

Welcome to E-XFL.COM

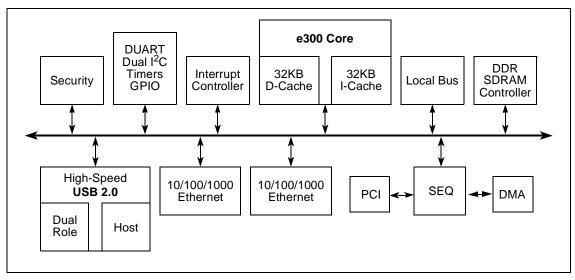
Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details


Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	·
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	· .
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8347czuajdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

This section provides a high-level overview of the MPC8347E features. Figure 1 shows the major functional units within the MPC8347E.

Figure 1. MPC8347E Block Diagram

Major features of the MPC8347E are as follows:

- Embedded PowerPC e300 processor core; operates at up to 667 MHz
 - High-performance, superscalar processor core
 - Floating-point, integer, load/store, system register, and branch processing units
 - 32-Kbyte instruction cache, 32-Kbyte data cache
 - Lockable portion of L1 cache
 - Dynamic power management
 - Software-compatible with the other Freescale processor families that implement Power Architecture technology
- Double data rate, DDR SDRAM memory controller
 - Programmable timing for DDR-1 SDRAM
 - 32- or 64-bit data interface, up to 333-MHz data rate for TBGA, 266 MHz for PBGA
 - Four banks of memory, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbit to 1 Gbit with x8/x16 data ports
 - Full error checking and correction (ECC) support
 - Page mode support (up to 16 simultaneous open pages)
 - Contiguous or discontiguous memory mapping
 - Read-modify-write support
 - Sleep mode for self-refresh SDRAM
 - Auto refresh

- Programmable field size up to 2048 bits
- Elliptic curve cryptography
- F2m and F(p) modes
- Programmable field size up to 511 bits
- Data encryption standard (DES) execution unit (DEU)
 - DES and 3DES algorithms
 - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
 - ECB and CBC modes for both DES and 3DES
- Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric-key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, and counter (CTR) modes
- ARC four execution unit (AFEU)
 - Stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
- Message digest execution unit (MDEU)
 - SHA with 160- or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- Random number generator (RNG)
- Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - USB on-the-go mode with both device and host functionality
 - Complies with USB specification Rev. 2.0
 - Can operate as a stand-alone USB device
 - One upstream facing port
 - Six programmable USB endpoints
 - Can operate as a stand-alone USB host controller
 - USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
 - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
 - External PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)
- Universal serial bus (USB) multi-port host controller
 - Can operate as a stand-alone USB host controller
 - USB root hub with one or two downstream-facing ports

Clock Input Timing

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8347E.

4.1 DC Electrical Characteristics

Table 7 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8347E.

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	_	V _{IH}	2.7	OV _{DD} + 0.3	V
Input low voltage	_	V _{IL}	-0.3	0.4	V
CLKIN input current	$0 V \le V_{IN} \le OV_{DD}$	I _{IN}	—	±10	μΑ
PCI_SYNC_IN input current	$\begin{array}{c} 0 \ V \leq V_{IN} \leq 0.5 \ V \ or \\ OV_{DD} - 0.5 \ V \leq V_{IN} \leq OV_{DD} \end{array}$	I _{IN}	—	±10	μΑ
PCI_SYNC_IN input current	$0.5 \text{ V} \leq \!$	I _{IN}	—	±50	μA

 Table 6. CLKIN DC Timing Specifications

4.2 AC Electrical Characteristics

The primary clock source for the MPC8347E can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Table 7 provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the MPC8347E.

Table 7. CLKIN AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
CLKIN/PCI_CLK frequency	f CLKIN	_	—	66	MHz	1, 6
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	_	ns	_
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	_		—	±150	ps	4, 5

Notes:

1. **Caution:** The system, core, USB, security, and TSEC must not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter—short term and long term—and is guaranteed by design.

5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

6. The Spread spectrum clocking. Is allowed with 1% input frequency down-spread at maximum 50KHz modulation rate regardless of input frequency.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8347E.

5.1 **RESET DC Electrical Characteristics**

Table 8 provides the DC electrical characteristics for the RESET pins of the MPC8347E.

Table 8.	RESET	Pins DC	Electrical	Characteristics'	

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μΑ
Output high voltage ²	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

5.2 **RESET AC Electrical Characteristics**

Table 9 provides the reset initialization AC timing specifications of the MPC8347E.

Table 9. RESET Initialization Timing Specifications

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	_	^t PCI_SYNC_IN	1
Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8347E is in PCI host mode	32	_	tCLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8347E is in PCI agent mode	32	_	^t PCI_SYNC_IN	1
HRESET/SRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	_	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI host mode	4	_	^t clkin	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI agent mode	4	_	^t PCI_SYNC_IN	1

DDR SDRAM

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode (continued)

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MDQS epilogue end	t _{DDKLME}	-0.9	0.3	ns	7

Notes:

- The symbols used for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. Output hold time can be read as DDR timing (DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example, t_{DDKHAS} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes from the high (H) state until outputs (A) are setup (S) or output valid time. Also, t_{DDKLDX} symbolizes DDR timing (DD) for the time t_{MCK} memory clock reference (K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.
 </sub>
- 2. All MCK/MCK referenced measurements are made from the crossing of the two signals ±0.1 V.
- 3. In the source synchronous mode, MCK/MCK can be shifted in 1/4 applied cycle increments through the clock control register. For the skew measurements referenced for t_{AOSKEW} it is assumed that the clock adjustment is set to align the address/command valid with the rising edge of MCK.
- 4. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS. For the ADDR/CMD setup and hold specifications, it is assumed that the clock control register is set to adjust the memory clocks by 1/2 applied cycle.
- 5. Note that t_{DDKHMH} follows the symbol conventions described in note 1. For example, t_{DDKHMH} describes the DDR timing (DD) from the rising edge of the MCK(n) clock (KH) until the MDQS signal is valid (MH). t_{DDKHMH} can be modified through control of the DQSS override bits in the TIMING_CFG_2 register. In source synchronous mode, this will typically be set to the same delay as the clock adjust in the CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same adjustment value. See the MPC8349E PowerQUICC[™] II Pro Integrated Host Processor Family Reference Manual, for a description and understanding of the timing modifications enabled by use of these bits.
- 6. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC (MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the MPC8347E.
- 7. All outputs are referenced to the rising edge of MCK(n) at the pins of the MPC8347E. Note that t_{DDKHMP} follows the symbol conventions described in note 1.

Figure 5 shows the DDR SDRAM output timing for address skew with respect to any MCK.

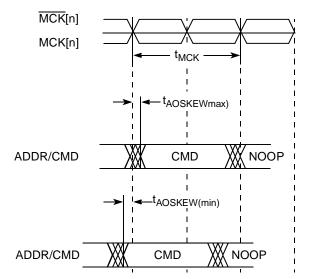


Figure 5. Timing Diagram for t_{AOSKEW} Measurement

Figure 6 provides the AC test load for the DDR bus.

Figure 12 shows the MII receive AC timing diagram.

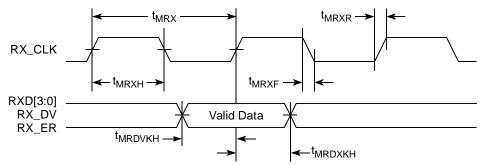


Figure 12. MII Receive AC Timing Diagram

8.2.3 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.3.1 TBI Transmit AC Timing Specifications

Table 25 provides the TBI transmit AC timing specifications.

Table 25. TBI Transmit AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{OV}_{\text{DD}}$ of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{TTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	_	60	%
GTX_CLK to TBI data TXD[7:0], TX_ER, TX_EN delay	t _{TTKHDX}	1.0	—	5.0	ns
GTX_CLK clock rise, V _{IL} (min) to V _{IH} (max)	t _{TTXR}	—	—	1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{TTXF}	—	—	1.0	ns
GTX_CLK125 reference clock period	t _{G125} 2	—	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	45	—	55	ns

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

2. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention

8.3.2 MII Management AC Electrical Specifications

Table 30 provides the MII management AC timing specifications.

Table 30. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10% or 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}		2.5		MHz	2
MDC period	t _{MDC}	_	400	—	ns	
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	
MDC to MDIO delay	t _{MDKHDX}	10	—	170	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	
MDC rise time	t _{MDCR}		_	10	ns	
MDC fall time	t _{MDHF}	_	_	10	ns	

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

- 2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a csb_clk of 333 MHz, the delay is 58 ns).

Figure 16 shows the MII management AC timing diagram.

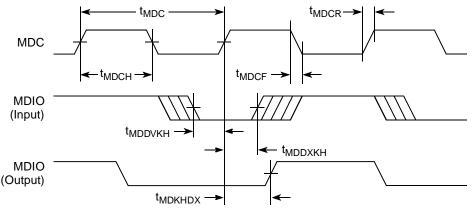


Figure 16. MII Management Interface Timing Diagram

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1	—	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	3.8	ns	8

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to the rising edge of LSYNC_IN.

- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on the LALE output pin equals the load on the LAD output pins.
- 8. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

Table 35. Local Bus General Timing Parameters—DLL Bypass⁹

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	15	_	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	_	ns	3, 4
Input hold from local bus clock	t _{lbixkh}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	_	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5		ns	7

15 GPIO

This section describes the DC and AC electrical specifications for the GPIO.

15.1 GPIO DC Electrical Characteristics

Table 45 provides the DC electrical characteristics for the MPC8347E GPIO.

Table 45. GPIO DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μΑ
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

15.2 GPIO AC Timing Specifications

Table 46 provides the GPIO input and output AC timing specifications.

Table 46. GPIO Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

 GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation.

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MPH1_NXT/DR_SESS_VLD_NXT	D27	Ι	OV _{DD}	
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	A28	I/O	OV _{DD}	
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	F26	0	OV _{DD}	
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	E27	I	OV _{DD}	
MPH1_PCTL0/DR_TX_VALID_PCTL0	A29	0	OV _{DD}	
MPH1_PCTL1/DR_TX_VALIDH_PCTL1	D28	0	OV _{DD}	
MPH1_CLK/DR_CLK	B29	I	OV _{DD}	
	USB Port 0			
MPH0_D0_ENABLEN/DR_D8_CHGVBUS	C29	I/O	OV _{DD}	
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS	A30	I/O	OV _{DD}	
MPH0_D2_VMO_SE0/DR_D10_DPPD	E28	I/O	OV _{DD}	
MPH0_D3_SPEED/DR_D11_DMMD	B30	I/O	OV _{DD}	
MPH0_D4_DP/DR_D12_VBUS_VLD	C30	I/O	OV _{DD}	
MPH0_D5_DM/DR_D13_SESS_END	A31	I/O	OV _{DD}	
MPH0_D6_SER_RCV/DR_D14	B31	I/O	OV _{DD}	
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP	C31	I/O	OV _{DD}	
MPH0_NXT/DR_RX_ACTIVE_ID	B32	I	OV _{DD}	
MPH0_DIR_DPPULLUP/DR_RESET	A32	I/O	OV _{DD}	
MPH0_STP_SUSPEND/DR_TX_READY	A33	I/O	OV _{DD}	
MPH0_PWRFAULT/DR_RX_VALIDH	C32	I	OV _{DD}	
MPH0_PCTL0/DR_LINE_STATE0	D31	I/O	OV _{DD}	
MPH0_PCTL1/DR_LINE_STATE1	E30	I/O	OV _{DD}	
MPH0_CLK/DR_RX_VALID	B33	I	OV _{DD}	
Р	rogrammable Interrupt Controller			
MCP_OUT	AN33	0	OV _{DD}	2
IRQ0/MCP_IN/GPIO2[12]	C19	I/O	OV _{DD}	
IRQ[1:5]/GPIO2[13:17]	C22, A22, D21, C21, B21	I/O	OV _{DD}	
IRQ[6]/GPIO2[18]/CKSTOP_OUT	A21	I/O	OV _{DD}	
IRQ[7]/GPIO2[19]/CKSTOP_IN	C20	I/O	OV _{DD}	
	Ethernet Management Interface	1	1	
EC_MDC	A7	0	LV _{DD1}	
EC_MDIO	E9	I/O	LV _{DD1}	2

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Table 51. MPC8347E (TBGA)	Pinout Listing (continued)
---------------------------	----------------------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	System Control			
PORESET	C18	I	OV _{DD}	
HRESET	B18	I/O	OV _{DD}	1
SRESET	D18	I/O	OV _{DD}	2
	Thermal Management			<u>.</u>
THERM0	K32	I		9
	Power and Ground Signals			
AV _{DD} 1	L31	Power for e300 PLL (1.2 V)	AV _{DD} 1	
AV _{DD} 2	AP12	Power for system PLL (1.2 V)	AV _{DD} 2	
AV _{DD} 3	AE1	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	AJ13	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	 A1, A34, C1, C7, C10, C11, C15, C23, C25, C28, D1, D8, D20, D30, E7, E13, E15, E17, E18, E21, E23, E25, E32, F6, F19, F27, F30, F34, G31, H5, J4, J34, K30, L5, M2, M5, M30, M33, N3, N5, P30, R5, R32, T5, T30, U6, U29, U33, V2, V5, V30, W6, W30, Y30, AA2, AA30, AB2, AB6, AB30, AC3, AC6, AD31, AE5, AF2, AF5, AF31, AG30, AG31, AH4, AJ3, AJ19, AJ22, AK7, AK13, AK14, AK16, AK18, AK20, AK25, AK28, AL3, AL5, AL10, AL12, AL22, AL27, AM1, AM6, AM7, AN12, AN17, AN34, AP1, AP8, AP34 			
GV _{DD}	A2, E2, G5, G6, J5, K4, K5, L4, N4, P5, R6, T6, U5, V1, W5, Y5, AA4, AB3, AC4, AD5, AF3, AG5, AH2, AH5, AH6, AJ6, AK6, AK8, AK9, AL6	Power for DDR DRAM I/O voltage (2.5 V)	GV _{DD}	
LV _{DD} 1	C9, D11	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD} 2	C6, D9	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	E19, E29, F7, F9, F11,F13, F15, F17, F18, F21, F23, F25, F29, H29, J6, K29, M29, N6, P29, T29, U30, V6, V29, W29, AB29, AC5, AD29, AF6, AF29, AH29, AJ8, AJ12, AJ14, AJ16, AJ18, AJ20, AJ21, AJ23, AJ25, AJ26, AJ27, AJ28, AJ29, AK10	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B22, B28, C16, C17, C24, C26, D13, D15, D19, D29, E31, F28, G33, H30, L29, L32, N32, P31, R31, U32, W31, Y29, AA29, AC30, AE31, AF30, AG29, AJ17, AJ30, AK11, AL15, AL19, AL21, AL29, AL30, AM20, AM23, AM24, AM26, AM28, AN11, AN13	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	
MVREF1	M3	I	DDR reference voltage	
MVREF2	AD2	I	DDR reference voltage	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MCAS	AG6	0	GV _{DD}	
MCS[0:3]	AE7, AH7, AH4, AF2	0	GV _{DD}	
MCKE[0:1]	AG23, AH23	0	GV _{DD}	3
MCK[0:5]	AH15, AE24, AE2, AF14, AE23, AD3	0	GV _{DD}	
MCK[0:5]	AG15, AD23, AE3, AG14, AF24, AD2	0	GV _{DD}	
(The	Pins Reserved for Future DDR2 ey should be left unconnected for MPC834	7)		1
MODT[0:3]	AG5, AD4, AH6, AF4	_	_	
MBA[2]	AD22			
SPARE1	AF12	_	_	7
SPARE2	AG11	_	_	6
	Local Bus Controller Interface			
LAD[0:31]	T4, T5, T1, R2, R3, T2, R1, R4, P1, P2, P3, P4, N1, N4, N2, N3, M1, M2, M3, N5, M4, L1, L2, L3, K1, M5, K2, K3, J1, J2, L5, J3	I/O	OV _{DD}	
LDP[0]/CKSTOP_OUT	H1	I/O	OV _{DD}	
LDP[1]/CKSTOP_IN	К5	I/O	OV _{DD}	
LDP[2]	H2	I/O	OV _{DD}	
LDP[3]	G1	I/O	OV _{DD}	
LA[27:31]	J4, H3, G2, F1, G3	0	OV _{DD}	
LCS[0:3]	J5, H4, F2, E1	0	OV _{DD}	
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	F3, G4, D1, E2	0	OV _{DD}	
LBCTL	H5	0	OV _{DD}	
LALE	E3	0	OV _{DD}	
LGPL0/LSDA10/cfg_reset_source0	F4	I/O	OV _{DD}	
LGPL1/LSDWE/cfg_reset_source1	D2	I/O	OV _{DD}	
LGPL2/LSDRAS/LOE	C1	0	OV _{DD}	
LGPL3/LSDCAS/cfg_reset_source2	C2	I/O	OV _{DD}	
LGPL4/LGTA/LUPWAIT/LPBSE	C3	I/O	OV _{DD}	
LGPL5/cfg_clkin_div	В3	I/O	OV _{DD}	
LCKE	E4	0	OV _{DD}	
LCLK[0:2]	D4, A3, C4	0	OV _{DD}	
LSYNC_OUT	U3	0	OV _{DD}	
LSYNC_IN	Y2	I	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TSEC1_TXD[7:4]/GPIO2[27:30]	N28, P25, P26, P27	I/O	OV _{DD}	
TSEC1_TXD[3:0]	V28, V27, V26, W28	0	LV _{DD1}	10
TSEC1_TX_EN	W27	0	LV _{DD1}	
TSEC1_TX_ER/GPIO2[31]	N24	I/O	OV _{DD}	
Three-Spec	ed Ethernet Controller (Gigabit Ethe	ernet 2)	1	1
TSEC2_COL/GPIO1[21]	P28	I/O	OV _{DD}	
TSEC2_CRS/GPIO1[22]	AC28	I/O	LV _{DD2}	
TSEC2_GTX_CLK	AC27	0	LV _{DD2}	
TSEC2_RX_CLK	AB25	I	LV _{DD2}	
TSEC2_RX_DV/GPIO1[23]	AC26	I/O	LV _{DD2}	
TSEC2_RXD[7:4]/GPIO1[26:29]	R28, T24, T25, T26	I/O	OV _{DD}	
TSEC2_RXD[3:0]/GPIO1[13:16]	AA25, AA26, AA27, AA28	I/O	LV _{DD2}	
TSEC2_RX_ER/GPIO1[25]	R25	I/O	OV _{DD}	
TSEC2_TXD[7]/GPIO1[31]	T27	I/O	OV _{DD}	
TSEC2_TXD[6]/DR_XCVR_TERM_SEL	T28	0	OV _{DD}	
TSEC2_TXD[5]/DR_UTMI_OPMODE1	U28	0	OV _{DD}	
TSEC2_TXD[4]/DR_UTMI_OPMODE0	U27	0	OV _{DD}	
TSEC2_TXD[3:0]/GPIO1[17:20]	AB26, AB27, AA24, AB28	I/O	LV _{DD2}	
TSEC2_TX_ER/GPIO1[24]	R27	I/O	OV _{DD}	
TSEC2_TX_EN/GPIO1[12]	AD28	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	R26	I/O	OV _{DD}	
	DUART		1	4
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1]	B4, A4	0	OV _{DD}	
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3]	D5, C5	I/O	OV _{DD}	
UART_CTS[1]/MSRCID4/LSRCID4	B5	I/O	OV _{DD}	
UART_CTS[2]/MDVAL/LDVAL	A5	I/O	OV _{DD}	
UART_RTS[1:2]	D6, C6	0	OV _{DD}	
	I ² C interface		1	4
IIC1_SDA	E5	I/O	OV _{DD}	2
IIC1_SCL	A6	I/O	OV _{DD}	2
IIC2_SDA	В6	I/O	OV _{DD}	2
IIC2_SCL	E7	I/O	OV _{DD}	2
	SPI	·	•	<u> </u>
SPIMOSI	D7	I/O	OV _{DD}	

19.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 56 shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	× 16
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111	× 7
1000	× 8
1001	× 9
1010	× 10
1011	× 11
1100	× 12
1101	× 13
1110	× 14
1111	× 15

Table 56. System PLL Multiplication Factors

As described in Section 19, "Clocking," the LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 57 and Table 58 show the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

Thermal

many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

20.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, use the thermal characterization parameter (Ψ_{JT}) to determine the junction temperature and a measure of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta IA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 63 and Table 64 show heat sink thermal resistance for TBGA and PBGA of the MPC8347E.

Table 63. Heat Sink and Thermal Resistance of MPC8347E (TBGA)

Heat Sink Assuming Thermal Grease	Air Flow	35 imes 35 mm TBGA
neat Sink Assuming Merinal Grease		Thermal Resistance
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	10
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	6.5
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	5.6
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	8.4
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	4.7
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	4
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	5.7
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	3.5
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	2.7
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	6.7
MEI, 75 \times 85 \times 12 no adjacent board, extrusion	1 m/s	4.1
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	2.8
MEI, 75 \times 85 \times 12 mm, adjacent board, 40 mm side bypass	1 m/s	3.1

Table 64. Heat Sink and Thermal Resistance of MPC8347E (PBGA)

Heat Sink Assuming Thermal Grease	Air Flow	$29 \times 29 \text{ mm PBGA}$	
Treat onic Assuming Thermal Orease	All How	Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	13.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	9.6	

22 Document Revision History

Table 66 provides a revision history of this document.

Table 66. Docum	ent Revision History
-----------------	----------------------

Revision	Date	Substantive Change(s)
11	2/2009	In Section 21.1, "System Clocking," removed "(AVDD1)" and "(AVDD2") from bulleted list. In Section 21.2, "PLL Power Supply Filtering," in the second paragraph, changed "provide five independent filter circuits," and "the five AVDD pins" to provide four independent filter circuits," and "the four AVDD pins."
		In Table 35, removed row for rise time (tl2CR). Removed minimum value of tl2CF. Added note 5 stating that the device does not follow the I2C-BUS Specifications version 2.1 regarding the tl2CF AC
		parameter. In Table 54, corrected the max csb_clk to 266 MHz.
		In Table 60, added PLL configurations 903, 923, A03, A23, and 503 for 533 MHz
		In Table 35, corrected t_{LBKHOV} parametr to t_{LBKLOV} (output data is driven on falling edge of clock in DLL bypass mode). Similarly, made the same correction to Figure 21, Figure 23, and Figure 24 for output signals.
		Added Figure 1 and Figure 4.
		In Table 9.2, clarified that AC table is for ULPI only.
		Added footnote 4 to Table 67.
		In Table 67, updated note 1 to say the following: "For temperature range = C, processor frequency is up to 667(TBGA) with a platform frequency of 333 and limited to 400 (PBGA) with a platform frequency of 266."
		Added footnote 10 and 11 to Table 51 and Table 52.
		In Table 51, Table 52, updated note 11 to say the following: "SEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net."
		Added footnote 6 to Table 7.
		In Table 7, updated the note 6 to say the following: "The Spread spectrum clocking. Is allowed with 1% input frequency down-spread at maximum 50KHz modulation rate regardless of input frequency."
		In 8.1.1, removed the note "The potential applied to the input of a GMII, MII, TBI, RGMII, or RTBI receiver may exceed the potential of the receiver power supply (that is, a RGMII driver powered from a 3.6 V supply driving VOH into a RGMII receiver powered from a 2.5-V supply). Tolerance for dissimilar RGMII driver and receiver supply potentials is implicit in these specifications."
10	4/2007	In Table 3, "Output Drive Capability," changed the values in the Output Impedance column and added USB to the seventh row.
		In Table 54, "Operating Frequencies for TBGA," added column for 400 MHz. In Section 21.7, "Pull-Up Resistor Requirements," deleted last two paragraphs and after first paragraph, added a new paragraph. Deleted Section 21.8, "JTAG Configuration Signals," and Figure 43, "JTAG Interface Connection."
9	3/2007	In Table 54, "Operating Frequencies for TBGA," in the 'Coherent system bus frequency (<i>csb_clk</i>)' row, changed the value in the 533 MHz column to 100–333.
		In Table 60, "Suggested PLL Configurations," under the subhead, '33 MHz CLKIN/PCI_CLK Options,' added row A03 between Ref. No. 724 and 804. Under the subhead '66 MHz CLKIN/PCI_CLK Options,' added row 503 between Ref. No. 305 and 404. For Ref. No. 306, changed the CORE PLL value to 0000110.
		In Section 23, "Ordering Information," replaced first paragraph and added a note. In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced first paragraph.

Ordering Information

THIS PAGE INTENTIONALLY LEFT BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IIEEE 802.3, 802.3u, 802.3x, 802.3z, 802.3ac, 802.11i, and 1149.1 are trademarks or registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005–2009. All rights reserved.

Document Number: MPC8347EEC Rev. 11 02/2009

