



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Active                                                      |
|---------------------------------|-------------------------------------------------------------|
| Core Processor                  | PowerPC e300                                                |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                              |
| Speed                           | 400MHz                                                      |
| Co-Processors/DSP               | -                                                           |
| RAM Controllers                 | DDR                                                         |
| Graphics Acceleration           | No                                                          |
| Display & Interface Controllers | -                                                           |
| Ethernet                        | 10/100/1000Mbps (2)                                         |
| SATA                            | -                                                           |
| USB                             | USB 2.0 + PHY (2)                                           |
| Voltage - I/O                   | 2.5V, 3.3V                                                  |
| Operating Temperature           | -40°C ~ 105°C (TA)                                          |
| Security Features               | -                                                           |
| Package / Case                  | 620-BBGA Exposed Pad                                        |
| Supplier Device Package         | 620-HBGA (29x29)                                            |
| Purchase URL                    | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8347cvragdb |
|                                 |                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8347E. The MPC8347E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

# 2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

# 2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

|                                              | Characteristic                                                                                   | Symbol                                                         | Max Value                        | Unit | Notes |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------|------|-------|--|--|--|--|--|
| Core supply voltage                          |                                                                                                  | V <sub>DD</sub>                                                | -0.3 to 1.32                     | V    |       |  |  |  |  |  |
| PLL supply voltage                           |                                                                                                  | AV <sub>DD</sub>                                               | -0.3 to 1.32                     | V    |       |  |  |  |  |  |
| DDR DRAM I/O volta                           | age                                                                                              | GV <sub>DD</sub>                                               | -0.3 to 3.63                     | V    |       |  |  |  |  |  |
| Three-speed Etherne                          | et I/O, MII management voltage                                                                   | LV <sub>DD</sub>                                               | -0.3 to 3.63                     | V    |       |  |  |  |  |  |
| PCI, local bus, DUAF<br>and JTAG I/O voltage | RT, system control and power management, $I^2C$ ,                                                | er management, I <sup>2</sup> C, OV <sub>DD</sub> -0.3 to 3.63 |                                  | V    |       |  |  |  |  |  |
| Input voltage                                | DDR DRAM signals                                                                                 | MV <sub>IN</sub>                                               | –0.3 to (GV <sub>DD</sub> + 0.3) | V    | 2, 5  |  |  |  |  |  |
|                                              | DDR DRAM reference                                                                               | MV <sub>REF</sub>                                              | –0.3 to (GV <sub>DD</sub> + 0.3) | V    | 2, 5  |  |  |  |  |  |
|                                              | Three-speed Ethernet signals                                                                     | LV <sub>IN</sub>                                               | -0.3 to (LV <sub>DD</sub> + 0.3) | V    | 4, 5  |  |  |  |  |  |
|                                              | Local bus, DUART, CLKIN, system control and power management, I <sup>2</sup> C, and JTAG signals | OV <sub>IN</sub>                                               | –0.3 to (OV <sub>DD</sub> + 0.3) | V    | 3, 5  |  |  |  |  |  |
|                                              | PCI                                                                                              | OV <sub>IN</sub>                                               | –0.3 to (OV <sub>DD</sub> + 0.3) | V    | 6     |  |  |  |  |  |
| Storage temperature                          | range                                                                                            | T <sub>STG</sub>                                               | –55 to 150                       | °C   |       |  |  |  |  |  |

### Table 1. Absolute Maximum Ratings<sup>1</sup>

Notes:

- <sup>1</sup> Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- <sup>2</sup> Caution: MV<sub>IN</sub> must not exceed GV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>3</sup> Caution: OV<sub>IN</sub> must not exceed OV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>4</sup> Caution: LV<sub>IN</sub> must not exceed LV<sub>DD</sub> by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- <sup>5</sup> (M,L,O)V<sub>IN</sub> and MV<sub>REF</sub> may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- <sup>6</sup> OV<sub>IN</sub> on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

# **3** Power Characteristics

The estimated typical power dissipation for the MPC8347E device is shown in Table 4.

|      | Core<br>Frequency<br>(MHz) | CSB<br>Frequency<br>(MHz) | Typical at T <sub>J</sub> = 65 | Typical <sup>2,3</sup> | Maximum <sup>4</sup> | Unit |
|------|----------------------------|---------------------------|--------------------------------|------------------------|----------------------|------|
| PBGA | 266                        | 266                       | 1.3                            | 1.6                    | 1.8                  | W    |
|      |                            | 133                       | 1.1                            | 1.4                    | 1.6                  | W    |
|      | 400                        | 266                       | 1.5                            | 1.9                    | 2.1                  | W    |
|      |                            | 133                       | 1.4                            | 1.7                    | 1.9                  | W    |
|      | 400                        | 200                       | 1.5                            | 1.8                    | 2.0                  | W    |
|      |                            | 100                       | 1.3                            | 1.7                    | 1.9                  | W    |
| TBGA | 333                        | 333                       | 2.0                            | 3.0                    | 3.2                  | W    |
|      |                            | 166                       | 1.8                            | 2.8                    | 2.9                  | W    |
|      | 400                        | 266                       | 2.1                            | 3.0                    | 3.3                  | W    |
|      |                            | 133                       | 1.9                            | 2.9                    | 3.1                  | W    |
|      | 450                        | 300                       | 2.3                            | 3.2                    | 3.5                  | W    |
|      |                            | 150                       | 2.1                            | 3.0                    | 3.2                  | W    |
|      | 500                        | 333                       | 2.4                            | 3.3                    | 3.6                  | W    |
|      |                            | 166                       | 2.2                            | 3.1                    | 3.4                  | W    |
|      | 533                        | 266                       | 2.4                            | 3.3                    | 3.6                  | W    |
|      |                            | 133                       | 2.2                            | 3.1                    | 3.4                  | W    |

#### Table 4. MPC8347E Power Dissipation<sup>1</sup>

<sup>1</sup> The values do not include I/O supply power (OV<sub>DD</sub>, LV<sub>DD</sub>, GV<sub>DD</sub>) or AV<sub>DD</sub>. For I/O power values, see Table 5.

<sup>2</sup> Typical power is based on a voltage of  $V_{DD}$  = 1.2 V, a junction temperature of  $T_J$  = 105°C, and a Dhrystone benchmark application.

<sup>3</sup> Thermal solutions may need to design to a value higher than typical power based on the end application, T<sub>A</sub> target, and I/O power.

<sup>4</sup> Maximum power is based on a voltage of  $V_{DD}$  = 1.2 V, worst case process, a junction temperature of  $T_J$  = 105°C, and an artificial smoke test.

# 5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8347E.

# 5.1 **RESET DC Electrical Characteristics**

Table 8 provides the DC electrical characteristics for the RESET pins of the MPC8347E.

| Table 8. | RESET | Pins DC | Electrical | Characteristics' |
|----------|-------|---------|------------|------------------|
|          |       |         |            |                  |

| Characteristic                   | Symbol          | Condition                 | Min  | Max                    | Unit |
|----------------------------------|-----------------|---------------------------|------|------------------------|------|
| Input high voltage               | V <sub>IH</sub> |                           | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage                | V <sub>IL</sub> |                           | -0.3 | 0.8                    | V    |
| Input current                    | I <sub>IN</sub> |                           |      | ±5                     | μA   |
| Output high voltage <sup>2</sup> | V <sub>OH</sub> | I <sub>OH</sub> = -8.0 mA | 2.4  | —                      | V    |
| Output low voltage               | V <sub>OL</sub> | I <sub>OL</sub> = 8.0 mA  | _    | 0.5                    | V    |
| Output low voltage               | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA  | _    | 0.4                    | V    |

#### Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V<sub>OH</sub> is not relevant for those pins.

## 5.2 **RESET AC Electrical Characteristics**

Table 9 provides the reset initialization AC timing specifications of the MPC8347E.

Table 9. RESET Initialization Timing Specifications

| Parameter/Condition                                                                                                                                                          | Min | Max | Unit                     | Notes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------|-------|
| Required assertion time of HRESET or SRESET (input) to activate reset flow                                                                                                   | 32  | —   | t <sub>PCI_SYNC_IN</sub> | 1     |
| Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8347E is in PCI host mode                                                                  | 32  | —   | <sup>t</sup> CLKIN       | 2     |
| Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8347E is in PCI agent mode                                                           | 32  | —   | t <sub>PCI_SYNC_IN</sub> | 1     |
| HRESET/SRESET assertion (output)                                                                                                                                             | 512 | —   | t <sub>PCI_SYNC_IN</sub> | 1     |
| HRESET negation to SRESET negation (output)                                                                                                                                  | 16  | —   | t <sub>PCI_SYNC_IN</sub> | 1     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with<br>respect to negation of PORESET when the MPC8347E is in PCI<br>host mode  | 4   | _   | <sup>t</sup> CLKIN       | 2     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with<br>respect to negation of PORESET when the MPC8347E is in PCI<br>agent mode | 4   | _   | <sup>t</sup> pci_sync_in | 1     |

# 10 Local Bus

This section describes the DC and AC electrical specifications for the local bus interface of the MPC8347E.

# **10.1** Local Bus DC Electrical Characteristics

Table 33 provides the DC electrical characteristics for the local bus interface.

### Table 33. Local Bus DC Electrical Characteristics

| Parameter                                            | Symbol          | Min                    | Max                    | Unit |
|------------------------------------------------------|-----------------|------------------------|------------------------|------|
| High-level input voltage                             | V <sub>IH</sub> | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage                              | V <sub>IL</sub> | -0.3                   | 0.8                    | V    |
| Input current                                        | I <sub>IN</sub> | —                      | ±5                     | μA   |
| High-level output voltage, I <sub>OH</sub> = -100 μA | V <sub>OH</sub> | OV <sub>DD</sub> – 0.2 | —                      | V    |
| Low-level output voltage, $I_{OL} = 100 \ \mu A$     | V <sub>OL</sub> | —                      | 0.2                    | V    |

### **10.2 Local Bus AC Electrical Specification**

Table 34 and Table 35 describe the general timing parameters of the local bus interface of the MPC8347E.

| Parameter                                                   | Symbol <sup>1</sup>  | Min | Мах | Unit | Notes |
|-------------------------------------------------------------|----------------------|-----|-----|------|-------|
| Local bus cycle time                                        | t <sub>LBK</sub>     | 7.5 | —   | ns   | 2     |
| Input setup to local bus clock (except LUPWAIT)             | t <sub>LBIVKH1</sub> | 1.5 | _   | ns   | 3, 4  |
| LUPWAIT input setup to local bus clock                      | t <sub>LBIVKH2</sub> | 2.2 | —   | ns   | 3, 4  |
| Input hold from local bus clock (except LUPWAIT)            | t <sub>LBIXKH1</sub> | 1.0 | —   | ns   | 3, 4  |
| LUPWAIT Input hold from local bus clock                     | t <sub>LBIXKH2</sub> | 1.0 | —   | ns   | 3, 4  |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT1</sub> | 1.5 | —   | ns   | 5     |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT2</sub> | 3   | —   | ns   | 6     |
| LALE output fall to LAD output transition (LATCH hold time) | t <sub>LBOTOT3</sub> | 2.5 | —   | ns   | 7     |
| Local bus clock to LALE rise                                | t <sub>LBKHLR</sub>  | —   | 4.5 | ns   |       |
| Local bus clock to output valid (except LAD/LDP and LALE)   | t <sub>LBKHOV1</sub> | —   | 4.5 | ns   |       |
| Local bus clock to data valid for LAD/LDP                   | t <sub>LBKHOV2</sub> | —   | 4.5 | ns   | 3     |
| Local bus clock to address valid for LAD                    | t <sub>LBKHOV3</sub> | —   | 4.5 | ns   | 3     |
| Output hold from local bus clock (except LAD/LDP and LALE)  | t <sub>LBKHOX1</sub> | 1   | _   | ns   | 3     |

Table 34. Local Bus General Timing Parameters—DLL On

#### Local Bus

Figure 20 through Figure 25 show the local bus signals.



Figure 20. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)



Figure 21. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

13 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8347E.

## **13.1 PCI DC Electrical Characteristics**

Table 40 provides the DC electrical characteristics for the PCI interface of the MPC8347E.

| Parameter                 | Symbol          | Test Condition                                       | Min                    | Max                    | Unit |
|---------------------------|-----------------|------------------------------------------------------|------------------------|------------------------|------|
| High-level input voltage  | V <sub>IH</sub> | $V_{OUT} \ge V_{OH}$ (min) or                        | 2                      | OV <sub>DD</sub> + 0.3 | V    |
| Low-level input voltage   | V <sub>IL</sub> | $V_{OUT} \le V_{OL}$ (max)                           | -0.3                   | 0.8                    | V    |
| Input current             | I <sub>IN</sub> | $V_{IN}^{1} = 0 V \text{ or } V_{IN} = OV_{DD}$      | —                      | ±5                     | μA   |
| High-level output voltage | V <sub>OH</sub> | OV <sub>DD</sub> = min,<br>I <sub>OH</sub> = -100 μA | OV <sub>DD</sub> – 0.2 | _                      | V    |
| Low-level output voltage  | V <sub>OL</sub> | OV <sub>DD</sub> = min,<br>I <sub>OL</sub> = 100 μA  | _                      | 0.2                    | V    |

 Table 40. PCI DC Electrical Characteristics

Note:

1. The symbol  $V_{IN}$ , in this case, represents the  $OV_{IN}$  symbol referenced in Table 1.

# 13.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8347E. Note that the PCI\_CLK or PCI\_SYNC\_IN signal is used as the PCI input clock depending on whether the MPC8347E is configured as a host or agent device. Table 41 provides the PCI AC timing specifications at 66 MHz.

| Table 41. PCI AC | Timing Specifications a | t 66 MHz <sup>1</sup> |
|------------------|-------------------------|-----------------------|
|------------------|-------------------------|-----------------------|

| Parameter                      | Symbol <sup>2</sup> | Min | Мах | Unit | Notes |
|--------------------------------|---------------------|-----|-----|------|-------|
| Clock to output valid          | <sup>t</sup> PCKHOV | —   | 6.0 | ns   | 3     |
| Output hold from clock         | t <sub>PCKHOX</sub> | 1   | —   | ns   | 3     |
| Clock to output high impedance | t <sub>PCKHOZ</sub> | —   | 14  | ns   | 3, 4  |
| Input setup to clock           | t <sub>PCIVKH</sub> | 3.0 | —   | ns   | 3, 5  |

Timers

# 14 Timers

This section describes the DC and AC electrical specifications for the timers.

# 14.1 Timer DC Electrical Characteristics

Table 43 provides the DC electrical characteristics for the MPC8347E timer pins, including TIN,  $\overline{\text{TOUT}}$ ,  $\overline{\text{TGATE}}$ , and RTC\_CLK.

| Characteristic      | Symbol          | Condition                 | Min  | Мах                    | Unit |
|---------------------|-----------------|---------------------------|------|------------------------|------|
| Input high voltage  | V <sub>IH</sub> |                           | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage   | V <sub>IL</sub> |                           | -0.3 | 0.8                    | V    |
| Input current       | I <sub>IN</sub> |                           |      | ±5                     | μA   |
| Output high voltage | V <sub>OH</sub> | I <sub>OH</sub> = -8.0 mA | 2.4  | —                      | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 8.0 mA  | —    | 0.5                    | V    |
| Output low voltage  | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA  | —    | 0.4                    | V    |

Table 43. Timer DC Electrical Characteristics

# 14.2 Timer AC Timing Specifications

Table 44 provides the timer input and output AC timing specifications.

### Table 44. Timers Input AC Timing Specifications<sup>1</sup>

| Characteristic                    | Symbol <sup>2</sup> | Min | Unit |
|-----------------------------------|---------------------|-----|------|
| Timers inputs—minimum pulse width |                     | 20  | ns   |

#### Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t<sub>TIWID</sub> ns to ensure proper operation.

# 18.3 Package Parameters for the MPC8347E PBGA

The package parameters are as provided in the following list. The package type is  $29 \text{ mm} \times 29 \text{ mm}$ , 620 plastic ball grid array (PBGA).

| Package outline         | $29 \text{ mm} \times 29 \text{ mm}$ |
|-------------------------|--------------------------------------|
| Interconnects           | 620                                  |
| Pitch                   | 1.00 mm                              |
| Module height (maximum) | 2.46 mm                              |
| Module height (typical) | 2.23 mm                              |
| Module height (minimum) | 2.00 mm                              |
| Solder balls            | 62 Sn/36 Pb/2 Ag (ZQ package)        |
|                         | 95.5 Sn/0.5 Cu/4Ag (VR package)      |
| Ball diameter (typical) | 0.60 mm                              |

Package and Pin Listings

## 18.4 Mechanical Dimensions for the MPC8347E PBGA

Figure 40 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347E, 620-PBGA package.



#### Notes:

1.All dimensions are in millimeters.

2.Dimensioning and tolerancing per ASME Y14. 5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

### Figure 40. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347E PBGA

| Signal                                     | Package Pin Number               | Pin Type | Power<br>Supply   | Notes |
|--------------------------------------------|----------------------------------|----------|-------------------|-------|
| MPH1_NXT/DR_SESS_VLD_NXT                   | D27                              | I        | OV <sub>DD</sub>  |       |
| MPH1_DIR_DPPULLUP/<br>DR_XCVR_SEL_DPPULLUP | A28                              | I/O      | OV <sub>DD</sub>  |       |
| MPH1_STP_SUSPEND/<br>DR_STP_SUSPEND        | F26                              | 0        | OV <sub>DD</sub>  |       |
| MPH1_PWRFAULT/<br>DR_RX_ERROR_PWRFAULT     | E27                              | I        | OV <sub>DD</sub>  |       |
| MPH1_PCTL0/DR_TX_VALID_PCTL0               | A29                              | 0        | OV <sub>DD</sub>  |       |
| MPH1_PCTL1/DR_TX_VALIDH_PCTL1              | D28                              | 0        | OV <sub>DD</sub>  |       |
| MPH1_CLK/DR_CLK                            | B29                              | I        | OV <sub>DD</sub>  |       |
|                                            | USB Port 0                       |          |                   | 1     |
| MPH0_D0_ENABLEN/DR_D8_CHGVBUS              | C29                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D1_SER_TXD/DR_D9_DCHGVBUS             | A30                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D2_VMO_SE0/DR_D10_DPPD                | E28                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D3_SPEED/DR_D11_DMMD                  | B30                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D4_DP/DR_D12_VBUS_VLD                 | C30                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D5_DM/DR_D13_SESS_END                 | A31                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D6_SER_RCV/DR_D14                     | B31                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D7_DRVVBUS/DR_D15_IDPULLUP            | C31                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_NXT/DR_RX_ACTIVE_ID                   | B32                              | I        | OV <sub>DD</sub>  |       |
| MPH0_DIR_DPPULLUP/DR_RESET                 | A32                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_STP_SUSPEND/DR_TX_READY               | A33                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_PWRFAULT/DR_RX_VALIDH                 | C32                              | I        | OV <sub>DD</sub>  |       |
| MPH0_PCTL0/DR_LINE_STATE0                  | D31                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_PCTL1/DR_LINE_STATE1                  | E30                              | I/O      | OV <sub>DD</sub>  |       |
| MPH0_CLK/DR_RX_VALID                       | B33                              | I        | OV <sub>DD</sub>  |       |
| P                                          | rogrammable Interrupt Controller |          |                   |       |
| MCP_OUT                                    | AN33                             | 0        | OV <sub>DD</sub>  | 2     |
| IRQ0/MCP_IN/GPIO2[12]                      | C19                              | I/O      | OV <sub>DD</sub>  |       |
| IRQ[1:5]/GPIO2[13:17]                      | C22, A22, D21, C21, B21          | I/O      | OV <sub>DD</sub>  |       |
| IRQ[6]/GPIO2[18]/CKSTOP_OUT                | A21                              | I/O      | OV <sub>DD</sub>  |       |
| IRQ[7]/GPIO2[19]/CKSTOP_IN C20             |                                  | I/O      | OV <sub>DD</sub>  |       |
|                                            | Ethernet Management Interface    | 1        | 1                 | 1     |
| EC_MDC                                     | A7                               | 0        | LV <sub>DD1</sub> |       |
| EC_MDIO                                    | E9                               | I/O      | LV <sub>DD1</sub> | 2     |

#### Table 51. MPC8347E (TBGA) Pinout Listing (continued)

| Signal                        | Package Pin Number                     | Pin Type         | Power<br>Supply   | Notes |  |  |
|-------------------------------|----------------------------------------|------------------|-------------------|-------|--|--|
| Gigabit Reference Clock       |                                        |                  |                   |       |  |  |
| EC_GTX_CLK125                 | C8                                     | I                | LV <sub>DD1</sub> |       |  |  |
| Three-Spe                     | ed Ethernet Controller (Gigabit Ethern | et 1)            |                   |       |  |  |
| TSEC1_COL/GPIO2[20]           | A17                                    | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC1_CRS/GPIO2[21]           | F12                                    | I/O              | LV <sub>DD1</sub> |       |  |  |
| TSEC1_GTX_CLK                 | D10                                    | 0                | LV <sub>DD1</sub> | 3     |  |  |
| TSEC1_RX_CLK                  | A11                                    | I                | LV <sub>DD1</sub> |       |  |  |
| TSEC1_RX_DV                   | B11                                    | I                | LV <sub>DD1</sub> |       |  |  |
| TSEC1_RX_ER/GPIO2[26]         | B17                                    | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC1_RXD[7:4]/GPIO2[22:25]   | B16, D16, E16, F16                     | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC1_RXD[3:0]                | E10, A8, F10, B8                       | I                | LV <sub>DD1</sub> |       |  |  |
| TSEC1_TX_CLK                  | D17                                    | I                | OV <sub>DD</sub>  |       |  |  |
| TSEC1_TXD[7:4]/GPIO2[27:30]   | A15, B15, A14, B14                     | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC1_TXD[3:0]                | A10, E11, B10, A9                      | 0                | LV <sub>DD1</sub> | 11    |  |  |
| TSEC1_TX_EN                   | В9                                     | 0                | LV <sub>DD1</sub> |       |  |  |
| TSEC1_TX_ER/GPIO2[31]         | A16                                    | I/O              | OV <sub>DD</sub>  |       |  |  |
| Three-Spe                     | ed Ethernet Controller (Gigabit Ethern | et 2)            |                   |       |  |  |
| TSEC2_COL/GPIO1[21]           | C14                                    | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC2_CRS/GPIO1[22]           | D6                                     | I/O              | LV <sub>DD2</sub> |       |  |  |
| TSEC2_GTX_CLK                 | A4                                     | 0                | LV <sub>DD2</sub> |       |  |  |
| TSEC2_RX_CLK                  | B4                                     | I                | LV <sub>DD2</sub> |       |  |  |
| TSEC2_RX_DV/GPIO1[23]         | E6                                     | I/O              | LV <sub>DD2</sub> |       |  |  |
| TSEC2_RXD[7:4]/GPIO1[26:29]   | A13, B13, C13, A12                     | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC2_RXD[3:0]/GPIO1[13:16]   | D7, A6, E8, B7                         | I/O              | LV <sub>DD2</sub> |       |  |  |
| TSEC2_RX_ER/GPIO1[25]         | D14                                    | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC2_TXD[7]/GPIO1[31]        | B12                                    | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC2_TXD[6]/DR_XCVR_TERM_SEL | C12                                    | 0                | OV <sub>DD</sub>  |       |  |  |
| TSEC2_TXD[5]/DR_UTMI_OPMODE1  | D12                                    | 0                | OV <sub>DD</sub>  |       |  |  |
| TSEC2_TXD[4]/DR_UTMI_OPMODE0  | E12                                    | 0                | OV <sub>DD</sub>  |       |  |  |
| TSEC2_TXD[3:0]/GPIO1[17:20]   | B5, A5, F8, B6                         | I/O              | LV <sub>DD2</sub> |       |  |  |
| TSEC2_TX_ER/GPIO1[24]         | F14                                    | I/O              | OV <sub>DD</sub>  |       |  |  |
| TSEC2_TX_EN/GPIO1[12]         | C5                                     | I/O              | LV <sub>DD2</sub> | 3     |  |  |
| TSEC2_TX_CLK/GPIO1[30]        | I/O                                    | OV <sub>DD</sub> |                   |       |  |  |

### Table 51. MPC8347E (TBGA) Pinout Listing (continued)

| Table 51. MPC8347 | E (TBGA) Pinou | t Listing (continued) |
|-------------------|----------------|-----------------------|
|-------------------|----------------|-----------------------|

| Signal             | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pin Type                                                                                                        | Power<br>Supply    | Notes |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-------|--|--|
|                    | System Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                    |       |  |  |
| PORESET            | C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ļ                                                                                                               | OV <sub>DD</sub>   |       |  |  |
| HRESET             | B18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I/O                                                                                                             | OV <sub>DD</sub>   | 1     |  |  |
| SRESET             | D18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I/O                                                                                                             | OV <sub>DD</sub>   | 2     |  |  |
|                    | Thermal Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                 |                    |       |  |  |
| THERM0             | K32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l                                                                                                               | _                  | 9     |  |  |
|                    | Power and Ground Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                    |       |  |  |
| AV <sub>DD</sub> 1 | L31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Power for e300<br>PLL (1.2 V)                                                                                   | AV <sub>DD</sub> 1 |       |  |  |
| AV <sub>DD</sub> 2 | AP12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power for<br>system PLL<br>(1.2 V)                                                                              | AV <sub>DD</sub> 2 |       |  |  |
| AV <sub>DD</sub> 3 | AE1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Power for DDR<br>DLL (1.2 V)                                                                                    | AV <sub>DD</sub> 3 |       |  |  |
| AV <sub>DD</sub> 4 | AJ13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Power for LBIU<br>DLL (1.2 V)                                                                                   | AV <sub>DD</sub> 4 |       |  |  |
| GND                | A1, A34, C1, C7, C10, C11, C15, C23,<br>C25, C28, D1, D8, D20, D30, E7, E13,<br>E15, E17, E18, E21, E23, E25, E32,<br>F6, F19, F27, F30, F34, G31, H5, J4,<br>J34, K30, L5, M2, M5, M30, M33, N3,<br>N5, P30, R5, R32, T5, T30, U6, U29,<br>U33, V2, V5, V30, W6, W30, Y30,<br>AA2, AA30, AB2, AB6, AB30, AC3,<br>AC6, AD31, AE5, AF2, AF5, AF31,<br>AG30, AG31, AH4, AJ3, AJ19, AJ22,<br>AK7, AK13, AK14, AK16, AK18, AK20,<br>AK25, AK28, AL3, AL5, AL10, AL12,<br>AL22, AL27, AM1, AM6, AM7, AN12,<br>AN17, AN34, AP1, AP8, AP34 |                                                                                                                 | _                  |       |  |  |
| GV <sub>DD</sub>   | A2, E2, G5, G6, J5, K4, K5, L4, N4, P5,<br>R6, T6, U5, V1, W5, Y5, AA4, AB3,<br>AC4, AD5, AF3, AG5, AH2, AH5, AH6,<br>AJ6, AK6, AK8, AK9, AL6                                                                                                                                                                                                                                                                                                                                                                                       | Power for DDR<br>DRAM I/O<br>voltage<br>(2.5 V)                                                                 | GV <sub>DD</sub>   |       |  |  |
| LV <sub>DD</sub> 1 | C9, D11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Power for<br>three-speed<br>Ethernet #1<br>and for<br>Ethernet<br>management<br>interface I/O<br>(2.5 V, 3.3 V) | LV <sub>DD</sub> 1 |       |  |  |

| Signal | Package Pin Number                                                                                                                                                                                                                                                                                                                                          | Pin Type | Power<br>Supply | Notes |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------|-------|
|        | No Connection                                                                                                                                                                                                                                                                                                                                               |          |                 |       |
| NC     | W32, AA31, AA32, AA33, AA34,<br>AB31, AB32, AB33, AB34, AC29,<br>AC31, AC33, AC34, AD30, AD32,<br>AD33, AD34, AE29, AE30, AH32,<br>AH33, AH34, AM33, AJ31, AJ32,<br>AJ33, AJ34, AK32, AK33, AK34,<br>AM34, AL33, AL34, AK31, AH30,<br>AC32, AE32, AH31, AL32, AG34,<br>AE33, AF32, AE34, AF34, AF33,<br>AG33, AG32, AL11, AM11, AP10, Y32,<br>Y34, Y31, Y33 | _        | _               |       |

### Table 51. MPC8347E (TBGA) Pinout Listing (continued)

#### Notes:

- 1. This pin is an open-drain signal. A weak pull-up resistor (1 k $\Omega$ ) should be placed on this pin to OV<sub>DD</sub>.
- 2. This pin is an open-drain signal. A weak pull-up resistor (2–10 kΩ) should be placed on this pin to OV<sub>DD</sub>.
- 3. During reset, this output is actively driven rather than three-stated.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.
- 6. This pin must always be tied to GND.
- 7. This pin must always be pulled up to  $OV_{DD}$ .
- 8. This pin must always be left not connected.
- 9. Thermal sensitive resistor.
- 10.It is recommended that MDIC0 be tied to GRD using an 18  $\Omega$  resistor and MDIC1 be tied to DDR power using an 18  $\Omega$  resistor.
- 11.TSEC1\_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.

### Table 52 provides the pinout listing for the MPC8347E, 620 PBGA package.

### Table 52. MPC8347E (PBGA) Pinout Listing

| Signal            | Package Pin Number                                                                                                                                                 | Pin Type | Power<br>Supply  | Notes |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------|
|                   | PCI                                                                                                                                                                |          |                  |       |
| PCI1_INTA/IRQ_OUT | D20                                                                                                                                                                | 0        | OV <sub>DD</sub> | 2     |
| PCI1_RESET_OUT    | B21                                                                                                                                                                | 0        | OV <sub>DD</sub> |       |
| PCI1_AD[31:0]     | E19, D17, A16, A18, B17, B16, D16,<br>B18, E17, E16, A15, C16, D15, D14,<br>C14, A12, D12, B11, C11, E12, A10,<br>C10, A9, E11, E10, B9, B8, D9, A8,<br>C9, D8, C8 | I/O      | OV <sub>DD</sub> |       |
| PCI1_C/BE[3:0]    | A17, A14, A11, B10                                                                                                                                                 | I/O      | OV <sub>DD</sub> |       |
| PCI1_PAR          | D13                                                                                                                                                                | I/O      | OV <sub>DD</sub> |       |
| PCI1_FRAME        | B14                                                                                                                                                                | I/O      | OV <sub>DD</sub> | 5     |
| PCI1_TRDY         | A13                                                                                                                                                                | I/O      | OV <sub>DD</sub> | 5     |

| Signal             | Signal Package Pin Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | Power<br>Supply    | Notes |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-------|
| AV <sub>DD</sub> 3 | AF9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Power for DDR<br>DLL (1.2 V)                                                                                    | AV <sub>DD</sub> 3 |       |
| AV <sub>DD</sub> 4 | U2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Power for LBIU<br>DLL (1.2 V)                                                                                   | AV <sub>DD</sub> 4 |       |
| GND                | A2, B1, B2, D10, D18, E6, E14, E22,<br>F9, F12, F15, F18, F21, F24, G5, H6,<br>J23, L4, L6, L12, L13, L14, L15, L16,<br>L17, M11, M12, M13, M14, M15, M16,<br>M17, M18, M23, N11, N12, N13, N14,<br>N15, N16, N17, N18, P6, P11, P12,<br>P13, P14, P15, P16, P17, P18, P24,<br>R5, R11, R12, R13, R14, R15, R16,<br>R17, R18, R23, T11, T12, T13, T14,<br>T15, T16, T17, T18, U6, U11, U12,<br>U13, U14, U15, U16, U17, U18, V12,<br>V13, V14, V15, V16, V17, V23, V25,<br>W4, Y6, AA23, AB24, AC5, AC8,<br>AC11, AC14, AC17, AC20, AD9,<br>AD15, AD21, AE12, AE18, AF3, AF26 |                                                                                                                 | l                  |       |
| GV <sub>DD</sub>   | U9, V9, W10, W19, Y11, Y12, Y14,<br>Y15, Y17, Y18, AA6, AB5, AC9, AC12,<br>AC15, AC18, AC21, AC24, AD6, AD8,<br>AD14, AD20, AE5, AE11, AE17, AG2,<br>AG27                                                                                                                                                                                                                                                                                                                                                                                                                     | Power for DDR<br>DRAM I/O<br>voltage<br>(2.5 V)                                                                 | GV <sub>DD</sub>   |       |
| LV <sub>DD</sub> 1 | U20, W25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power for<br>three-speed<br>Ethernet #1<br>and for<br>Ethernet<br>management<br>interface I/O<br>(2.5 V, 3.3 V) | LV <sub>DD</sub> 1 |       |
| LV <sub>DD</sub> 2 | V20, Y23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Power for<br>three-speed<br>Ethernet #2<br>I/O (2.5 V,<br>3.3 V)                                                | LV <sub>DD</sub> 2 |       |
| V <sub>DD</sub>    | J11, J12, J15, K10, K11, K12, K13,<br>K14, K15, K16, K17, K18, K19, L10,<br>L11, L18, L19, M10, M19, N10, N19,<br>P9, P10, P19, R10, R19, R20, T10,<br>T19, U10, U19, V10, V11, V18, V19,<br>W11, W12, W13, W14, W15, W16,<br>W17, W18                                                                                                                                                                                                                                                                                                                                        | Power for core<br>(1.2 V)                                                                                       | V <sub>DD</sub>    |       |
| OV <sub>DD</sub>   | B27, D3, D11, D19, E15, E23, F5, F8,<br>F11, F14, F17, F20, G24, H23, H24,<br>J6, J14, J17, J18, K4, L9, L20, L23,<br>L25, M6, M9, M20, P5, P20, P23, R6,<br>R9, R24, U23, V4, V6                                                                                                                                                                                                                                                                                                                                                                                             | PCI, 10/100<br>Ethernet, and<br>other standard<br>(3.3 V)                                                       | OV <sub>DD</sub>   |       |

### Table 52. MPC8347E (PBGA) Pinout Listing (continued)

As shown in Figure 41, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock ( $csb\_clk$ ), the internal clock for the DDR controller ( $ddr\_clk$ ), and the internal clock for the local bus interface unit ( $lbiu\_clk$ ).

The *csb\_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb\_clk = \{PCI\_SYNC\_IN \times (1 + CFG\_CLKIN\_DIV)\} \times SPMF$ 

In PCI host mode, PCI\_SYNC\_IN  $\times$  (1 + CFG\_CLKIN\_DIV) is the CLKIN frequency.

The *csb\_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb\_clk* frequency to create the internal clock for the e300 core (*core\_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349E Reference Manual* for more information on the clock subsystem.

The internal *ddr\_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$ 

 $ddr_clk$  is not the external memory bus frequency;  $ddr_clk$  passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as  $ddr_clk$ .

The internal *lbiu\_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + RCWL[LBIUCM])$ 

*lbiu\_clk* is not the external local bus frequency; *lbiu\_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC\_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the  $csb\_clk$  frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 53 specifies which units have a configurable clock frequency.

| Unit                     | Default<br>Frequency | Options                                          |
|--------------------------|----------------------|--------------------------------------------------|
| TSEC1                    | csb_clk/3            | Off, csb_clk, csb_clk/2, csb_clk/3               |
| TSEC2, I <sup>2</sup> C1 | csb_clk/3            | Off, csb_clk, csb_clk/2, csb_clk/3               |
| Security core            | csb_clk/3            | Off, <i>csb_clk,</i> csb_clk/2, <i>csb_clk/3</i> |
| USB DR, USB MPH          | csb_clk/3            | Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>        |
| PCI and DMA complex      | csb_clk              | Off, <i>csb_clk</i>                              |

Table 53. Configurable Clock Units

### NOTE

Core VCO frequency = core frequency  $\times$  VCO divider

VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

| RCWL[COREPLL] |      | PLL] | coro alk: ash alk Patio                                        | VCO Divider <sup>1</sup>                                       |  |
|---------------|------|------|----------------------------------------------------------------|----------------------------------------------------------------|--|
| 0–1           | 2–5  | 6    |                                                                | VCO Dividei                                                    |  |
| nn            | 0000 | n    | PLL bypassed<br>(PLL off, <i>csb_clk</i> clocks core directly) | PLL bypassed<br>(PLL off, <i>csb_clk</i> clocks core directly) |  |
| 00            | 0001 | 0    | 1:1                                                            | 2                                                              |  |
| 01            | 0001 | 0    | 1:1                                                            | 4                                                              |  |
| 10            | 0001 | 0    | 1:1                                                            | 8                                                              |  |
| 11            | 0001 | 0    | 1:1                                                            | 8                                                              |  |
| 00            | 0001 | 1    | 1.5:1                                                          | 2                                                              |  |
| 01            | 0001 | 1    | 1.5:1                                                          | 4                                                              |  |
| 10            | 0001 | 1    | 1.5:1                                                          | 8                                                              |  |
| 11            | 0001 | 1    | 1.5:1                                                          | 8                                                              |  |
| 00            | 0010 | 0    | 2:1                                                            | 2                                                              |  |
| 01            | 0010 | 0    | 2:1                                                            | 4                                                              |  |
| 10            | 0010 | 0    | 2:1                                                            | 8                                                              |  |
| 11            | 0010 | 0    | 2:1                                                            | 8                                                              |  |
| 00            | 0010 | 1    | 2.5:1                                                          | 2                                                              |  |
| 01            | 0010 | 1    | 2.5:1                                                          | 4                                                              |  |
| 10            | 0010 | 1    | 2.5:1                                                          | 8                                                              |  |
| 11            | 0010 | 1    | 2.5:1                                                          | 8                                                              |  |
| 00            | 0011 | 0    | 3:1                                                            | 2                                                              |  |
| 01            | 0011 | 0    | 3:1                                                            | 4                                                              |  |
| 10            | 0011 | 0    | 3:1                                                            | 8                                                              |  |
| 11            | 0011 | 0    | 3:1                                                            | 8                                                              |  |

### Table 59. e300 Core PLL Configuration

<sup>1</sup> Core VCO frequency = core frequency × VCO divider. The VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

## **19.3 Suggested PLL Configurations**

Table 60 shows suggested PLL configurations for 33 and 66 MHz input clocks.

#### Thermal

required in the heat sink. Minimize the size of the clearance to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 $T_J$  = junction temperature (°C)  $T_C$  = case temperature of the package (°C)  $R_{\theta JC}$  = junction-to-case thermal resistance (°C/W)  $P_D$  = power dissipation (W)

System Design Information

# 21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8347E.

# 21.1 System Clocking

The MPC8347E includes two PLLs:

- 1. The platform PLL generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 19.1, "System PLL Configuration."
- 2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

# 21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins (AV<sub>DD</sub>1, AV<sub>DD</sub>2, respectively). The AV<sub>DD</sub> level should always equal to  $V_{DD}$ , and preferably these voltages are derived directly from  $V_{DD}$  through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 42, one to each of the four  $AV_{DD}$  pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific  $AV_{DD}$  pin being supplied. It should be possible to route directly from the capacitors to the  $AV_{DD}$  pin, which is on the periphery of package, without the inductance of vias.

Figure 42 shows the PLL power supply filter circuit.



Figure 42. PLL Power Supply Filter Circuit

#### System Design Information

the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for the output pins.

## 21.7 Pull-Up Resistor Requirements

The MPC8347E requires high resistance pull-up resistors (10 k $\Omega$  is recommended) on open-drain pins, including I<sup>2</sup>C pins, the Ethernet Management MDIO pin, and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, refer to application note AN2931, *PowerQUICC<sup>TM</sup> Design Checklist*.

**Ordering Information** 

### THIS PAGE INTENTIONALLY LEFT BLANK