

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc8347evragdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8347E for the 3.3-V signals, respectively.

Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	40	OV _{DD} = 3.3 V
PCI signals (not including PCI output clocks)	25	
PCI output clocks (including PCI_SYNC_OUT)	40	
DDR signal	18	GV _{DD} = 2.5 V
TSEC/10/100 signals	40	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, JTAG, USB	40	OV _{DD} = 3.3 V
GPIO signals	40	OV _{DD} = 3.3 V, LV _{DD} = 2.5/3.3 V

Table 3. Output Drive Capability

2.2 Power Sequencing

MPC8347E does not require the core supply voltage and I/O supply voltages to be applied in any particular order. Note that during the power ramp up, before the power supplies are stable, there may be a period of time that I/O pins are actively driven. After the power is stable, as long as **PORESET** is asserted, most I/O pins are three-stated. To minimize the time that I/O pins are actively driven, it is recommended to apply core voltage before I/O voltage and assert **PORESET** before the power supplies fully ramp up.

6 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8347E.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and earlier versions see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications*. See Section 23.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

6.1 DDR SDRAM DC Electrical Characteristics

Table 11 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8347E.

Parameter/Condition	Symbol	Min	Max	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} – 0.18	V	
Output leakage current	I _{OZ}	-10	10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{OH}	-15.2	—	mA	
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	
MV _{REF} input leakage current	I _{VREF}	—	5	μA	

Table 11. DDR SDRAM DC Electrical Characteristics

Notes:

1. ${\rm GV}_{\rm DD}$ is expected to be within 50 mV of the DRAM ${\rm GV}_{\rm DD}$ at all times.

 MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 12 provides the DDR capacitance.

Table 12. DDR SDRAM Capacitance

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}		0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

Ethernet: Three-Speed Ethernet, MII Management

Figure 8 shows the GMII transmit AC timing diagram.

Figure 8. GMII Transmit AC Timing Diagram

8.2.1.2 GMII Receive AC Timing Specifications

Table 22 provides the GMII receive AC timing specifications.

Table 22. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period	t _{GRX}	_	8.0	—	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	—	60	%
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	—	—	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0.5	—	—	ns
RX_CLK clock rise, V _{IL} (min) to V _{IH} (max)	t _{GRXR}	-	—	1.0	ns
RX_CLK clock fall time, $V_{IH}(max)$ to $V_{IL}(min)$	t _{GRXF}			1.0	ns

Note:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

Figure 9 shows the GMII receive AC timing diagram.

Figure 9. GMII Receive AC Timing Diagram

8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 23 provides the MII transmit AC timing specifications.

Table 23. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Max	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	—	400	_	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	_	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	—	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{MTXR}	1.0	—	4.0	ns
TX_CLK data clock fall $V_{IH}(max)$ to $V_{IL}(min)$	t _{MTXF}	1.0	_	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 14 shows the TBI receive AC timing diagram.

Figure 14. TBI Receive AC Timing Diagram

8.2.4 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5	—	0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.8	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	—	—	0.75	ns
Fall time (20%–80%)	t _{RGTF}	—	—	0.75	ns
GTX_CLK125 reference clock period	t _{G12} 6	—	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	47	—	53	%

Notes:

 In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).

2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned.
- 5. Duty cycle reference is $LV_{DD}/2$.

6. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention.

Ethernet: Three-Speed Ethernet, MII Management

Figure 15. RGMII and RTBI AC Timing and Multiplexing Diagrams

Figure 17 and Figure 18 provide the AC test load and signals for the USB, respectively.

Figure 22. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Enabled)

Figure 23. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2 (DLL Bypass Mode)

Table 41. PCI AC Timing Specifications at 66 MHz¹ (continued)

Parameter	Symbol ²	Min	Max	Unit	Notes
Input hold from clock	t _{PCIXKH}	0	—	ns	3, 5

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.}
- 3. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.

Table 42 provides the PCI AC timing specifications at 33 MHz.

Table 42. PCI AC	Ciming	Specifications	at 33 MHz
------------------	--------	-----------------------	-----------

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	—	11	ns	2
Output hold from clock	t _{PCKHOX}	2	_	ns	2
Clock to output high impedance	t _{PCKHOZ}	—	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	-	ns	2, 4
Input hold from clock	t _{PCIXKH}	0		ns	2, 4

Notes:

- The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
 </sub>
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 33 provides the AC test load for PCI.

Figure 33. PCI AC Test Load

17 SPI

This section describes the SPI DC and AC electrical specifications.

17.1 SPI DC Electrical Characteristics

Table 49 provides the SPI DC electrical characteristics.

Table 49. SPI DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

17.2 SPI AC Timing Specifications

Table 50 provides the SPI input and output AC timing specifications.

Table 50. SPI AC Timing Specifications¹

Characteristic	Symbol ²	Min	Мах	Unit
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}		6	ns
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5		ns
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}		8	ns
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2		ns
SPI inputs—Master mode (internal clock input setup time	t _{NII∨KH}	4		ns
SPI inputs—Master mode (internal clock input hold time	t _{NIIXKH}	0		ns
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4		ns
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2		ns

Notes:

1. Output specifications are measured from the 50 percent level of the rising edge of CLKIN to the 50 percent level of the signal. Timings are measured at the pin.

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).
</sub>

SPI

Figure 36 provides the AC test load for the SPI.

Figure 36. SPI AC Test Load

Figure 37 and Figure 38 represent the AC timings from Table 50. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 37 shows the SPI timings in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 38 shows the SPI timings in master mode (internal clock).

Figure 38. SPI AC Timing in Master Mode (Internal Clock) Diagram

18 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8347E is available in two packages—a tape ball grid array (TBGA) and a plastic ball grid array (PBGA). See Section 18.1, "Package Parameters for the MPC8347E TBGA," Section 18.2, "Mechanical Dimensions for the MPC8347E TBGA, Section 18.3, "Package Parameters for the MPC8347E PBGA," and Section 18.4, "Mechanical Dimensions for the MPC8347E PBGA."

18.1 Package Parameters for the MPC8347E TBGA

The package parameters are provided in the following list. The package type is $35 \text{ mm} \times 35 \text{ mm}$, 672 tape ball grid array (TBGA).

Package outline	$35 \text{ mm} \times 35 \text{ mm}$
Interconnects	672
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder balls	62 Sn/36 Pb/2 Ag (ZU package) 95.5 Sn/0.5 Cu/4Ag (VV package)
Ball diameter (typical)	0.64 mm

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MECC[0:4]/MSRCID[0:4]	W4, W3, Y3, AA6, T1	I/O	GV _{DD}	
MECC[5]/MDVAL	U1	I/O	GV _{DD}	
MECC[6:7]	Y1, Y6	I/O	GV _{DD}	
MDM[0:8]	B1, F1, K1, R4, AD4, AJ1, AP3, AP7, Y4	0	GV _{DD}	
MDQS[0:8]	B2, F5, J1, P2, AC1, AJ2, AN4, AL8, W2	I/O	GV _{DD}	
MBA[0:1]	AD1, AA5	0	GV _{DD}	
MA[0:14]	W1, U4, T3, R3, P1, M1, N1, L3, L1, K2, Y2, K3, J3, AP2, AN6	0	GV _{DD}	
MWE	AF1	0	GV _{DD}	
MRAS	AF4	0	GV _{DD}	
MCAS	AG3	0	GV _{DD}	
MCS[0:3]	AG2, AG1, AK1, AL4	0	GV _{DD}	
MCKE[0:1]	H3, G1	0	GV _{DD}	3
MCK[0:5]	U2, F4, AM3, V3, F2, AN3	0	GV _{DD}	
MCK[0:5]	U3, E3, AN2, V4, E1, AM4	0	GV _{DD}	
Pins Reserved for Future DDR2 (They should be left unconnected for MPC8347)				
MODT[0:3]	AH3, AJ5, AH1, AJ4	_	_	
MBA[2]	H4		_	
SPARE1	AA1		_	8
SPARE2	AB1		_	6
Local Bus Controller Interface				
LAD[0:31]	AM13, AP13, AL14, AM14, AN14, AP14, AK15, AJ15, AM15, AN15, AP15, AM16, AL16, AN16, AP16, AL17, AM17, AP17, AK17, AP18, AL18, AM18, AN18, AP19, AN19, AM19, AP20, AK19, AN20, AL20, AP21, AN21	I/O	OV _{DD}	
LDP[0]/CKSTOP_OUT	AM21	I/O	OV _{DD}	
LDP[1]/CKSTOP_IN	AP22	I/O	OV _{DD}	
LDP[2]	AN22	I/O	OV _{DD}	
LDP[3]	AM22	I/O	OV _{DD}	
LA[27:31]	AK21, AP23, AN23, AP24, AK22	0	OV _{DD}	
LCS[0:3]	AN24, AL23, AP25, AN25	0	OV _{DD}	
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AK23, AP26, AL24, AM25	0	OV _{DD}	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LBCTL	AN26	0	OV _{DD}	
LALE	AK24	0	OV _{DD}	
LGPL0/LSDA10/cfg_reset_source0	AP27	I/O	OV _{DD}	
LGPL1/LSDWE/cfg_reset_source1	AL25	I/O	OV _{DD}	
LGPL2/LSDRAS/LOE	AJ24	0	OV _{DD}	
LGPL3/LSDCAS/cfg_reset_source2	AN27	I/O	OV _{DD}	
LGPL4/LGTA/LUPWAIT/LPBSE	AP28	I/O	OV _{DD}	
LGPL5/cfg_clkin_div	AL26	I/O	OV _{DD}	
LCKE	AM27	0	OV _{DD}	
LCLK[0:2]	AN28, AK26, AP29	0	OV _{DD}	
LSYNC_OUT	AM12	0	OV _{DD}	
LSYNC_IN	AJ10	I	OV _{DD}	
	General Purpose I/O Timers			
GPIO1[0]/GTM1_TIN1/GTM2_TIN2	F24	I/O	OV _{DD}	
GPIO1[1]/GTM1_TGATE1/GTM2_TGATE2	E24	I/O	OV _{DD}	
GPIO1[2]/GTM1_TOUT1	B25	I/O	OV _{DD}	
GPIO1[3]/GTM1_TIN2/GTM2_TIN1	D24	I/O	OV _{DD}	
GPIO1[4]/GTM1_TGATE2/GTM2_TGATE1	A25	I/O	OV _{DD}	
GPIO1[5]/GTM1_TOUT2/GTM2_TOUT1	B24	I/O	OV _{DD}	
GPIO1[6]/GTM1_TIN3/GTM2_TIN4	A24	I/O	OV _{DD}	
GPIO1[7]/GTM1_TGATE3/GTM2_TGATE4	D23	I/O	OV _{DD}	
GPIO1[8]/GTM1_TOUT3	B23	I/O	OV _{DD}	
GPIO1[9]/GTM1_TIN4/GTM2_TIN3	A23	I/O	OV _{DD}	
GPIO1[10]/GTM1_TGATE4/GTM2_TGATE3	F22	I/O	OV _{DD}	
GPIO1[11]/GTM1_TOUT4/GTM2_TOUT3	E22	I/O	OV _{DD}	
USB Port 1				
MPH1_D0_ENABLEN/DR_D0_ENABLEN	A26	I/O	OV _{DD}	
MPH1_D1_SER_TXD/DR_D1_SER_TXD	B26	I/O	OV _{DD}	
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0	D25	I/O	OV _{DD}	
MPH1_D3_SPEED/DR_D3_SPEED	A27	I/O	OV _{DD}	
MPH1_D4_DP/DR_D4_DP	B27	I/O	OV _{DD}	
MPH1_D5_DM/DR_D5_DM	C27	I/O	OV _{DD}	
MPH1_D6_SER_RCV/DR_D6_SER_RCV	D26	I/O	OV _{DD}	
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS	E26	I/O	OV _{DD}	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
General Purpose I/O Timers				
GPIO1[0]/GTM1_TIN1/GTM2_TIN2	D27	I/O	OV _{DD}	
GPIO1[1]/GTM1_TGATE1/GTM2_TGATE2	E26	I/O	OV _{DD}	
GPIO1[2]/GTM1_TOUT1	D28	I/O	OV _{DD}	
GPIO1[3]/GTM1_TIN2/GTM2_TIN1	G25	I/O	OV _{DD}	
GPIO1[4]/GTM1_TGATE2/GTM2_TGATE1	J24	I/O	OV _{DD}	
GPIO1[5]/GTM1_TOUT2/GTM2_TOUT1	F26	I/O	OV _{DD}	
GPIO1[6]/GTM1_TIN3/GTM2_TIN4	E27	I/O	OV _{DD}	
GPIO1[7]/GTM1_TGATE3/GTM2_TGATE4	E28	I/O	OV _{DD}	
GPIO1[8]/GTM1_TOUT3	H25	I/O	OV _{DD}	
GPIO1[9]/GTM1_TIN4/GTM2_TIN3	F27	I/O	OV _{DD}	
GPIO1[10]/GTM1_TGATE4/GTM2_TGATE3	K24	I/O	OV _{DD}	
GPIO1[11]/GTM1_TOUT4/GTM2_TOUT3	G26	I/O	OV _{DD}	
	USB Port 1	L		1
MPH1_D0_ENABLEN/DR_D0_ENABLEN	C28	I/O	OV _{DD}	
MPH1_D1_SER_TXD/DR_D1_SER_TXD	F25	I/O	OV _{DD}	
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0	B28	I/O	OV _{DD}	
MPH1_D3_SPEED/DR_D3_SPEED	C27	I/O	OV _{DD}	
MPH1_D4_DP/DR_D4_DP	D26	I/O	OV _{DD}	
MPH1_D5_DM/DR_D5_DM	E25	I/O	OV _{DD}	
MPH1_D6_SER_RCV/DR_D6_SER_RCV	C26	I/O	OV _{DD}	
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS	D25	I/O	OV _{DD}	
MPH1_NXT/DR_SESS_VLD_NXT	B26	I	OV _{DD}	
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	E24	I/O	OV _{DD}	
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	A27	0	OV _{DD}	
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	C25	I	OV _{DD}	
MPH1_PCTL0/DR_TX_VALID_PCTL0	A26	0	OV _{DD}	
MPH1_PCTL1/DR_TX_VALIDH_PCTL1	B25	0	OV _{DD}	
MPH1_CLK/DR_CLK	A25	I	OV _{DD}	
USB Port 0				
MPH0_D0_ENABLEN/DR_D8_CHGVBUS	D24	I/O	OV _{DD}	
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS	C24	I/O	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TSEC1_TXD[7:4]/GPIO2[27:30]	N28, P25, P26, P27	I/O	OV _{DD}	
TSEC1_TXD[3:0]	V28, V27, V26, W28	0	LV _{DD1}	10
TSEC1_TX_EN	W27	0	LV _{DD1}	
TSEC1_TX_ER/GPIO2[31]	N24	I/O	OV _{DD}	
Three-Spee	ed Ethernet Controller (Gigabit Ethern	et 2)		
TSEC2_COL/GPIO1[21]	P28	I/O	OV _{DD}	
TSEC2_CRS/GPIO1[22]	AC28	I/O	LV _{DD2}	
TSEC2_GTX_CLK	AC27	0	LV _{DD2}	
TSEC2_RX_CLK	AB25	I	LV _{DD2}	
TSEC2_RX_DV/GPIO1[23]	AC26	I/O	LV _{DD2}	
TSEC2_RXD[7:4]/GPIO1[26:29]	R28, T24, T25, T26	I/O	OV _{DD}	
TSEC2_RXD[3:0]/GPIO1[13:16]	AA25, AA26, AA27, AA28	I/O	LV _{DD2}	
TSEC2_RX_ER/GPIO1[25]	R25	I/O	OV _{DD}	
TSEC2_TXD[7]/GPIO1[31]	Т27	I/O	OV _{DD}	
TSEC2_TXD[6]/DR_XCVR_TERM_SEL	T28	0	OV _{DD}	
TSEC2_TXD[5]/DR_UTMI_OPMODE1	U28	0	OV _{DD}	
TSEC2_TXD[4]/DR_UTMI_OPMODE0	U27	0	OV _{DD}	
TSEC2_TXD[3:0]/GPIO1[17:20]	AB26, AB27, AA24, AB28	I/O	LV _{DD2}	
TSEC2_TX_ER/GPIO1[24]	R27	I/O	OV _{DD}	
TSEC2_TX_EN/GPIO1[12]	AD28	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	R26	I/O	OV _{DD}	
	DUART			
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1]	B4, A4	0	OV _{DD}	
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3]	D5, C5	I/O	OV _{DD}	
UART_CTS[1]/MSRCID4/LSRCID4	B5	I/O	OV _{DD}	
UART_CTS[2]/MDVAL/LDVAL	A5	I/O	OV _{DD}	
UART_RTS[1:2]	D6, C6	0	OV _{DD}	
I ² C interface				
IIC1_SDA	E5	I/O	OV _{DD}	2
IIC1_SCL	A6	I/O	OV _{DD}	2
IIC2_SDA	B6	I/O	OV _{DD}	2
IIC2_SCL	E7	I/O	OV _{DD}	2
SPI				
SPIMOSI	D7	I/O	OV _{DD}	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
AV _{DD} 3	AF9	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	U2	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	A2, B1, B2, D10, D18, E6, E14, E22, F9, F12, F15, F18, F21, F24, G5, H6, J23, L4, L6, L12, L13, L14, L15, L16, L17, M11, M12, M13, M14, M15, M16, M17, M18, M23, N11, N12, N13, N14, N15, N16, N17, N18, P6, P11, P12, P13, P14, P15, P16, P17, P18, P24, R5, R11, R12, R13, R14, R15, R16, R17, R18, R23, T11, T12, T13, T14, T15, T16, T17, T18, U6, U11, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V23, V25, W4, Y6, AA23, AB24, AC5, AC8, AC11, AC14, AC17, AC20, AD9, AD15, AD21, AE12, AE18, AF3, AF26		l	
GV _{DD}	U9, V9, W10, W19, Y11, Y12, Y14, Y15, Y17, Y18, AA6, AB5, AC9, AC12, AC15, AC18, AC21, AC24, AD6, AD8, AD14, AD20, AE5, AE11, AE17, AG2, AG27	Power for DDR DRAM I/O voltage (2.5 V)	GV _{DD}	
LV _{DD} 1	U20, W25	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	
LV _{DD} 2	V20, Y23	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	J11, J12, J15, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, L10, L11, L18, L19, M10, M19, N10, N19, P9, P10, P19, R10, R19, R20, T10, T19, U10, U19, V10, V11, V18, V19, W11, W12, W13, W14, W15, W16, W17, W18	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B27, D3, D11, D19, E15, E23, F5, F8, F11, F14, F17, F20, G24, H23, H24, J6, J14, J17, J18, K4, L9, L20, L23, L25, M6, M9, M20, P5, P20, P23, R6, R9, R24, U23, V4, V6	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

As shown in Figure 41, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349E Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

 ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + RCWL[LBIUCM])$

lbiu_clk is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 53 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options	
TSEC1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3	
TSEC2, I ² C1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3	
Security core	csb_clk/3	Off, <i>csb_clk,</i> csb_clk/2, <i>csb_clk/3</i>	
USB DR, USB MPH	csb_clk/3	Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>	
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>	

Table 53. Configurable Clock Units

where:

 $R_{\theta IA}$ = junction-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W)

 $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed-circuit board, or change the thermal dissipation on the printed-circuit board surrounding the device.

The thermal performance of devices with heat sinks has been simulated with a few commercially available heat sinks. The heat sink choice is determined by the application environment (temperature, air flow, adjacent component power dissipation) and the physical space available. Because there is not a standard application environment, a standard heat sink is not required.

Table 63 and Table 64 show heat sink thermal resistance for TBGA and PBGA of the MPC8347E.

Table 63. Heat Sink and Thermal Resistance of MPC8347E (TBGA)

Heat Sink Assuming Thermal Grease	Air Flow	35 imes 35 mm TBGA	
Theat Olink Assuming Therman Orease		Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	10	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	6.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	5.6	
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	8.4	
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	4.7	
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	4	
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	5.7	
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	3.5	
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	2.7	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	6.7	
MEI, 75 \times 85 \times 12 no adjacent board, extrusion	1 m/s	4.1	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	2.8	
MEI, $75 \times 85 \times 12$ mm, adjacent board, 40 mm side bypass	1 m/s	3.1	

Table 64. Heat Sink and Thermal Resistance of MPC8347E (PBGA)

Heat Sink Assuming Thermal Grease	Air Flow	$29 \times 29 \text{ mm PBGA}$	
ficar olink Assuming filorinar orcuse		Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	Natural convection	13.5	
AAVID $30 \times 30 \times 9.4$ mm pin fin	1 m/s	9.6	

21.3 Decoupling Recommendations

Due to large address and data buses and high operating frequencies, the MPC8347E can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8347E system, and the MPC8347E itself requires a clean, tightly regulated source of power. Therefore, the system designer should place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin of the MPC8347E. These capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , GV_{DD} , LV_{DD} , and GND power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under the device using a standard escape pattern. Others can surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, distribute several bulk storage capacitors around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors are 100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

21.4 Connection Recommendations

To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8347E.

21.5 Output Buffer DC Impedance

The MPC8347E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 43). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.