV _{REF} input leakage current	I _{VREF}	—	5	μA	

Table 11. DDR SDRAM DC Electrical Characteristics

Notes:

1. ${\rm GV}_{\rm DD}$ is expected to be within 50 mV of the DRAM ${\rm GV}_{\rm DD}$ at all times.

 MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 12 provides the DDR capacitance.

Table 12. DDR SDRAM Capacitance

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}		0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 13 provides the input AC timing specifications for the DDR SDRAM interface.

Table 13. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V \pm 5%.

Parameter	Symbol	Min	Max	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	
AC input high voltage	V _{IH}	MV _{REF} + 0.31	GV _{DD} + 0.3	V	
MDQS—MDQ/MECC input skew per byte 333 MHz 266 MHz	t _{DISKEW}	_	750 1125	ps	1

Note:

1. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 <= n <= 7) or ECC (MECC[{0...7}] if n = 8).

Figure 4 illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

Figure 4. DDR Input Timing Diagram

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 14 and Table 15 provide the output AC timing specifications and measurement conditions for the DDR SDRAM interface.

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)	t _{MCK}	6	10	ns	2
Skew between any MCK to ADDR/CMD 333 MHz 266 MHz 200 MHz	t _{AOSKEW}	1000 1100 1200	200 300 400	ps	3
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz 200 MHz	t _{DDKHAS}	2.8 3.45 4.6	_	ns	4
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz 200 MHz	^t DDKHAX	2.0 2.65 3.8	_	ns	4
MCS(n) output setup with respect to MCK 333 MHz 266 MHz 200 MHz	^t DDKHCS	2.8 3.45 4.6	_	ns	4
MCS(n) output hold with respect to MCK 333 MHz 266 MHz 200 MHz	^t DDKHCX	2.0 2.65 3.8	_	ns	4
MCK to MDQS 333 MHz 266 MHz 200 MHz	^t DDKHMH	-0.9 -1.1 -1.2	0.3 0.5 0.6	ns	5
MDQ/MECC/MDM output setup with respect to MDQS 333 MHz 266 MHz 200 MHz	^t DDKHDS, ^t DDKLDS	900 900 1200	_	ps	6
MDQ/MECC/MDM output hold with respect to MDQS 333 MHz 266 MHz 200 MHz	^t ddkhdx, ^t ddkldx	900 900 1200	_	ps	6
MDQS preamble start	t _{DDKHMP}	$-0.25\times t_{MCK}-0.9$	$-0.25 \times t_{\text{MCK}} + 0.3$	ns	7

DDR SDRAM

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDKLME}	-0.9	0.3	ns	7

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the clock control register. For the skew measurements referenced for t_{AOSKEW} it is assumed that the clock adjustment is set to align the address/command valid with the rising edge of MCK.
- 4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks by 1/2 applied cycle.
- 5. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8349E PowerQUICC[™] II Pro Integrated Host Processor Family Reference Manual, for a description and understanding of the timing modifications enabled by use of these bits.
- 6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8347E.
- 7. All outputs are referenced to the rising edge of MCK(n) at the pins of the MPC8347E. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

Figure 5 shows the DDR SDRAM output timing for address skew with respect to any MCK.

Figure 5. Timing Diagram for t_{AOSKEW} Measurement

Figure 6 provides the AC test load for the DDR bus.

Local Bus

Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)

Figure 25. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Enabled)

Table 37. JTAG AC Timing Specifications (Independent of CLKIN)¹ (continued)

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
Output hold times: Boundary-scan data TDO	^t jtkldx ^t jtklox	2 2		ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	^t jtkldz ^t jtkloz	2 2	19 9	ns	5, 6

Notes:

- 1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 26). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK} .
- 6. Guaranteed by design and characterization.

Figure 26 provides the AC test load for TDO and the boundary-scan outputs of the MPC8347E.

Figure 26. AC Test Load for the JTAG Interface

Figure 27 provides the JTAG clock input timing diagram.

Figure 27. JTAG Clock Input Timing Diagram

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8347E.

12.1 I²C DC Electrical Characteristics

Table 38 provides the DC electrical characteristics for the I²C interface of the MPC8347E.

Table 38. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	
Low level output voltage	V _{OL}	0	$0.2\times\text{OV}_{\text{DD}}$	V	1
Output fall time from $V_{\text{IH}}(\text{min})$ to $V_{\text{IL}}(\text{max})$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	IJ	-10	10	μA	4
Capacitance for each I/O pin	CI	—	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8349E Integrated Host Processor Family Reference Manual, for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 39 provides the AC timing parameters for the I²C interface of the MPC8347E. Note that all values refer to $V_{IH}(min)$ and $V_{IL}(max)$ levels (see Table 38).

Table 39. I²C AC Electrical Specifications

Parameter	Symbol ¹	Min	Max	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock		1.3	—	μs
High period of the SCL clock		0.6	—	μs
Setup time for a repeated START condition		0.6	_	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)		0.6	_	μs
Data setup time		100	—	ns
Data hold time: CBUS compatible ma I ² C bus de	asters t _{I2DXKL} evices	$\overline{0^2}$	0.9 ³	μs

Figure 34 shows the PCI input AC timing diagram.

Figure 34. PCI Input AC Timing Diagram

Figure 35 shows the PCI output AC timing diagram.

MPC8347E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 11

15 GPIO

This section describes the DC and AC electrical specifications for the GPIO.

15.1 GPIO DC Electrical Characteristics

Table 45 provides the DC electrical characteristics for the MPC8347E GPIO.

Table 45. GPIO DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

15.2 GPIO AC Timing Specifications

Table 46 provides the GPIO input and output AC timing specifications.

Table 46. GPIO Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

 GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation. Package and Pin Listings

18.2 Mechanical Dimensions for the MPC8347E TBGA

Figure 39 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347E, 672-TBGA package.

Notes:

1.All dimensions are in millimeters.

2.Dimensions and tolerances per ASME Y14.5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

5.Parallelism measurement must exclude any effect of mark on top surface of package.

Figure 39. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347E TBGA

18.3 Package Parameters for the MPC8347E PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 620 plastic ball grid array (PBGA).

Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	620
Pitch	1.00 mm
Module height (maximum)	2.46 mm
Module height (typical)	2.23 mm
Module height (minimum)	2.00 mm
Solder balls	62 Sn/36 Pb/2 Ag (ZQ package)
	95.5 Sn/0.5 Cu/4Ag (VR package)
Ball diameter (typical)	0.60 mm

Signal	Package Pin Number	Pin Type	Power Supply	Notes			
MECC[0:4]/MSRCID[0:4]	W4, W3, Y3, AA6, T1	I/O	GV _{DD}				
MECC[5]/MDVAL	U1	I/O	GV _{DD}				
MECC[6:7]	Y1, Y6	I/O	GV _{DD}				
MDM[0:8]	B1, F1, K1, R4, AD4, AJ1, AP3, AP7, Y4	0	GV _{DD}				
MDQS[0:8]	B2, F5, J1, P2, AC1, AJ2, AN4, AL8, W2	I/O	GV _{DD}				
MBA[0:1]	AD1, AA5	0	GV _{DD}				
MA[0:14]	W1, U4, T3, R3, P1, M1, N1, L3, L1, K2, Y2, K3, J3, AP2, AN6	0	GV _{DD}				
MWE	AF1	0	GV _{DD}				
MRAS	AF4	0	GV _{DD}				
MCAS	AG3	0	GV _{DD}				
MCS[0:3]	AG2, AG1, AK1, AL4	0	GV _{DD}				
MCKE[0:1]	H3, G1	0	GV _{DD}	3			
MCK[0:5]	U2, F4, AM3, V3, F2, AN3	0	GV _{DD}				
MCK[0:5]	U3, E3, AN2, V4, E1, AM4	0	GV _{DD}				
(They sh	Pins Reserved for Future DDR2 (They should be left unconnected for MPC8347)						
MODT[0:3]	AH3, AJ5, AH1, AJ4	_	_				
MBA[2]	H4		_				
SPARE1	AA1		_	8			
SPARE2	AB1		_	6			
	Local Bus Controller Interface		1	1			
LAD[0:31]	AM13, AP13, AL14, AM14, AN14, AP14, AK15, AJ15, AM15, AN15, AP15, AM16, AL16, AN16, AP16, AL17, AM17, AP17, AK17, AP18, AL18, AM18, AN18, AP19, AN19, AM19, AP20, AK19, AN20, AL20, AP21, AN21	I/O	OV _{DD}				
LDP[0]/CKSTOP_OUT	AM21	I/O	OV _{DD}				
LDP[1]/CKSTOP_IN	AP22	I/O	OV _{DD}				
LDP[2]	AN22	I/O	OV _{DD}				
LDP[3]	AM22	I/O	OV _{DD}				
LA[27:31]	AK21, AP23, AN23, AP24, AK22	0	OV _{DD}				
LCS[0:3]	AN24, AL23, AP25, AN25	0	OV _{DD}				
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AK23, AP26, AL24, AM25	0	OV _{DD}				

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
Gigabit Reference Clock						
EC_GTX_CLK125	I	LV _{DD1}				
Three-Spe	ed Ethernet Controller (Gigabit Ethern	et 1)				
TSEC1_COL/GPIO2[20]	A17	I/O	OV _{DD}			
TSEC1_CRS/GPIO2[21]	F12	I/O	LV _{DD1}			
TSEC1_GTX_CLK	D10	0	LV _{DD1}	3		
TSEC1_RX_CLK	A11	I	LV _{DD1}			
TSEC1_RX_DV	B11	I	LV _{DD1}			
TSEC1_RX_ER/GPIO2[26]	B17	I/O	OV _{DD}			
TSEC1_RXD[7:4]/GPIO2[22:25]	B16, D16, E16, F16	I/O	OV _{DD}			
TSEC1_RXD[3:0]	E10, A8, F10, B8	I	LV _{DD1}			
TSEC1_TX_CLK	D17	I	OV _{DD}			
TSEC1_TXD[7:4]/GPIO2[27:30]	A15, B15, A14, B14	I/O	OV _{DD}			
TSEC1_TXD[3:0]	A10, E11, B10, A9	0	LV _{DD1}	11		
TSEC1_TX_EN	В9	0	LV _{DD1}			
TSEC1_TX_ER/GPIO2[31]	A16	I/O	OV _{DD}			
Three-Spe	ed Ethernet Controller (Gigabit Ethern	et 2)				
TSEC2_COL/GPIO1[21]	C14	I/O	OV _{DD}			
TSEC2_CRS/GPIO1[22]	D6	I/O	LV _{DD2}			
TSEC2_GTX_CLK	A4	0	LV _{DD2}			
TSEC2_RX_CLK	B4	I	LV _{DD2}			
TSEC2_RX_DV/GPIO1[23]	E6	I/O	LV _{DD2}			
TSEC2_RXD[7:4]/GPIO1[26:29]	A13, B13, C13, A12	I/O	OV _{DD}			
TSEC2_RXD[3:0]/GPIO1[13:16]	D7, A6, E8, B7	I/O	LV _{DD2}			
TSEC2_RX_ER/GPIO1[25]	D14	I/O	OV _{DD}			
TSEC2_TXD[7]/GPIO1[31]	B12	I/O	OV _{DD}			
TSEC2_TXD[6]/DR_XCVR_TERM_SEL	C12	0	OV _{DD}			
TSEC2_TXD[5]/DR_UTMI_OPMODE1	D12	0	OV _{DD}			
TSEC2_TXD[4]/DR_UTMI_OPMODE0	E12	0	OV _{DD}			
TSEC2_TXD[3:0]/GPIO1[17:20]	B5, A5, F8, B6	I/O	LV _{DD2}			
TSEC2_TX_ER/GPIO1[24]	F14	I/O	OV _{DD}			
TSEC2_TX_EN/GPIO1[12]	C5	I/O	LV _{DD2}	3		
TSEC2_TX_CLK/GPIO1[30]	E14	I/O	OV _{DD}			

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

NOTE

Core VCO frequency = core frequency \times VCO divider

VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

RCWL[COREPLL]		PLL]	coro alk: ash alk Patio	VCO Divider ¹		
0–1	2–5	6				
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)		
00	0001	0	1:1	2		
01	0001	0	1:1	4		
10	0001	0	1:1	8		
11	0001	0	1:1	8		
00	0001	1	1.5:1	2		
01	0001	1	1.5:1	4		
10	0001	1	1.5:1	8		
11	0001	1	1.5:1	8		
00	0010	0	2:1	2		
01	0010	0	2:1	4		
10	0010	0	2:1	8		
11	0010	0	2:1	8		
00	0010	1	2.5:1	2		
01	0010	1	2.5:1	4		
10	0010	1	2.5:1	8		
11	0010	1	2.5:1	8		
00	0011	0	3:1	2		
01	0011	0	3:1	4		
10	0011	0	3:1	8		
11	0011	0	3:1	8		

Table 59. e300 Core PLL Configuration

¹ Core VCO frequency = core frequency × VCO divider. The VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

19.3 Suggested PLL Configurations

Table 60 shows suggested PLL configurations for 33 and 66 MHz input clocks.

_	•	-		
Characteristic	Symbol	Value	Unit	Notes
Junction-to-case thermal	$R_{ extsf{ heta}JC}$	5	°C/W	5
Junction-to-package natural convection on top	Ψіт	5	°C/W	6

Table 62. Package Thermal Characteristics for PBGA (continued)

Notes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

20.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers. See Table 5 for I/O power dissipation values.

20.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta IA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single-layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

20.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For

THIS PAGE INTENTIONALLY LEFT BLANK