

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-TBGA (35x35)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8347czuajdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8347E. The MPC8347E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

			-		
	Characteristic	Symbol	Unit	Notes	
Core supply voltage			-0.3 to 1.32	V	
PLL supply voltage		AV _{DD}	-0.3 to 1.32	V	
DDR DRAM I/O volta	age	GV _{DD}	-0.3 to 3.63	V	
Three-speed Ethernet I/O, MII management voltage			-0.3 to 3.63	V	
PCI, local bus, DUART, system control and power management, I^2C , and JTAG I/O voltage		OV_{DD}	-0.3 to 3.63	V	
Input voltage	nput voltage DDR DRAM signals		–0.3 to (GV _{DD} + 0.3)	V	2, 5
DDR DRAM reference Three-speed Ethernet signals		MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
		LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
Local bus, DUART, CLKIN, system control and power management, I ² C, and JTAG signals		OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3, 5
PCI			–0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature range		T _{STG}	–55 to 150	°C	

Table 1. Absolute Maximum Ratings¹

Notes:

- ¹ Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- ² Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ³ Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁴ Caution: LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁵ (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- ⁶ OV_{IN} on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

2.1.2 Power Supply Voltage Specification

Table 2 provides the recommended operating conditions for the MPC8347E. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage	V _{DD}	1.2 V ± 60 mV	V	1
PLL supply voltage	AV _{DD}	1.2 V ± 60 mV	V	1
DDR DRAM I/O supply voltage	GV _{DD}	2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD1}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD2}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	

ating Conditions
,

Note:

¹ GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8347E.

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8347E for the 3.3-V signals, respectively.

Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	40	OV _{DD} = 3.3 V
PCI signals (not including PCI output clocks)	25	
PCI output clocks (including PCI_SYNC_OUT)	40	
DDR signal	18	GV _{DD} = 2.5 V
TSEC/10/100 signals	40	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, JTAG, USB	40	OV _{DD} = 3.3 V
GPIO signals	40	OV _{DD} = 3.3 V, LV _{DD} = 2.5/3.3 V

Table 3. Output Drive Capability

2.2 Power Sequencing

MPC8347E does not require the core supply voltage and I/O supply voltages to be applied in any particular order. Note that during the power ramp up, before the power supplies are stable, there may be a period of time that I/O pins are actively driven. After the power is stable, as long as **PORESET** is asserted, most I/O pins are three-stated. To minimize the time that I/O pins are actively driven, it is recommended to apply core voltage before I/O voltage and assert **PORESET** before the power supplies fully ramp up.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

8.1 Three-Speed Ethernet Controller (TSEC)— GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to the gigabit media independent interface (GMII), the media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII, GMII, and TBI interfaces are defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 **TSEC DC Electrical Characteristics**

GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 19 and Table 20. The RGMII and RTBI signals in Table 20 are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV_{DD}^2	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	—	—	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	—	-0.3	0.90	V
Input high current	IIH	$V_{IN}^{1} = LV_{DD}$		-	40	μA
Input low current	IIL	V _{IN} ¹ =	GND	-600	—	μA

Table 19. GMII/TBI and MII DC Electrical Characteristics

Notes:

1. The symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ supply.

Parameters	Symbol	Conditions		Min	Мах	Unit
Supply voltage 2.5 V	LV _{DD}	-	_	2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	I	V _{IN} ¹ = GND		-15	_	μA

Table 20. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

Table 21 provides the GMII transmit AC timing specifications.

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{GTX}	—	8.0	—	ns
GTX_CLK duty cycle	t _{GTXH} /t _{GTX}	43.75	—	56.25	%
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX	0.5	—	5.0	ns
GTX_CLK clock rise time, V _{IL} (min) to V _{IH} (max)	t _{GTXR}	—	—	1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{GTXF}	—	—	1.0	ns
GTX_CLK125 clock period	t _{G125} 2	—	8.0	—	ns
GTX_CLK125 reference clock duty cycle measured at $LV_{DD}/2$	t _{G125H} /t _{G125}	45	—	55	%

Notes:

1. The symbols for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This symbol represents the external GTX_CLK125 signal and does not follow the original symbol naming convention.

Table 21. GMII Transmit AC Timing Specifications

Figure 9 shows the GMII receive AC timing diagram.

Figure 9. GMII Receive AC Timing Diagram

8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 23 provides the MII transmit AC timing specifications.

Table 23. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	_	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{MTXR}	1.0	—	4.0	ns
TX_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$	t _{MTXF}	1.0	_	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

11 JTAG

JTAG

This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E

11.1 JTAG DC Electrical Characteristics

Table 36 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		OV _{DD} - 0.3	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 36. JTAG interface DC Electrical Characteristics

11.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E. Table 37 provides the JTAG AC timing specifications as defined in Figure 27 through Figure 30.

Table 37. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	_	ns	
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	_	ns	
JTAG external clock rise and fall times	t _{JTGR} , t _{JTGF}	0	2	ns	
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	^t jtdvkh ^t jtivkh	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	^t jtdxkh ^t jtixkh	10 10		ns	4
Valid times: Boundary-scan data TDO	t _{jtkldv} t _{jtklov}	2 2	11 11	ns	5

JTAG

Figure 28 provides the TRST timing diagram.

Figure 29. Boundary-Scan Timing Diagram

Figure 30 provides the test access port timing diagram.

Figure 30. Test Access Port Timing Diagram

18 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8347E is available in two packages—a tape ball grid array (TBGA) and a plastic ball grid array (PBGA). See Section 18.1, "Package Parameters for the MPC8347E TBGA," Section 18.2, "Mechanical Dimensions for the MPC8347E TBGA, Section 18.3, "Package Parameters for the MPC8347E PBGA," and Section 18.4, "Mechanical Dimensions for the MPC8347E PBGA."

18.1 Package Parameters for the MPC8347E TBGA

The package parameters are provided in the following list. The package type is $35 \text{ mm} \times 35 \text{ mm}$, 672 tape ball grid array (TBGA).

Package outline	$35 \text{ mm} \times 35 \text{ mm}$
Interconnects	672
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder balls	62 Sn/36 Pb/2 Ag (ZU package) 95.5 Sn/0.5 Cu/4Ag (VV package)
Ball diameter (typical)	0.64 mm

Package and Pin Listings

18.2 Mechanical Dimensions for the MPC8347E TBGA

Figure 39 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347E, 672-TBGA package.

Notes:

1.All dimensions are in millimeters.

2.Dimensions and tolerances per ASME Y14.5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

5.Parallelism measurement must exclude any effect of mark on top surface of package.

Figure 39. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347E TBGA

18.5 Pinout Listings

Table 51 provides the pinout listing for the MPC8347E, 672 TBGA package.

Table 51. MPC8347E (TBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI			
PCI_INTA/IRQ_OUT	B34	0	OV _{DD}	2
PCI_RESET_OUT	C33	0	OV _{DD}	
PCI_AD[31:0]	G30, G32, G34, H31, H32, H33, H34, J29, J32, J33, L30, K31, K33, K34, L33, L34, P34, R29, R30, R33, R34, T31, T32, T33, U31, U34, V31, V32, V33, V34, W33, W34	I/O	OV _{DD}	
PCI_C/BE[3:0]	J30, M31, P33, T34	I/O	OV_{DD}	
PCI_PAR	P32	I/O	OV _{DD}	
PCI_FRAME	M32	I/O	OV _{DD}	5
PCI_TRDY	N29	I/O	OV _{DD}	5
PCI_IRDY	M34	I/O	OV _{DD}	5
PCI_STOP	N31	I/O	OV _{DD}	5
PCI_DEVSEL	N30	I/O	OV _{DD}	5
PCI_IDSEL	J31	I	OV _{DD}	
PCI_SERR	N34	I/O	OV _{DD}	5
PCI_PERR	N33	I/O	OV _{DD}	5
PCI_REQ[0]	D32	I/O	OV _{DD}	
PCI_REQ[1]/CPCI1_HS_ES	D34	I	OV _{DD}	
PCI_REQ[2:4]	E34, F32, G29	I	OV _{DD}	
PCI_GNT0	C34	I/O	OV _{DD}	
PCI_GNT1/CPCI1_HS_LED	D33	0	OV _{DD}	
PCI_GNT2/CPCI1_HS_ENUM	E33	0	OV _{DD}	
PCI_GNT[3:4]	F31, F33	0	OV _{DD}	
M66EN	A19	I	OV _{DD}	
	DDR SDRAM Memory Interface			
MDQ[0:63]	D5, A3, C3, D3, C4, B3, C2, D4, D2, E5, G2, H6, E4, F3, G4, G3, H1, J2, L6, M6, H2, K6, L2, M4, N2, P4, R2, T4, P6, P3, R1, T2, AB5, AA3, AD6, AE4, AB4, AC2, AD3, AE6, AE3, AG4, AK5, AK4, AE2, AG6, AK3, AK2, AL2, AL1, AM5, AP5, AM2, AN1, AP4, AN5, AJ7, AN7, AM8, AJ9, AP6, AL7, AL9, AN8	I/O	GV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	Gigabit Reference Clock			
EC_GTX_CLK125	C8	I	LV _{DD1}	
Three-Spe	ed Ethernet Controller (Gigabit Ethern	et 1)		
TSEC1_COL/GPIO2[20]	A17	I/O	OV _{DD}	
TSEC1_CRS/GPIO2[21]	F12	I/O	LV _{DD1}	
TSEC1_GTX_CLK	D10	0	LV _{DD1}	3
TSEC1_RX_CLK	A11	I	LV _{DD1}	
TSEC1_RX_DV	B11	I	LV _{DD1}	
TSEC1_RX_ER/GPIO2[26]	B17	I/O	OV _{DD}	
TSEC1_RXD[7:4]/GPIO2[22:25]	B16, D16, E16, F16	I/O	OV _{DD}	
TSEC1_RXD[3:0]	E10, A8, F10, B8	I	LV _{DD1}	
TSEC1_TX_CLK	D17	I	OV _{DD}	
TSEC1_TXD[7:4]/GPIO2[27:30]	A15, B15, A14, B14	I/O	OV _{DD}	
TSEC1_TXD[3:0]	A10, E11, B10, A9	0	LV _{DD1}	11
TSEC1_TX_EN	В9	0	LV _{DD1}	
TSEC1_TX_ER/GPIO2[31]	A16	I/O	OV _{DD}	
Three-Spe	ed Ethernet Controller (Gigabit Ethern	et 2)		
TSEC2_COL/GPIO1[21]	C14	I/O	OV _{DD}	
TSEC2_CRS/GPIO1[22]	D6	I/O	LV _{DD2}	
TSEC2_GTX_CLK	A4	0	LV _{DD2}	
TSEC2_RX_CLK	B4	I	LV _{DD2}	
TSEC2_RX_DV/GPIO1[23]	E6	I/O	LV _{DD2}	
TSEC2_RXD[7:4]/GPIO1[26:29]	A13, B13, C13, A12	I/O	OV _{DD}	
TSEC2_RXD[3:0]/GPIO1[13:16]	D7, A6, E8, B7	I/O	LV _{DD2}	
TSEC2_RX_ER/GPIO1[25]	D14	I/O	OV _{DD}	
TSEC2_TXD[7]/GPIO1[31]	B12	I/O	OV _{DD}	
TSEC2_TXD[6]/DR_XCVR_TERM_SEL	C12	0	OV _{DD}	
TSEC2_TXD[5]/DR_UTMI_OPMODE1	D12	0	OV _{DD}	
TSEC2_TXD[4]/DR_UTMI_OPMODE0	E12	0	OV _{DD}	
TSEC2_TXD[3:0]/GPIO1[17:20]	B5, A5, F8, B6	I/O	LV _{DD2}	
TSEC2_TX_ER/GPIO1[24]	F14	I/O	OV _{DD}	
TSEC2_TX_EN/GPIO1[12]	C5	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	E14	I/O	OV _{DD}	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Signal Package Pin Number		Power Supply	Notes
AV _{DD} 3	AF9	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	U2	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	A2, B1, B2, D10, D18, E6, E14, E22, F9, F12, F15, F18, F21, F24, G5, H6, J23, L4, L6, L12, L13, L14, L15, L16, L17, M11, M12, M13, M14, M15, M16, M17, M18, M23, N11, N12, N13, N14, N15, N16, N17, N18, P6, P11, P12, P13, P14, P15, P16, P17, P18, P24, R5, R11, R12, R13, R14, R15, R16, R17, R18, R23, T11, T12, T13, T14, T15, T16, T17, T18, U6, U11, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V23, V25, W4, Y6, AA23, AB24, AC5, AC8, AC11, AC14, AC17, AC20, AD9, AD15, AD21, AE12, AE18, AF3, AF26		l	
GV _{DD}	U9, V9, W10, W19, Y11, Y12, Y14, Y15, Y17, Y18, AA6, AB5, AC9, AC12, AC15, AC18, AC21, AC24, AD6, AD8, AD14, AD20, AE5, AE11, AE17, AG2, AG27	Power for DDR DRAM I/O voltage (2.5 V)	GV _{DD}	
LV _{DD} 1	U20, W25	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	
LV _{DD} 2	V20, Y23	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	J11, J12, J15, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, L10, L11, L18, L19, M10, M19, N10, N19, P9, P10, P19, R10, R19, R20, T10, T19, U10, U19, V10, V11, V18, V19, W11, W12, W13, W14, W15, W16, W17, W18	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B27, D3, D11, D19, E15, E23, F5, F8, F11, F14, F17, F20, G24, H23, H24, J6, J14, J17, J18, K4, L9, L20, L23, L25, M6, M9, M20, P5, P20, P23, R6, R9, R24, U23, V4, V6	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

			Inpu	It Clock Fre	equency (M	Hz) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	Input Clock	16.67	25	33.33	66.67
		Natio	C	s <i>b_clk</i> Freq	uency (MH	z)
Low	0010	2 : 1				133
Low	0011	3 : 1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6 : 1	100	150	200	
Low	0111	7 : 1	116	175	233	
Low	1000	8 : 1	133	200	266	
Low	1001	9:1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		1
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233		•	
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	2 : 1				133
High	0011	3 : 1			100	200
High	0100	4 : 1			133	266
High	0101	5 : 1			166	333
High	0110	6 : 1			200	
High	0111	7 : 1			233	
High	1000	8 : 1			L	

Table 57. CSB Frequency Options for Host Mode

¹ CFG_CLKIN_DIV selects the ratio between CLKIN and PCI_SYNC_OUT.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode. DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.

			Inpu	it Clock Fre	quency (M	Hz) ²
CFG_CLKIN_DIV at Reset ¹	SPMF	Input Clock	16.67	25	33.33	66.67
		Natio	C	s <i>b_clk</i> Freq	uency (MH	z)
Low	0010	2 : 1				133
Low	0011	3 : 1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6 : 1	100	150	200	
Low	0111	7 : 1	116	175	233	
Low	1000	8 : 1	133	200	266	
Low	1001	9 : 1	150	225	300	
Low	1010	10 : 1	166	250	333	
Low	1011	11 : 1	183	275		
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233		<u>.</u>	
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	4 : 1		100	133	266
High	0011	6 : 1	100	150	200	
High	0100	8 : 1	133	200	266	
High	0101	10 : 1	166	250	333	
High	0110	12 : 1	200	300		
High	0111	14 : 1	233			
High	1000	16 : 1	266			

Table 58. CSB Frequency Options for Agent Mode

¹ CFG_CLKIN_DIV doubles csb_clk if set high.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode. DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.

19.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 59 shows the encodings for RCWL[COREPLL]. COREPLL values that are not listed in Table 59 should be considered as reserved.

Thermal

required in the heat sink. Minimize the size of the clearance to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 T_J = junction temperature (°C) T_C = case temperature of the package (°C) $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W) P_D = power dissipation (W)

Revision	Date	Substantive Change(s)
1	4/2005	Table 1: Addition of note 1Table 48: Addition of Therm0 (K32)Table 49: Addition of Therm0 (B15)
0	4/2005	Initial release.

Table 66. Document Revision History (continued)

23 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and later versions (orderable part numbers ending with A or B), see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8347EAEC).

23.1 Part Numbers Fully Addressed by This Document

Table 67 shows an analysis of the Freescale part numbering nomenclature for the MPC8347E. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the MPC8347E product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	аа	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8347	Blank = Not included E = included	Blank = 0 to 105°C C = −40 to 105°C	ZU =TBGA VV = PB free TBGA ZQ = PBGA VR = PB Free PBGA	e300 core speed AD = 266 AG = 400 AJ = 533 AL = 667	D = 266 F = 333 ⁴	Blank = 1.1 or 1.0

Table 67. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to 400 (PBGA) with a platform frequency of 266 and up to 667(TBGA) with a platform frequency of 333

- 2. See Section 18, "Package and Pin Listings," for more information on available package types.
- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 up to 333 MHz (at a CSB of 333 MHz), but DDR2 at 400 MHz (CSB at 200 MHz) is NOT guaranteed.

Table 68 shows the SVR settings by device and package type.

Table	68.	SVR	Settings
-------	-----	-----	----------

Device	Package	SVR (Rev. 1.0)
MPC8347E	TBGA	8052_0010
MPC8347	TBGA	8053_0010

Ordering Information

Table	68.	SVR	Settings	(continued))
-------	-----	-----	----------	-------------	---

MPC8347E	PBGA	8054_0010
MPC8347	PBGA	8055_0010

23.2 Part Marking

Parts are marked as in the example shown in Figure 44.

Figure 44. Freescale Part Marking for TBGA or PBGA Devices

Ordering Information

THIS PAGE INTENTIONALLY LEFT BLANK