NXP USA Inc. - MPC8347CVVAJDB Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	·
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	·
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	· .
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347cvvajdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Data chaining and direct mode
- Interrupt on completed segment and chain
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI) for master or slave
- General-purpose parallel I/O (GPIO)
 - 52 parallel I/O pins multiplexed on various chip interfaces
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- Designed to comply with IEEE Std. 1149.1[™], JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

3 Power Characteristics

The estimated typical power dissipation for the MPC8347E device is shown in Table 4.

	Core Frequency (MHz)	CSB Frequency (MHz)	Typical at T _J = 65	Typical ^{2,3}	Maximum ⁴	Unit
PBGA	266	266	1.3	1.6	1.8	W
		133	1.1	1.4	1.6	W
	400	266	1.5	1.9	2.1	W
		133	1.4	1.7	1.9	W
	400	200	1.5	1.8	2.0	W
		100	1.3	1.7	1.9	W
TBGA	TBGA 333	333	2.0	3.0	3.2	W
		166	1.8	2.8	2.9	W
	400	266	2.1	3.0	3.3	W
		133	1.9	2.9	3.1	W
	450	300	2.3	3.2	3.5	W
		150	2.1	3.0	3.2	W
	500	333	2.4	3.3	3.6	W
		166	2.2	3.1	3.4	W
	533	266	2.4	3.3	3.6	W
		133	2.2	3.1	3.4	W

Table 4. MPC8347E Power Dissipation¹

¹ The values do not include I/O supply power (OV_{DD}, LV_{DD}, GV_{DD}) or AV_{DD}. For I/O power values, see Table 5.

² Typical power is based on a voltage of V_{DD} = 1.2 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.

³ Thermal solutions may need to design to a value higher than typical power based on the end application, T_A target, and I/O power.

⁴ Maximum power is based on a voltage of V_{DD} = 1.2 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.

Clock Input Timing

4 Clock Input Timing

This section provides the clock input DC and AC electrical characteristics for the MPC8347E.

4.1 DC Electrical Characteristics

Table 7 provides the clock input (CLKIN/PCI_SYNC_IN) DC timing specifications for the MPC8347E.

Parameter	Condition	Symbol	Min	Мах	Unit
Input high voltage	_	V _{IH}	2.7	OV _{DD} + 0.3	V
Input low voltage	_	V _{IL}	-0.3	0.4	V
CLKIN input current	$0 V \le V_{IN} \le OV_{DD}$	I _{IN}	—	±10	μΑ
PCI_SYNC_IN input current	$\begin{array}{c} 0 \ V \leq V_{IN} \leq 0.5 \ V \ or \\ OV_{DD} - 0.5 \ V \leq V_{IN} \leq OV_{DD} \end{array}$	I _{IN}	—	±10	μΑ
PCI_SYNC_IN input current	$0.5 \text{ V} \leq \!$	I _{IN}	—	±50	μA

 Table 6. CLKIN DC Timing Specifications

4.2 AC Electrical Characteristics

The primary clock source for the MPC8347E can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. Table 7 provides the clock input (CLKIN/PCI_CLK) AC timing specifications for the MPC8347E.

Table 7. CLKIN AC Timing Specifications

Parameter/Condition	Symbol	Min	Typical	Max	Unit	Notes
CLKIN/PCI_CLK frequency	f CLKIN	_	—	66	MHz	1, 6
CLKIN/PCI_CLK cycle time	t _{CLKIN}	15	—	_	ns	_
CLKIN/PCI_CLK rise and fall time	t _{KH} , t _{KL}	0.6	1.0	2.3	ns	2
CLKIN/PCI_CLK duty cycle	t _{KHK} /t _{CLKIN}	40	—	60	%	3
CLKIN/PCI_CLK jitter	_		—	±150	ps	4, 5

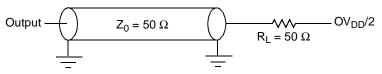
Notes:

1. **Caution:** The system, core, USB, security, and TSEC must not exceed their respective maximum or minimum operating frequencies.

2. Rise and fall times for CLKIN/PCI_CLK are measured at 0.4 and 2.7 V.

3. Timing is guaranteed by design and characterization.

4. This represents the total input jitter—short term and long term—and is guaranteed by design.


5. The CLKIN/PCI_CLK driver's closed loop jitter bandwidth should be <500 kHz at -20 dB. The bandwidth must be set low to allow cascade-connected PLL-based devices to track CLKIN drivers with the specified jitter.

6. The Spread spectrum clocking. Is allowed with 1% input frequency down-spread at maximum 50KHz modulation rate regardless of input frequency.

Table 14. DDR SDRAM Output AC Timing Specifications for Source Synchronous Mode

At recommended operating conditions with GV_{DD} of 2.5 V ± 5%.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
MCK[n] cycle time, (MCK[n]/MCK[n] crossing)	t _{MCK}	6	10	ns	2
Skew between any MCK to ADDR/CMD 333 MHz 266 MHz 200 MHz	t _{aoskew}	-1000 -1100 -1200	200 300 400	ps	3
ADDR/CMD output setup with respect to MCK 333 MHz 266 MHz 200 MHz	^t DDKHAS	2.8 3.45 4.6	_	ns	4
ADDR/CMD output hold with respect to MCK 333 MHz 266 MHz 200 MHz	t _{DDKHAX}	2.0 2.65 3.8	_	ns	4
MCS(n) output setup with respect to MCK 333 MHz 266 MHz 200 MHz	t _{DDKHCS}	2.8 3.45 4.6	—	ns	4
MCS(n) output hold with respect to MCK 333 MHz 266 MHz 200 MHz	^t DDKHCX	2.0 2.65 3.8	_	ns	4
MCK to MDQS 333 MHz 266 MHz 200 MHz	^t DDKHMH	-0.9 -1.1 -1.2	0.3 0.5 0.6	ns	5
MDQ/MECC/MDM output setup with respect to MDQS 333 MHz 266 MHz 200 MHz	^t DDKHDS, ^t DDKLDS	900 900 1200	_	ps	6
MDQ/MECC/MDM output hold with respect to MDQS 333 MHz 266 MHz 200 MHz	^t ddkhdx, ^t ddkldx	900 900 1200	_	ps	6
MDQS preamble start	t _{DDKHMP}	$-0.25 \times t_{MCK} - 0.9$	$-0.25 \times t_{MCK}$ + 0.3	ns	7

Figure 6. DDR AC Test Load

Table 15 shows the DDR SDRAM measurement conditions.

Table 15. DDR SDRAM Measurement Conditions

Symbol	DDR	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	V	1
Vout	$0.5 imes GV_{DD}$	V	2

Notes:

1. Data input threshold measurement point.

2. Data output measurement point.

Figure 7 shows the DDR SDRAM output timing diagram for source synchronous mode.

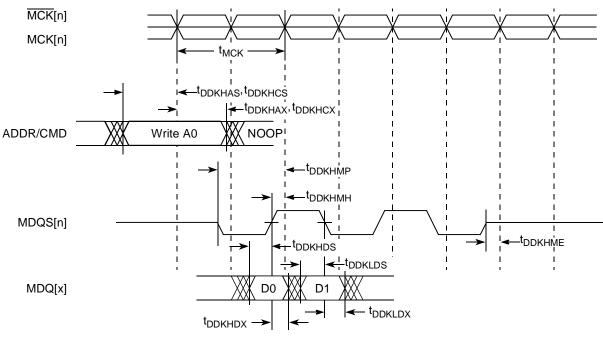


Figure 7. DDR SDRAM Output Timing Diagram for Source Synchronous Mode

Table 16 provides approximate delay information that can be expected for the address and command signals of the DDR controller for various loadings, which can be useful for a system utilizing the DLL. These numbers are the result of simulations for one topology. The delay numbers will strongly depend on the topology used. These delay numbers show the total delay for the address and command to arrive at the DRAM devices. The actual delay could be different than the delays seen in simulation, depending on the system topology. If a heavily loaded system is used, the DLL loop may need to be adjusted to meet setup requirements at the DRAM.

Figure 14 shows the TBI receive AC timing diagram.

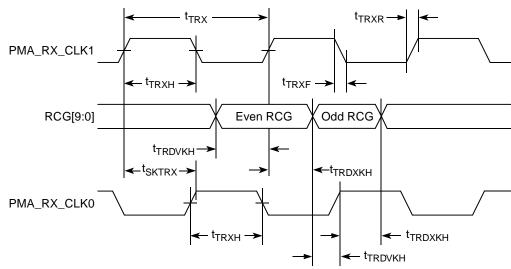


Figure 14. TBI Receive AC Timing Diagram

8.2.4 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5	—	0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.8	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	_	—	0.75	ns
Fall time (20%–80%)	t _{RGTF}	_	—	0.75	ns
GTX_CLK125 reference clock period	t _{G12} 6	_	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	47	—	53	%

Notes:

 In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).

2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned.
- 5. Duty cycle reference is $LV_{DD}/2$.

6. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention.

8.3.2 MII Management AC Electrical Specifications

Table 30 provides the MII management AC timing specifications.

Table 30. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10% or 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}		2.5		MHz	2
MDC period	t _{MDC}	_	400	—	ns	
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	
MDC to MDIO delay	t _{MDKHDX}	10	—	170	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	
MDC rise time	t _{MDCR}		_	10	ns	
MDC fall time	t _{MDHF}	_	_	10	ns	

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

- 2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a csb_clk of 333 MHz, the delay is 58 ns).

Figure 16 shows the MII management AC timing diagram.

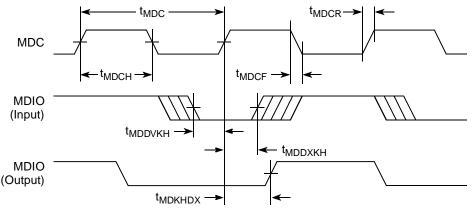


Figure 16. MII Management Interface Timing Diagram

Local Bus

Figure 20 through Figure 25 show the local bus signals.

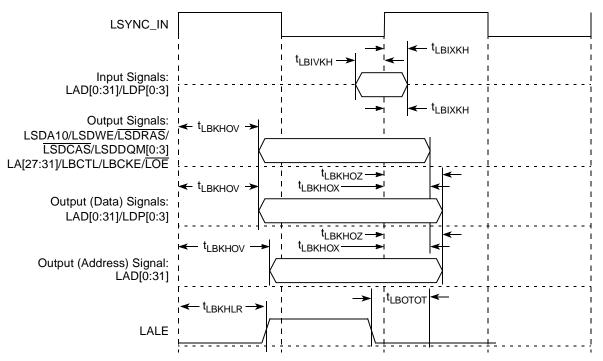


Figure 20. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

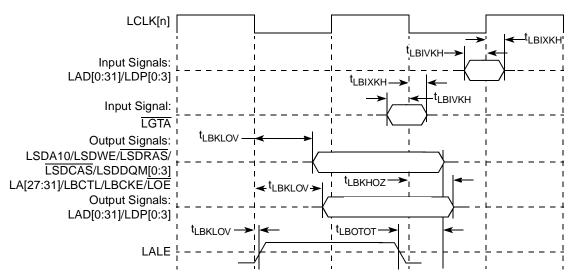


Figure 21. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

Figure 34 shows the PCI input AC timing diagram.

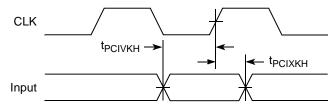
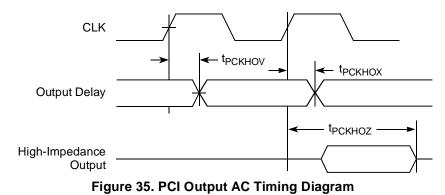



Figure 34. PCI Input AC Timing Diagram

Figure 35 shows the PCI output AC timing diagram.

MPC8347E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 11

15 GPIO

This section describes the DC and AC electrical specifications for the GPIO.

15.1 GPIO DC Electrical Characteristics

Table 45 provides the DC electrical characteristics for the MPC8347E GPIO.

Table 45. GPIO DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μΑ
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

15.2 GPIO AC Timing Specifications

Table 46 provides the GPIO input and output AC timing specifications.

Table 46. GPIO Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

 GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation. SPI

Figure 36 provides the AC test load for the SPI.

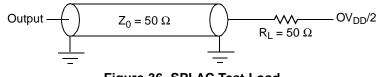
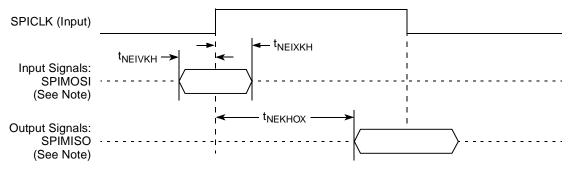



Figure 36. SPI AC Test Load

Figure 37 and Figure 38 represent the AC timings from Table 50. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 37 shows the SPI timings in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 38 shows the SPI timings in master mode (internal clock).

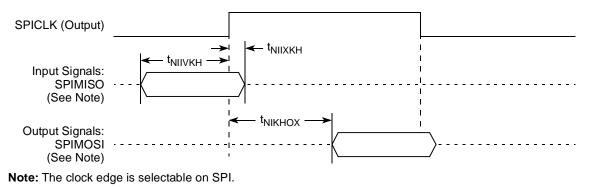
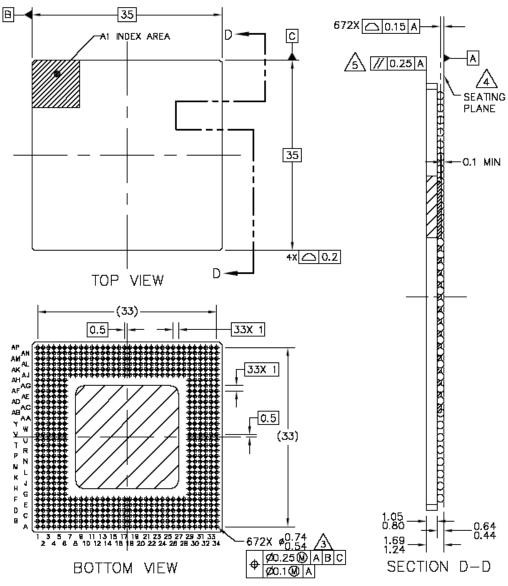



Figure 38. SPI AC Timing in Master Mode (Internal Clock) Diagram

Package and Pin Listings

18.2 Mechanical Dimensions for the MPC8347E TBGA

Figure 39 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347E, 672-TBGA package.

Notes:

1.All dimensions are in millimeters.

2.Dimensions and tolerances per ASME Y14.5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

5.Parallelism measurement must exclude any effect of mark on top surface of package.

Figure 39. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347E TBGA

18.5 Pinout Listings

Table 51 provides the pinout listing for the MPC8347E, 672 TBGA package.

Table 51. MPC8347E (TBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI		1	
PCI_INTA/IRQ_OUT	B34	0	OV _{DD}	2
PCI_RESET_OUT	C33	0	OV _{DD}	
PCI_AD[31:0]	G30, G32, G34, H31, H32, H33, H34, J29, J32, J33, L30, K31, K33, K34, L33, L34, P34, R29, R30, R33, R34, T31, T32, T33, U31, U34, V31, V32, V33, V34, W33, W34	I/O	OV _{DD}	
PCI_C/BE[3:0]	J30, M31, P33, T34	I/O	OV _{DD}	
PCI_PAR	P32	I/O	OV _{DD}	
PCI_FRAME	M32	I/O	OV _{DD}	5
PCI_TRDY	N29	I/O	OV _{DD}	5
PCI_IRDY	M34	I/O	OV _{DD}	5
PCI_STOP	N31	I/O	OV _{DD}	5
PCI_DEVSEL	N30	I/O	OV _{DD}	5
PCI_IDSEL	J31	Ι	OV _{DD}	
PCI_SERR	N34	I/O	OV _{DD}	5
PCI_PERR	N33	I/O	OV _{DD}	5
PCI_REQ[0]	D32	I/O	OV _{DD}	
PCI_REQ[1]/CPCI1_HS_ES	D34	I	OV _{DD}	
PCI_REQ[2:4]	E34, F32, G29	Ι	OV _{DD}	
PCI_GNT0	C34	I/O	OV _{DD}	
PCI_GNT1/CPCI1_HS_LED	D33	0	OV _{DD}	
PCI_GNT2/CPCI1_HS_ENUM	E33	0	OV _{DD}	
PCI_GNT[3:4]	F31, F33	0	OV _{DD}	
M66EN	A19	Ι	OV _{DD}	
	DDR SDRAM Memory Interface		1	
MDQ[0:63]	D5, A3, C3, D3, C4, B3, C2, D4, D2, E5, G2, H6, E4, F3, G4, G3, H1, J2, L6, M6, H2, K6, L2, M4, N2, P4, R2, T4, P6, P3, R1, T2, AB5, AA3, AD6, AE4, AB4, AC2, AD3, AE6, AE3, AG4, AK5, AK4, AE2, AG6, AK3, AK2, AL2, AL1, AM5, AP5, AM2, AN1, AP4, AN5, AJ7, AN7, AM8, AJ9, AP6, AL7, AL9, AN8	I/O	GV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MPH0_D2_VMO_SE0/DR_D10_DPPD	B24	I/O	OV _{DD}	
MPH0_D3_SPEED/DR_D11_DMMD	A24	I/O	OV _{DD}	
MPH0_D4_DP/DR_D12_VBUS_VLD	D23	I/O	OV _{DD}	
MPH0_D5_DM/DR_D13_SESS_END	C23	I/O	OV _{DD}	
MPH0_D6_SER_RCV/DR_D14	B23	I/O	OV _{DD}	
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP	A23	I/O	OV _{DD}	
MPH0_NXT/DR_RX_ACTIVE_ID	D22	I	OV _{DD}	
MPH0_DIR_DPPULLUP/DR_RESET	C22	I/O	OV _{DD}	
MPH0_STP_SUSPEND/DR_TX_READY	B22	I/O	OV _{DD}	
MPH0_PWRFAULT/DR_RX_VALIDH	A22	I	OV _{DD}	
MPH0_PCTL0/DR_LINE_STATE0	E21	I/O	OV _{DD}	
MPH0_PCTL1/DR_LINE_STATE1	D21	I/O	OV _{DD}	
MPH0_CLK/DR_RX_VALID	C21	I	OV _{DD}	
Р	rogrammable Interrupt Controller			
MCP_OUT	E8	0	OV _{DD}	2
IRQ0/MCP_IN/GPIO2[12]	J28	I/O	OV _{DD}	
IRQ[1:5]/GPIO2[13:17]	K25, J25, H26, L24, G27	I/O	OV _{DD}	
IRQ[6]/GPIO2[18]/CKSTOP_OUT	G28	I/O	OV _{DD}	
IRQ[7]/GPIO2[19]/CKSTOP_IN	J26	I/O	OV _{DD}	
	Ethernet Management Interface	ŀ		
EC_MDC	Y24	0	LV _{DD1}	
EC_MDIO	Y25	I/O	LV _{DD1}	2
	Gigabit Reference Clock	- 1	1	
EC_GTX_CLK125	Y26	I	LV _{DD1}	
Three-Spe	ed Ethernet Controller (Gigabit Ether	net 1)	1	
TSEC1_COL/GPIO2[20]	M26	I/O	OV _{DD}	
TSEC1_CRS/GPIO2[21]	U25	I/O	LV _{DD1}	
TSEC1_GTX_CLK	V24	0	LV _{DD1}	3
TSEC1_RX_CLK	U26	I	LV _{DD1}	
TSEC1_RX_DV	U24	I	LV _{DD1}	
TSEC1_RX_ER/GPIO2[26]	L28	I/O	OV _{DD}	
TSEC1_RXD[7:4]/GPIO2[22:25]	M27, M28, N26, N27	I/O	OV _{DD}	
TSEC1_RXD[3:0]	W26, W24, Y28, Y27	I	LV _{DD1}	
TSEC1_TX_CLK	N25	I	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
AV _{DD} 3	Power for DDR DLL (1.2 V)	AV _{DD} 3		
AV _{DD} 4	U2	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	 A2, B1, B2, D10, D18, E6, E14, E22, F9, F12, F15, F18, F21, F24, G5, H6, J23, L4, L6, L12, L13, L14, L15, L16, L17, M11, M12, M13, M14, M15, M16 M17, M18, M23, N11, N12, N13, N14, N15, N16, N17, N18, P6, P11, P12, P13, P14, P15, P16, P17, P18, P24, R5, R11, R12, R13, R14, R15, R16, R17, R18, R23, T11, T12, T13, T14, T15, T16, T17, T18, U6, U11, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V23, V25, W4, Y6, AA23, AB24, AC5, AC8, AC11, AC14, AC17, AC20, AD9, AD15, AD21, AE12, AE18, AF3, AF26 			
GV _{DD}	U9, V9, W10, W19, Y11, Y12, Y14, Y15, Y17, Y18, AA6, AB5, AC9, AC12 AC15, AC18, AC21, AC24, AD6, AD8 AD14, AD20, AE5, AE11, AE17, AG2 AG27	voltage	GV _{DD}	
LV _{DD} 1	U20, W25	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	
LV _{DD} 2	V20, Y23	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	J11, J12, J15, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, L10, L11, L18, L19, M10, M19, N10, N19, P9, P10, P19, R10, R19, R20, T10, T19, U10, U19, V10, V11, V18, V19, W11, W12, W13, W14, W15, W16, W17, W18	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B27, D3, D11, D19, E15, E23, F5, F8, F11, F14, F17, F20, G24, H23, H24, J6, J14, J17, J18, K4, L9, L20, L23, L25, M6, M9, M20, P5, P20, P23, R6, R9, R24, U23, V4, V6	Ethernet, and other standard	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

		ach alls	Inpu	It Clock Fre	equency (M	Hz) ²
CFG_CLKIN_DIV at Reset ¹	G_CLKIN_DIV at Reset ¹ SPMF Clock Ratio ² Csb_clk : Input Clock		16.67	25	33.33	66.67
		Kallo	C	s <i>b_clk</i> Freq	uency (MH	z)
Low	0010	2 : 1				133
Low	0011	3 : 1	-		100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6 : 1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8 : 1	133	200	266	
Low	1001	9 : 1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233		-	
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	2 : 1				133
High	0011	3 : 1			100	200
High	0100	4 : 1			133	266
High	0101	5 : 1			166	333
High	0110	6 : 1			200	
High	0111	7 : 1			233	
High	1000	8 : 1				

Table 57. CSB Frequency Options for Host Mode

¹ CFG_CLKIN_DIV selects the ratio between CLKIN and PCI_SYNC_OUT.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode. DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.

			Inpu	It Clock Fre	quency (M	Hz) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	<i>csb_clk</i> : Input Clock Ratio ²	16.67	25	33.33	66.67
		Ratio	C	s <i>b_clk</i> Freq	luency (MHz)	
Low	0010	2 : 1				133
Low	0011	3 : 1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6 : 1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8 : 1	133	200	266	
Low	1001	9:1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		1
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233		1	
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	4:1		100	133	266
High	0011	6 : 1	100	150	200	
High	0100	8 : 1	133	200	266	
High	0101	10 : 1	166	250	333	
High	0110	12 : 1	200	300		
High	0111	14 : 1	233			
High	1000	16 : 1	266			

Table 58. CSB Frequency Options for Agent Mode

¹ CFG_CLKIN_DIV doubles csb_clk if set high.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode. DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.

19.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 59 shows the encodings for RCWL[COREPLL]. COREPLL values that are not listed in Table 59 should be considered as reserved.

System Design Information

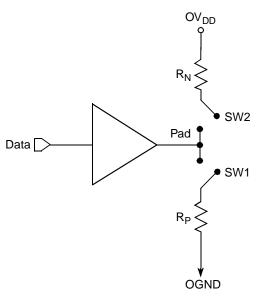


Figure 43. Driver Impedance Measurement

Two measurements give the value of this resistance and the strength of the driver current source. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (Not Including PCI Output Clocks)	PCI Output Clocks (Including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
Differential	NA	NA	NA	NA	Z _{DIFF}	Ω

Table 65. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

21.6 Configuration Pin Multiplexing

The MPC8347E power-on configuration options can be set through external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see the customer-visible configuration pins). These pins are used as output only pins in normal operation.

However, while HRESET is asserted, these pins are treated as inputs, and the value on these pins is latched when PORESET deasserts. Then the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with

23 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and later versions (orderable part numbers ending with A or B), see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8347EAEC).

23.1 Part Numbers Fully Addressed by This Document

Table 67 shows an analysis of the Freescale part numbering nomenclature for the MPC8347E. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the MPC8347E product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8347	Blank = Not included E = included	Blank = 0 to 105°C C = −40 to 105°C	ZU =TBGA VV = PB free TBGA ZQ = PBGA VR = PB Free PBGA	e300 core speed AD = 266 AG = 400 AJ = 533 AL = 667	D = 266 F = 333 ⁴	Blank = 1.1 or 1.0

Table 67. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to 400 (PBGA) with a platform frequency of 266 and up to 667(TBGA) with a platform frequency of 333

- 2. See Section 18, "Package and Pin Listings," for more information on available package types.
- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 up to 333 MHz (at a CSB of 333 MHz), but DDR2 at 400 MHz (CSB at 200 MHz) is NOT guaranteed.

Table 68 shows the SVR settings by device and package type.

Table	68.	SVR	Settings
-------	-----	-----	----------

Device	Package	SVR (Rev. 1.0)
MPC8347E	TBGA	8052_0010
MPC8347	TBGA	8053_0010

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IIEEE 802.3, 802.3u, 802.3x, 802.3z, 802.3ac, 802.11i, and 1149.1 are trademarks or registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005–2009. All rights reserved.

Document Number: MPC8347EEC Rev. 11 02/2009

