

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347czuajfb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Enhanced host controller interface (EHCI) compatible
- Complies with USB Specification Rev. 2.0
- High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- Direct connection to a high-speed device without an external hub
- External PHY with serial and low-pin count (ULPI) interfaces
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Four chip selects support four external slaves
 - Up to eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller
 - Three protocol engines on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user-programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
 - Programmable highest priority request
 - Four groups of interrupts with programmable priority
 - External and internal interrupts directed to host processor
 - Redirects interrupts to external INTA pin in core disable mode.
 - Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I^2C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible to local core and remote PCI masters
 - Misaligned transfer capability

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8347E. The MPC8347E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

			-		
	Characteristic e supply voltage . supply voltage R DRAM I/O voltage ee-speed Ethernet I/O, MII management voltage , local bus, DUART, system control and power management, I ² JTAG I/O voltage ut voltage DDR DRAM signals DDR DRAM reference Three-speed Ethernet signals Local bus, DUART, CLKIN, system control a power management I ² C, and JTAG signals	Symbol	Max Value	Unit	Notes
Core supply voltage		V _{DD}	-0.3 to 1.32	V	
PLL supply voltage		AV _{DD}	-0.3 to 1.32	V	
DDR DRAM I/O volta	age	GV _{DD}	-0.3 to 3.63	V	
Three-speed Ethernet I/O, MII management voltage LV _{DD} -0.3				V	
PCI, local bus, DUAF and JTAG I/O voltage	RT, system control and power management, I^2C ,	OV_{DD}	-0.3 to 3.63	V	
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5
	Local bus, DUART, CLKIN, system control and power management, I ² C, and JTAG signals	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3, 5
	PCI	OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	6
Storage temperature	range	T _{STG}	–55 to 150	°C	

Table 1. Absolute Maximum Ratings¹

Notes:

- ¹ Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- ² Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ³ Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁴ Caution: LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁵ (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- ⁶ OV_{IN} on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8347E.

5.1 **RESET DC Electrical Characteristics**

Table 8 provides the DC electrical characteristics for the RESET pins of the MPC8347E.

Table 8.	RESET	Pins DC	Electrical	Characteristics'

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage ²	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

5.2 **RESET AC Electrical Characteristics**

Table 9 provides the reset initialization AC timing specifications of the MPC8347E.

Table 9. RESET Initialization Timing Specifications

Parameter/Condition	Min	Max	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	—	t _{PCI_SYNC_IN}	1
Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8347E is in PCI host mode	32	—	^t CLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8347E is in PCI agent mode	32	_	t _{PCI_SYNC_IN}	1
HRESET/SRESET assertion (output)	512	—	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	—	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI host mode	4	_	^t CLKIN	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI agent mode	4	_	^t pci_sync_in	1

Figure 6. DDR AC Test Load

Table 15 shows the DDR SDRAM measurement conditions.

Table 15. DDR SDRAM Measurement Conditions

Symbol	DDR	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	V	1
V _{OUT}	$0.5 imes GV_{DD}$	V	2

Notes:

1. Data input threshold measurement point.

2. Data output measurement point.

Figure 7 shows the DDR SDRAM output timing diagram for source synchronous mode.

Figure 7. DDR SDRAM Output Timing Diagram for Source Synchronous Mode

Table 16 provides approximate delay information that can be expected for the address and command signals of the DDR controller for various loadings, which can be useful for a system utilizing the DLL. These numbers are the result of simulations for one topology. The delay numbers will strongly depend on the topology used. These delay numbers show the total delay for the address and command to arrive at the DRAM devices. The actual delay could be different than the delays seen in simulation, depending on the system topology. If a heavily loaded system is used, the DLL loop may need to be adjusted to meet setup requirements at the DRAM.

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8347E.

7.1 DUART DC Electrical Characteristics

Table 17 provides the DC electrical characteristics for the DUART interface of the MPC8347E.

Table 17. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current (0.8 V \leq V _{IN} \leq 2 V)	I _{IN}	—	±5	μA
High-level output voltage, I _{OH} = -100 μA	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

7.2 DUART AC Electrical Specifications

Table 18 provides the AC timing parameters for the DUART interface of the MPC8347E.

Table 18. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	
Maximum baud rate	>1,000,000	baud	1
Oversample rate	16		2

Notes:

- 1. Actual attainable baud rate will be limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

8.1 Three-Speed Ethernet Controller (TSEC)— GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to the gigabit media independent interface (GMII), the media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII, GMII, and TBI interfaces are defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 **TSEC DC Electrical Characteristics**

GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 19 and Table 20. The RGMII and RTBI signals in Table 20 are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV_{DD}^2	—		2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	$LV_{DD} = Min$	2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	—	—	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	—	-0.3	0.90	V
Input high current	IIH	$V_{IN}^{1} = LV_{DD}$		-	40	μA
Input low current	IIL	V _{IN} ¹ = GND		-600	—	μA

Table 19. GMII/TBI and MII DC Electrical Characteristics

Notes:

1. The symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ supply.

Parameters	Symbol	Conditions		Min	Мах	Unit
Supply voltage 2.5 V	LV _{DD}	-	_	2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$ $LV_{DD} = Min$		2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA LV _{DD} = Min		GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	— LV _{DD} = Min		0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	I	$V_{IN}^{1} = GND$		-15	_	μA

Table 20. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

Table 21 provides the GMII transmit AC timing specifications.

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{GTX}	—	8.0	—	ns
GTX_CLK duty cycle	t _{GTXH} /t _{GTX}	43.75	—	56.25	%
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	^t GTKHDX	0.5	—	5.0	ns
GTX_CLK clock rise time, V _{IL} (min) to V _{IH} (max)	t _{GTXR}	—	—	1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{GTXF}	—	—	1.0	ns
GTX_CLK125 clock period	t _{G125} 2	—	8.0	—	ns
GTX_CLK125 reference clock duty cycle measured at $LV_{DD}/2$	t _{G125H} /t _{G125}	45	—	55	%

Notes:

1. The symbols for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This symbol represents the external GTX_CLK125 signal and does not follow the original symbol naming convention.

Table 21. GMII Transmit AC Timing Specifications

11 JTAG

JTAG

This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E

11.1 JTAG DC Electrical Characteristics

Table 36 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		OV _{DD} - 0.3	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 36. JTAG interface DC Electrical Characteristics

11.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E. Table 37 provides the JTAG AC timing specifications as defined in Figure 27 through Figure 30.

Table 37. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Мах	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	_	ns	
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	_	ns	
JTAG external clock rise and fall times	t _{JTGR} , t _{JTGF}	0	2	ns	
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	^t jtdxkh ^t jtixkh	10 10		ns	4
Valid times: Boundary-scan data TDO	t _{jtkldv} t _{jtklov}	2 2	11 11	ns	5

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8347E.

12.1 I²C DC Electrical Characteristics

Table 38 provides the DC electrical characteristics for the I²C interface of the MPC8347E.

Table 38. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter	Symbol	Min	Max	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	
Low level output voltage	V _{OL}	0	$0.2\times\text{OV}_{\text{DD}}$	V	1
Output fall time from $V_{\text{IH}}(\text{min})$ to $V_{\text{IL}}(\text{max})$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	IJ	-10	10	μA	4
Capacitance for each I/O pin	CI	—	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8349E Integrated Host Processor Family Reference Manual, for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 39 provides the AC timing parameters for the I²C interface of the MPC8347E. Note that all values refer to $V_{IH}(min)$ and $V_{IL}(max)$ levels (see Table 38).

Table 39. I²C AC Electrical Specifications

Parameter	Symbol ¹	Min	Max	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock		1.3	_	μs
High period of the SCL clock		0.6	—	μs
Setup time for a repeated START condition		0.6	_	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)		0.6	—	μs
Data setup time	t _{I2DVKH}	100	—	ns
Data hold time: CBUS compatible ma I ² C bus de	asters t _{I2DXKL} evices	$\overline{0^2}$	0.9 ³	μs

Figure 34 shows the PCI input AC timing diagram.

Figure 34. PCI Input AC Timing Diagram

Figure 35 shows the PCI output AC timing diagram.

MPC8347E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 11

Timers

14 Timers

This section describes the DC and AC electrical specifications for the timers.

14.1 Timer DC Electrical Characteristics

Table 43 provides the DC electrical characteristics for the MPC8347E timer pins, including TIN, $\overline{\text{TOUT}}$, $\overline{\text{TGATE}}$, and RTC_CLK.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 43. Timer DC Electrical Characteristics

14.2 Timer AC Timing Specifications

Table 44 provides the timer input and output AC timing specifications.

Table 44. Timers Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

18 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8347E is available in two packages—a tape ball grid array (TBGA) and a plastic ball grid array (PBGA). See Section 18.1, "Package Parameters for the MPC8347E TBGA," Section 18.2, "Mechanical Dimensions for the MPC8347E TBGA, Section 18.3, "Package Parameters for the MPC8347E PBGA," and Section 18.4, "Mechanical Dimensions for the MPC8347E PBGA."

18.1 Package Parameters for the MPC8347E TBGA

The package parameters are provided in the following list. The package type is $35 \text{ mm} \times 35 \text{ mm}$, 672 tape ball grid array (TBGA).

Package outline	$35 \text{ mm} \times 35 \text{ mm}$
Interconnects	672
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder balls	62 Sn/36 Pb/2 Ag (ZU package) 95.5 Sn/0.5 Cu/4Ag (VV package)
Ball diameter (typical)	0.64 mm

18.5 Pinout Listings

Table 51 provides the pinout listing for the MPC8347E, 672 TBGA package.

Table 51. MPC8347E (TBGA) Pinout Listing

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	PCI			
PCI_INTA/IRQ_OUT	B34	0	OV _{DD}	2
PCI_RESET_OUT	C33	0	OV _{DD}	
PCI_AD[31:0]	G30, G32, G34, H31, H32, H33, H34, J29, J32, J33, L30, K31, K33, K34, L33, L34, P34, R29, R30, R33, R34, T31, T32, T33, U31, U34, V31, V32, V33, V34, W33, W34	I/O	OV _{DD}	
PCI_C/BE[3:0]	J30, M31, P33, T34	I/O	OV_{DD}	
PCI_PAR	P32	I/O	OV _{DD}	
PCI_FRAME	M32	I/O	OV _{DD}	5
PCI_TRDY	N29	I/O	OV _{DD}	5
PCI_IRDY	M34	I/O	OV _{DD}	5
PCI_STOP	N31	I/O	OV _{DD}	5
PCI_DEVSEL	N30	I/O	OV _{DD}	5
PCI_IDSEL	J31	I	OV _{DD}	
PCI_SERR	N34	I/O	OV _{DD}	5
PCI_PERR	N33	I/O	OV _{DD}	5
PCI_REQ[0]	D32	I/O	OV _{DD}	
PCI_REQ[1]/CPCI1_HS_ES	D34	I	OV _{DD}	
PCI_REQ[2:4]	E34, F32, G29	I	OV _{DD}	
PCI_GNT0	C34	I/O	OV _{DD}	
PCI_GNT1/CPCI1_HS_LED	D33	0	OV _{DD}	
PCI_GNT2/CPCI1_HS_ENUM	E33	0	OV _{DD}	
PCI_GNT[3:4]	F31, F33	0	OV _{DD}	
M66EN	A19	I	OV _{DD}	
	DDR SDRAM Memory Interface			
MDQ[0:63]	D5, A3, C3, D3, C4, B3, C2, D4, D2, E5, G2, H6, E4, F3, G4, G3, H1, J2, L6, M6, H2, K6, L2, M4, N2, P4, R2, T4, P6, P3, R1, T2, AB5, AA3, AD6, AE4, AB4, AC2, AD3, AE6, AE3, AG4, AK5, AK4, AE2, AG6, AK3, AK2, AL2, AL1, AM5, AP5, AM2, AN1, AP4, AN5, AJ7, AN7, AM8, AJ9, AP6, AL7, AL9, AN8	I/O	GV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	Gigabit Reference Clock			
EC_GTX_CLK125	C8	I	LV _{DD1}	
Three-Spe	ed Ethernet Controller (Gigabit Ethern	et 1)		
TSEC1_COL/GPIO2[20]	A17	I/O	OV _{DD}	
TSEC1_CRS/GPIO2[21]	F12	I/O	LV _{DD1}	
TSEC1_GTX_CLK	D10	0	LV _{DD1}	3
TSEC1_RX_CLK	A11	I	LV _{DD1}	
TSEC1_RX_DV	B11	I	LV _{DD1}	
TSEC1_RX_ER/GPIO2[26]	B17	I/O	OV _{DD}	
TSEC1_RXD[7:4]/GPIO2[22:25]	B16, D16, E16, F16	I/O	OV _{DD}	
TSEC1_RXD[3:0]	E10, A8, F10, B8	I	LV _{DD1}	
TSEC1_TX_CLK	D17	I	OV _{DD}	
TSEC1_TXD[7:4]/GPIO2[27:30]	A15, B15, A14, B14	I/O	OV _{DD}	
TSEC1_TXD[3:0]	A10, E11, B10, A9	0	LV _{DD1}	11
TSEC1_TX_EN	В9	0	LV _{DD1}	
TSEC1_TX_ER/GPIO2[31]	A16	I/O	OV _{DD}	
Three-Spe	ed Ethernet Controller (Gigabit Ethern	et 2)		
TSEC2_COL/GPIO1[21]	C14	I/O	OV _{DD}	
TSEC2_CRS/GPIO1[22]	D6	I/O	LV _{DD2}	
TSEC2_GTX_CLK	A4	0	LV _{DD2}	
TSEC2_RX_CLK	B4	I	LV _{DD2}	
TSEC2_RX_DV/GPIO1[23]	E6	I/O	LV _{DD2}	
TSEC2_RXD[7:4]/GPIO1[26:29]	A13, B13, C13, A12	I/O	OV _{DD}	
TSEC2_RXD[3:0]/GPIO1[13:16]	D7, A6, E8, B7	I/O	LV _{DD2}	
TSEC2_RX_ER/GPIO1[25]	D14	I/O	OV _{DD}	
TSEC2_TXD[7]/GPIO1[31]	B12	I/O	OV _{DD}	
TSEC2_TXD[6]/DR_XCVR_TERM_SEL	C12	0	OV _{DD}	
TSEC2_TXD[5]/DR_UTMI_OPMODE1	D12	0	OV _{DD}	
TSEC2_TXD[4]/DR_UTMI_OPMODE0	E12	0	OV _{DD}	
TSEC2_TXD[3:0]/GPIO1[17:20]	B5, A5, F8, B6	I/O	LV _{DD2}	
TSEC2_TX_ER/GPIO1[24]	F14	I/O	OV _{DD}	
TSEC2_TX_EN/GPIO1[12]	C5	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	E14	I/O	OV _{DD}	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD} 2	C6, D9	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	E19, E29, F7, F9, F11,F13, F15, F17, F18, F21, F23, F25, F29, H29, J6, K29, M29, N6, P29, T29, U30, V6, V29, W29, AB29, AC5, AD29, AF6, AF29, AH29, AJ8, AJ12, AJ14, AJ16, AJ18, AJ20, AJ21, AJ23, AJ25, AJ26, AJ27, AJ28, AJ29, AK10	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B22, B28, C16, C17, C24, C26, D13, D15, D19, D29, E31, F28, G33, H30, L29, L32, N32, P31, R31, U32, W31, Y29, AA29, AC30, AE31, AF30, AG29, AJ17, AJ30, AK11, AL15, AL19, AL21, AL29, AL30, AM20, AM23, AM24, AM26, AM28, AN11, AN13	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	
MVREF1	M3	I	DDR reference voltage	
MVREF2	AD2	I	DDR reference voltage	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
AV _{DD} 3	AF9	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	U2	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	A2, B1, B2, D10, D18, E6, E14, E22, F9, F12, F15, F18, F21, F24, G5, H6, J23, L4, L6, L12, L13, L14, L15, L16, L17, M11, M12, M13, M14, M15, M16, M17, M18, M23, N11, N12, N13, N14, N15, N16, N17, N18, P6, P11, P12, P13, P14, P15, P16, P17, P18, P24, R5, R11, R12, R13, R14, R15, R16, R17, R18, R23, T11, T12, T13, T14, T15, T16, T17, T18, U6, U11, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V23, V25, W4, Y6, AA23, AB24, AC5, AC8, AC11, AC14, AC17, AC20, AD9, AD15, AD21, AE12, AE18, AF3, AF26		l	
GV _{DD}	U9, V9, W10, W19, Y11, Y12, Y14, Y15, Y17, Y18, AA6, AB5, AC9, AC12, AC15, AC18, AC21, AC24, AD6, AD8, AD14, AD20, AE5, AE11, AE17, AG2, AG27	Power for DDR DRAM I/O voltage (2.5 V)	GV _{DD}	
LV _{DD} 1	U20, W25	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	
LV _{DD} 2	V20, Y23	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	J11, J12, J15, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, L10, L11, L18, L19, M10, M19, N10, N19, P9, P10, P19, R10, R19, R20, T10, T19, U10, U19, V10, V11, V18, V19, W11, W12, W13, W14, W15, W16, W17, W18	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B27, D3, D11, D19, E15, E23, F5, F8, F11, F14, F17, F20, G24, H23, H24, J6, J14, J17, J18, K4, L9, L20, L23, L25, M6, M9, M20, P5, P20, P23, R6, R9, R24, U23, V4, V6	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

20 Thermal

This section describes the thermal specifications of the MPC8347E.

20.1 Thermal Characteristics

Table 61 provides the package thermal characteristics for the $672 \ 35 \times 35 \ \text{mm}$ TBGA of the MPC8347E.

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	R _{θJA}	14	°C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	R _{θJMA}	11	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on single-layer board (1s)	R _{θJMA}	11	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on four-layer board (2s2p)	$R_{ extsf{ heta}JMA}$	8	°C/W	1, 3
Junction-to-ambient (@ 2 m/s) on single-layer board (1s)	R _{θJMA}	9	°C/W	1, 3
Junction-to-ambient (@ 2 m/s) on four-layer board (2s2p)	$R_{ extsf{ heta}JMA}$	7	°C/W	1, 3
Junction-to-board thermal	$R_{ extsf{ heta}JB}$	3.8	°C/W	4
Junction-to-case thermal	$R_{ extsf{ heta}JC}$	1.7	°C/W	5
Junction-to-package natural convection on top	ΨJT	1	°C/W	6

Table 61. Package Thermal Characteristics for TBGA

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 62 provides the package thermal characteristics for the 620 29×29 mm PBGA of the MPC8347E.

Table 62. Package Thermal Characteristics for PBGA

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	R _{θJA}	21	°C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	R _{θJMA}	15	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on single-layer board (1s)	R _{θJMA}	17	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on four-layer board (2s2p)	R _{θJMA}	12	°C/W	1, 3
Junction-to-board thermal	$R_{\theta J B}$	6	°C/W	4

_	•	-		
Characteristic	Symbol	Value	Unit	Notes
Junction-to-case thermal	$R_{ extsf{ heta}JC}$	5	°C/W	5
Junction-to-package natural convection on top	Ψіт	5	°C/W	6

Table 62. Package Thermal Characteristics for PBGA (continued)

Notes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

20.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers. See Table 5 for I/O power dissipation values.

20.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta IA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single-layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

20.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For

23 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and later versions (orderable part numbers ending with A or B), see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8347EAEC).

23.1 Part Numbers Fully Addressed by This Document

Table 67 shows an analysis of the Freescale part numbering nomenclature for the MPC8347E. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the MPC8347E product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	аа	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8347	Blank = Not included E = included	Blank = 0 to 105°C C = −40 to 105°C	ZU =TBGA VV = PB free TBGA ZQ = PBGA VR = PB Free PBGA	e300 core speed AD = 266 AG = 400 AJ = 533 AL = 667	D = 266 F = 333 ⁴	Blank = 1.1 or 1.0

Table 67. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to 400 (PBGA) with a platform frequency of 266 and up to 667(TBGA) with a platform frequency of 333

- 2. See Section 18, "Package and Pin Listings," for more information on available package types.
- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 up to 333 MHz (at a CSB of 333 MHz), but DDR2 at 400 MHz (CSB at 200 MHz) is NOT guaranteed.

Table 68 shows the SVR settings by device and package type.

Table	68.	SVR	Settings
-------	-----	-----	----------

Device	Package	SVR (Rev. 1.0)
MPC8347E	TBGA	8052_0010
MPC8347	TBGA	8053_0010

Ordering Information

Table	68.	SVR	Settings	(continued))
-------	-----	-----	----------	-------------	---

MPC8347E	PBGA	8054_0010
MPC8347	PBGA	8055_0010

23.2 Part Marking

Parts are marked as in the example shown in Figure 44.

Figure 44. Freescale Part Marking for TBGA or PBGA Devices