

Welcome to E-XFL.COM

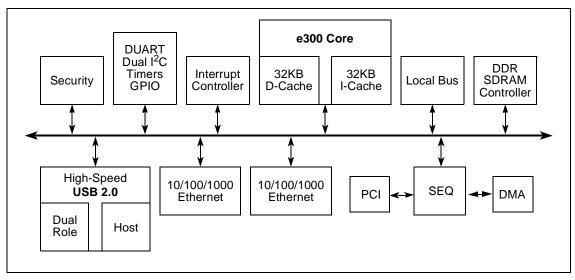
Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

E·XF


Details	
Product Status	Active
Core Processor	-
Number of Cores/Bus Width	-
Speed	-
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	-
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	-
Operating Temperature	-
Security Features	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8347ecvvajdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

This section provides a high-level overview of the MPC8347E features. Figure 1 shows the major functional units within the MPC8347E.

Figure 1. MPC8347E Block Diagram

Major features of the MPC8347E are as follows:

- Embedded PowerPC e300 processor core; operates at up to 667 MHz
 - High-performance, superscalar processor core
 - Floating-point, integer, load/store, system register, and branch processing units
 - 32-Kbyte instruction cache, 32-Kbyte data cache
 - Lockable portion of L1 cache
 - Dynamic power management
 - Software-compatible with the other Freescale processor families that implement Power Architecture technology
- Double data rate, DDR SDRAM memory controller
 - Programmable timing for DDR-1 SDRAM
 - 32- or 64-bit data interface, up to 333-MHz data rate for TBGA, 266 MHz for PBGA
 - Four banks of memory, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbit to 1 Gbit with x8/x16 data ports
 - Full error checking and correction (ECC) support
 - Page mode support (up to 16 simultaneous open pages)
 - Contiguous or discontiguous memory mapping
 - Read-modify-write support
 - Sleep mode for self-refresh SDRAM
 - Auto refresh

- Enhanced host controller interface (EHCI) compatible
- Complies with USB Specification Rev. 2.0
- High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- Direct connection to a high-speed device without an external hub
- External PHY with serial and low-pin count (ULPI) interfaces
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Four chip selects support four external slaves
 - Up to eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller
 - Three protocol engines on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user-programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
 - Programmable highest priority request
 - Four groups of interrupts with programmable priority
 - External and internal interrupts directed to host processor
 - Redirects interrupts to external INTA pin in core disable mode.
 - Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I^2C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible to local core and remote PCI masters
 - Misaligned transfer capability

2 Electrical Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8347E. The MPC8347E is currently targeted to these specifications. Some of these specifications are independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer design specifications.

2.1 **Overall DC Electrical Characteristics**

This section covers the ratings, conditions, and other characteristics.

2.1.1 Absolute Maximum Ratings

Table 1 provides the absolute maximum ratings.

	Characteristic	Symbol	Max Value	Unit	Notes		
Core supply voltage		V _{DD} -0.3 to 1.32		V			
PLL supply voltage		AV _{DD}	-0.3 to 1.32	V			
DDR DRAM I/O voltag	e	${\sf GV}_{\sf DD}$	-0.3 to 3.63	V			
Three-speed Ethernet	-speed Ethernet I/O, MII management voltage LV _{DD} -0.3 to 3.63 V		V				
PCI, local bus, DUART, system control and power management, I^2C , and JTAG I/O voltage		OV _{DD}	-0.3 to 3.63	V			
Input voltage	DDR DRAM signals	MV _{IN}	–0.3 to (GV _{DD} + 0.3)	V	2, 5		
	DDR DRAM reference	MV _{REF}	–0.3 to (GV _{DD} + 0.3)	V	2, 5		
	Three-speed Ethernet signals	LV _{IN}	-0.3 to (LV _{DD} + 0.3)	V	4, 5		
Local bus, DUART, CLKIN, system control and power management, I ² C, and JTAG signals		OV _{IN}	–0.3 to (OV _{DD} + 0.3)	V	3, 5		
	PCI	OV _{IN}	-0.3 to (OV _{DD} + 0.3)	V	6		
Storage temperature ra	ange	T _{STG}	–55 to 150	°C			

Table 1. Absolute Maximum Ratings¹

Notes:

- ¹ Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.
- ² Caution: MV_{IN} must not exceed GV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ³ Caution: OV_{IN} must not exceed OV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁴ Caution: LV_{IN} must not exceed LV_{DD} by more than 0.3 V. This limit can be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- ⁵ (M,L,O)V_{IN} and MV_{REF} may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2.
- ⁶ OV_{IN} on the PCI interface can overshoot/undershoot according to the PCI Electrical Specification for 3.3-V operation, as shown in Figure 3.

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8347E for the 3.3-V signals, respectively.

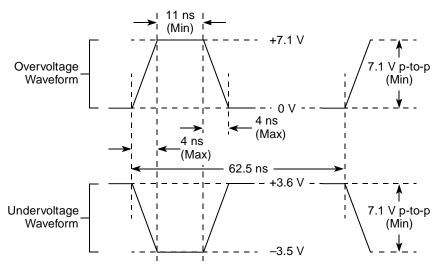


Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	40	OV _{DD} = 3.3 V
PCI signals (not including PCI output clocks)	25	
PCI output clocks (including PCI_SYNC_OUT)	40	
DDR signal	18	GV _{DD} = 2.5 V
TSEC/10/100 signals	40	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, JTAG, USB	40	OV _{DD} = 3.3 V
GPIO signals	40	OV _{DD} = 3.3 V, LV _{DD} = 2.5/3.3 V

Table 3. Output Drive Capability

2.2 Power Sequencing

MPC8347E does not require the core supply voltage and I/O supply voltages to be applied in any particular order. Note that during the power ramp up, before the power supplies are stable, there may be a period of time that I/O pins are actively driven. After the power is stable, as long as **PORESET** is asserted, most I/O pins are three-stated. To minimize the time that I/O pins are actively driven, it is recommended to apply core voltage before I/O voltage and assert **PORESET** before the power supplies fully ramp up.

Power Characteristics

Table 5 shows the estimated typical I/O power dissipation for MPC8347E.

Interface	Parameter	DDR2 GV _{DD} (1.8 V)	DDR1 GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Unit	Comments
DDR I/O	200 MHz, 32 bits	—	0.42	_	_	_	W	—
65% utilization 2.5 V	200 MHz, 64 bits	—	0.55	_	_		W	—
Rs = 20 Ω Rt = 50 Ω	266 MHz, 32 bits	—	0.5		_		W	—
2 pair of clocks	266 MHz, 64 bits	—	0.66	_	_	_	W	—
	300 MHz, ¹ 32 bits	—	0.54		_		W	—
	300 MHz, ¹ 64 bits	—	0.7	—	_	_	W	_
	333 MHz, ¹ 32 bits	—	0.58				W	—
	333 MHz, ¹ 64 bits	—	0.76	—	—	_	W	_
	400 MHz, ¹ 32 bits	—	_					—
	400 MHz, ¹ 64 bits	—	—					—
PCI I/O	33 MHz, 32 bits	—	_	0.04			W	—
load = 30 pF	66 MHz, 32 bits		_	0.07	_		W	_
Local bus I/O	167 MHz, 32 bits	—	_	0.34			W	—
load = 25 pF	133 MHz, 32 bits	—	_	0.27			W	—
	83 MHz, 32 bits	_	_	0.17			W	—
	66 MHz, 32 bits	_	_	0.14			W	—
	50 MHz, 32 bits	_	_	0.11			W	—
TSEC I/O	MII	—	—	_	0.01		W	Multiply by number of
load = 25 pF	GMII or TBI	—	—	_	0.06	_	W	interfaces used.
	RGMII or RTBI	—	—	—	_	0.04	W	
USB	12 MHz	—	—	0.01	_	_	W	Multiply by 2 if using
	480 MHz	—	—	0.2	—	_	W	2 ports.
Other I/O		—	—	0.01	—	—	W	—

Table 5. MPC8347E Typical I/O Power Dissipation

¹ TBGA package only.

DDR SDRAM

Load	Delay	Unit
4 devices (12 pF)	3.0	ns
9 devices (27 pF)	3.6	ns
36 devices (108 pF) + 40 pF compensation capacitor	5.0	ns
36 devices (108 pF) + 80 pF compensation capacitor	5.2	ns

Table 16. Expected Delays for Address/Command

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

8.1 Three-Speed Ethernet Controller (TSEC)— GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to the gigabit media independent interface (GMII), the media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII, GMII, and TBI interfaces are defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 **TSEC DC Electrical Characteristics**

GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 19 and Table 20. The RGMII and RTBI signals in Table 20 are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV _{DD} ²	—		2.97	3.63	V
Output high voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}$ $LV_{DD} = Min$		2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	—	_	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	_	-0.3	0.90	V
Input high current	IIH	$V_{IN}^{1} = LV_{DD}$		—	40	μΑ
Input low current	۱ _{IL}	V _{IN} ¹ =	GND	-600	—	μΑ

Table 19. GMII/TBI and MII DC Electrical Characteristics

Notes:

1. The symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ supply.

Parameters	Symbol	Conditions		Min	Мах	Unit
Supply voltage 2.5 V	LV _{DD}	—		2.37	2.63	V
Output high voltage	V _{OH}	$I_{OH} = -1.0 \text{ mA}$ $LV_{DD} = Min$		2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	۱ _{IL}	V _{IN} ¹ = GND		-15	—	μΑ

Table 20. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

Table 21 provides the GMII transmit AC timing specifications.

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{GTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{GTXH} /t _{GTX}	43.75		56.25	%
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.5		5.0	ns
GTX_CLK clock rise time, V _{IL} (min) to V _{IH} (max)	t _{GTXR}	_		1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{GTXF}	_		1.0	ns
GTX_CLK125 clock period	t _{G125} 2	_	8.0	—	ns
GTX_CLK125 reference clock duty cycle measured at $LV_{DD}/2$	t _{G125H} /t _{G125}	45		55	%

Notes:

1. The symbols for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This symbol represents the external GTX_CLK125 signal and does not follow the original symbol naming convention.

Table 21. GMII Transmit AC Timing Specifications

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	Gigabit Reference Clock			
EC_GTX_CLK125	C8	I	LV _{DD1}	
Three-S	peed Ethernet Controller (Gigabit Eth	ernet 1)		
TSEC1_COL/GPIO2[20]	A17	I/O	OV _{DD}	
TSEC1_CRS/GPIO2[21]	F12	I/O	LV _{DD1}	
TSEC1_GTX_CLK	D10	0	LV _{DD1}	3
TSEC1_RX_CLK	A11	I	LV _{DD1}	
TSEC1_RX_DV	B11	I	LV _{DD1}	
TSEC1_RX_ER/GPIO2[26]	B17	I/O	OV _{DD}	
TSEC1_RXD[7:4]/GPIO2[22:25]	B16, D16, E16, F16	I/O	OV _{DD}	
TSEC1_RXD[3:0]	E10, A8, F10, B8	I	LV _{DD1}	
TSEC1_TX_CLK	D17	I	OV _{DD}	
TSEC1_TXD[7:4]/GPIO2[27:30]	A15, B15, A14, B14	I/O	OV _{DD}	
TSEC1_TXD[3:0]	A10, E11, B10, A9	0	LV _{DD1}	11
TSEC1_TX_EN	B9	0	LV _{DD1}	
TSEC1_TX_ER/GPIO2[31]	A16	I/O	OV _{DD}	
Three-S	peed Ethernet Controller (Gigabit Ethe	ernet 2)	•	
TSEC2_COL/GPIO1[21]	C14	I/O	OV _{DD}	
TSEC2_CRS/GPIO1[22]	D6	I/O	LV _{DD2}	
TSEC2_GTX_CLK	A4	0	LV _{DD2}	
TSEC2_RX_CLK	B4	I	LV _{DD2}	
TSEC2_RX_DV/GPIO1[23]	E6	I/O	LV _{DD2}	
TSEC2_RXD[7:4]/GPIO1[26:29]	A13, B13, C13, A12	I/O	OV _{DD}	
TSEC2_RXD[3:0]/GPIO1[13:16]	D7, A6, E8, B7	I/O	LV _{DD2}	
TSEC2_RX_ER/GPIO1[25]	D14	I/O	OV _{DD}	
TSEC2_TXD[7]/GPIO1[31]	B12	I/O	OV _{DD}	
TSEC2_TXD[6]/DR_XCVR_TERM_SEL	C12	0	OV _{DD}	
TSEC2_TXD[5]/DR_UTMI_OPMODE1	D12	0	OV _{DD}	
TSEC2_TXD[4]/DR_UTMI_OPMODE0	E12	0	OV _{DD}	
TSEC2_TXD[3:0]/GPIO1[17:20]	B5, A5, F8, B6	I/O	LV _{DD2}	
TSEC2_TX_ER/GPIO1[24]	F14	I/O	OV _{DD}	
TSEC2_TX_EN/GPIO1[12]	C5	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	E14	I/O	OV _{DD}	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	DUART	I	1	
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1]	AK27, AN29	0	OV _{DD}	
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3]	AL28, AM29	I/O	OV _{DD}	
UART_CTS[1]/MSRCID4/LSRCID4	AP30	I/O	OV _{DD}	
UART_CTS[2]/MDVAL/ LDVAL	AN30	I/O	OV _{DD}	
UART_RTS[1:2]	AP31, AM30	0	OV _{DD}	
	I ² C interface		+	
IIC1_SDA	AK29	I/O	OV _{DD}	2
IIC1_SCL	AP32	I/O	OV _{DD}	2
IIC2_SDA	AN31	I/O	OV _{DD}	2
IIC2_SCL	AM31	I/O	OV _{DD}	2
	SPI		-	
SPIMOSI	AN32	I/O	OV _{DD}	
SPIMISO	AP33	I/O	OV _{DD}	
SPICLK	AK30	I/O	OV _{DD}	
SPISEL	AL31	I	OV _{DD}	
	Clocks	I	1	
PCI_CLK_OUT[0:4]	AN9, AP9, AM10, AN10, AJ11	0	OV _{DD}	
PCI_SYNC_IN/PCI_CLOCK	AK12	I	OV _{DD}	
PCI_SYNC_OUT	AP11	0	OV _{DD}	3
RTC/PIT_CLOCK	AM32	I	OV _{DD}	
CLKIN	AM9	I	OV _{DD}	
	JTAG	L.	1	
ТСК	E20	I	OV _{DD}	
TDI	F20	I	OV _{DD}	4
TDO	B20	0	OV _{DD}	3
TMS	A20	I	OV _{DD}	4
TRST	B19	I	OV _{DD}	4
	Test		•	
TEST	D22	I	OV _{DD}	6
TEST_SEL	AL13	I	OV _{DD}	7
	РМС	•	-	
QUIESCE	A18	0	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MVREF1	AF19	I	DDR reference voltage	
MVREF2	AE10	I	DDR reference voltage	
	No Connection			
NC	V1, V2, V5			

Notes:

- 1. This pin is an open-drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OV_{DD}.
- 2. This pin is an open-drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD}.
- 3. During reset, this output is actively driven rather than three-stated.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.
- 6. This pin must always be tied to GND.
- 7. This pin must always be left not connected.
- 8. Thermal sensitive resistor.
- 9. It is recommended that MDIC0 be tied to GRD using an 18 Ω resistor and MDIC1 be tied to DDR power using an 18 Ω resistor.
- 10.TSEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.

As shown in Figure 41, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349E Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

 ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + RCWL[LBIUCM])$

lbiu_clk is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 53 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
TSEC1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2, I ² C1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
Security core	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR, USB MPH	csb_clk/3	Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 53. Configurable Clock Units

19.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 56 shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	× 16
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111	× 7
1000	× 8
1001	× 9
1010	× 10
1011	× 11
1100	× 12
1101	× 13
1110	× 14
1111	× 15

Table 56. System PLL Multiplication Factors

As described in Section 19, "Clocking," the LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 57 and Table 58 show the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

u u u u u u u u u u u u u u u u u u u	•	,		
Characteristic	Symbol	Value	Unit	Notes
Junction-to-case thermal	$R_{ extsf{ heta}JC}$	5	°C/W	5
Junction-to-package natural convection on top	Ψ.IT	5	°C/W	6

Table 62. Package Thermal Characteristics for PBGA (continued)

Notes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

20.2 Thermal Management Information

For the following sections, $P_D = (V_{DD} \times I_{DD}) + P_{I/O}$ where $P_{I/O}$ is the power dissipation of the I/O drivers. See Table 5 for I/O power dissipation values.

20.2.1 Estimation of Junction Temperature with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta IA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Generally, the value obtained on a single-layer board is appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated. Test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

20.2.2 Estimation of Junction Temperature with Junction-to-Board Thermal Resistance

The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal resistance. The thermal performance of any component is strongly dependent on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For

where:

 $R_{\theta IA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 63 and Table 64 show heat sink thermal resistance for TBGA and PBGA of the MPC8347E.

Table 63. Heat Sink and Thermal Resistance of MPC8347E (TBGA)

Heat Sink Accuming Thermal Crosse	Air Flow	35 imes 35 mm TBGA	
Heat Sink Assuming Thermal Grease		Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	10	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	6.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	5.6	
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	8.4	
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	4.7	
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	4	
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	5.7	
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	3.5	
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	2.7	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	6.7	
MEI, 75 \times 85 \times 12 no adjacent board, extrusion	1 m/s	4.1	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	2.8	
MEI, 75 \times 85 \times 12 mm, adjacent board, 40 mm side bypass	1 m/s	3.1	

Table 64. Heat Sink and Thermal Resistance of MPC8347E (PBGA)

Heat Sink Assuming Thermal Grease	Air Flow	$29 \times 29 \text{ mm PBGA}$	
Treat onic Assuming Thermal Orease	All How	Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	13.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	9.6	

System Design Information

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8347E.

21.1 System Clocking

The MPC8347E includes two PLLs:

- 1. The platform PLL generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 19.1, "System PLL Configuration."
- 2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins (AV_{DD}1, AV_{DD}2, respectively). The AV_{DD} level should always equal to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 42, one to each of the four AV_{DD} pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific AV_{DD} pin being supplied. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 42 shows the PLL power supply filter circuit.

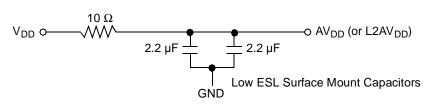


Figure 42. PLL Power Supply Filter Circuit

Revision	Date	Substantive Change(s)
8	2/2007	 Page 1, updated first paragraph to reflect PowerQUICC II information. Updated note after second paragraph. In the features list in Section 1, "Overview," corrected DDR data rate to show: 266 MHz for PBGA parts for all silicon revisions 333 MHz for DDR for TBGA parts for silicon Rev. 1.x
		In Table 5, "MPC8347E Typical I/O Power Dissipation," added GV _{DD} 1.8-V values for DDR2; added table footnote to designate rates that apply only to the TBGA package. In Figure 43, "JTAG Interface Connection," updated with new figure.
		In Section 23, "Ordering Information," replicated note from document introduction.
		In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced third sentence of first paragraph directing customer to product summary page for available frequency configuration parts. Updated back page information.
7	8/2006	Changed all references to revision 2.0 silicon to revision 3.0 silicon. Changed V _{IH} minimum value in Table 36, "JTAG Interface DC Electrical Characteristics," to
		OV _{DD} – 0.3.
		In Table 60, "Suggested PLL Configurations," deleted reference-number rows 902 and 703.
6	3/2006	Section 2, "Electrical Characteristics," moved to second section and all other section, table, and figure numbering change accordingly. Table 7, "CLKIN AC Timing Specifications:" Changed max rise and fall time from 1.2 to 2.3. Table 22, "GMII Receive AC Timing Specifications:" Changed min t _{TTKHDX} from 0.5 to 1.0. Table 30, "MII Management AC Timing Specifications:" Changed max value of t _{MDKHDX} from 70 to
		 170. Table 34, "Local Bus General Timing Parameters—DLL on:" Changed min t_{LBIVKH2} from 1.7 to 2.2. Table 36, "JTAG interface DC Electrical Characteristics:" Changed V_{IH} input high voltage min to 2.0. Table 54, "Operating Frequencies for TBGA:"
		 Updated TBD values. Changed maximum coherent system bus frequency for TBGA 667-MHz device to 333 MHz. Table 55, "Operating Frequencies for PBGA:"
		 Updated TBD values. Changed PBGA maximum coherent system bus frequency to 266 MHz, and maximum DDR memory bus frequency to 133 MHz. Table 60, "Suggested PLL Configurations": Removed some values from suggested PLL
		configurations for reference numbers 902, 922, 903, and 923.
		Table 67, "Part Numbering Nomenclature": Updated TBD values in note 1. Added Table 68, "SVR Settings." Added Section 23.2, "Part Marking."
5	10/2005	In Table 57, updated AAVID 30x30x9.4 mm Pin Fin (natural convection) junction-to-ambient thermal resistance, from 11 to 10.
4	9/2005	Added Table 2, "MPC8347E Typical I/O Power Dissipation."
3	8/2005	Table 1: Updated values for power dissipation that were TBD in Revision 2.
2	5/2005	Table 1: Typical values for power dissipation are changed to TBD. Table 48: Footnote numbering was wrong. THERM0 should have footnote 9 instead of 8.

Table 66. Document Revision History (continued)

23 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and later versions (orderable part numbers ending with A or B), see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8347EAEC).

23.1 Part Numbers Fully Addressed by This Document

Table 67 shows an analysis of the Freescale part numbering nomenclature for the MPC8347E. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the MPC8347E product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8347	Blank = Not included E = included	Blank = 0 to 105°C C = −40 to 105°C	ZU =TBGA VV = PB free TBGA ZQ = PBGA VR = PB Free PBGA	e300 core speed AD = 266 AG = 400 AJ = 533 AL = 667	D = 266 F = 333 ⁴	Blank = 1.1 or 1.0

Table 67. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to 400 (PBGA) with a platform frequency of 266 and up to 667(TBGA) with a platform frequency of 333

- 2. See Section 18, "Package and Pin Listings," for more information on available package types.
- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 up to 333 MHz (at a CSB of 333 MHz), but DDR2 at 400 MHz (CSB at 200 MHz) is NOT guaranteed.

Table 68 shows the SVR settings by device and package type.

Table	68.	SVR	Settings
-------	-----	-----	----------

Device	Package	SVR (Rev. 1.0)
MPC8347E	TBGA	8052_0010
MPC8347	TBGA	8053_0010

THIS PAGE INTENTIONALLY LEFT BLANK

Ordering Information

THIS PAGE INTENTIONALLY LEFT BLANK