

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

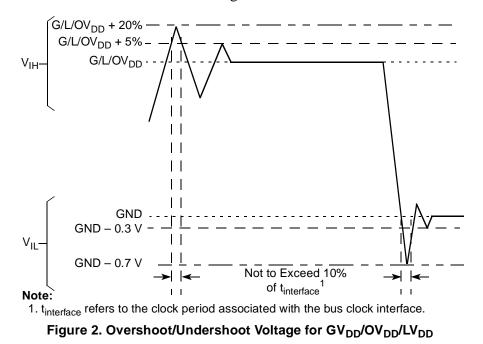
Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	533MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347evvajf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.2 Power Supply Voltage Specification


Table 2 provides the recommended operating conditions for the MPC8347E. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage	V _{DD}	1.2 V ± 60 mV	V	1
PLL supply voltage	AV _{DD}	1.2 V ± 60 mV	V	1
DDR DRAM I/O supply voltage	GV _{DD}	2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD1}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD2}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	

Note:

¹ GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8347E.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8347E.

5.1 **RESET DC Electrical Characteristics**

Table 8 provides the DC electrical characteristics for the RESET pins of the MPC8347E.

Table 8.	RESET	Pins DC	Electrical	Characteristics'	

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μΑ
Output high voltage ²	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

5.2 **RESET AC Electrical Characteristics**

Table 9 provides the reset initialization AC timing specifications of the MPC8347E.

Table 9. RESET Initialization Timing Specifications

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	_	^t PCI_SYNC_IN	1
Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8347E is in PCI host mode	32	_	tCLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8347E is in PCI agent mode	32	_	^t PCI_SYNC_IN	1
HRESET/SRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	_	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI host mode	4	_	^t clkin	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI agent mode	4	_	^t PCI_SYNC_IN	1

Parameter/Condition	Min	Мах	Unit	Notes
Input hold time for POR configuration signals with respect to negation of HRESET	0	_	ns	
Time for the MPC8347E to turn off POR configuration signals with respect to the assertion of HRESET	_	4	ns	3
Time for the MPC8347E to turn on POR configuration signals with respect to the negation of HRESET	1	_	^t PCI_SYNC_IN	1, 3

Table 9. RESET Initialization Timing Specifications (continued)

Notes:

1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. In PCI host mode, the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the *MPC8349E PowerQUICC™ II Pro Integrated Host Processor Family Reference Manual*.

- 2. t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is valid only in PCI host mode. See the MPC8349E PowerQUICC™ II Pro Integrated Host Processor Family Reference Manual.
- 3. POR configuration signals consist of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

Table 10 lists the PLL and DLL lock times.

Table 10. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	-	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 19, "Clocking."

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 13 provides the input AC timing specifications for the DDR SDRAM interface.

Table 13. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V \pm 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	
AC input high voltage	V _{IH}	MV _{REF} + 0.31	GV _{DD} + 0.3	V	
MDQS—MDQ/MECC input skew per byte 333 MHz 266 MHz		_	750 1125	ps	1

Note:

1. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 <= n <= 7) or ECC (MECC[{0...7}] if n = 8).

Figure 4 illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

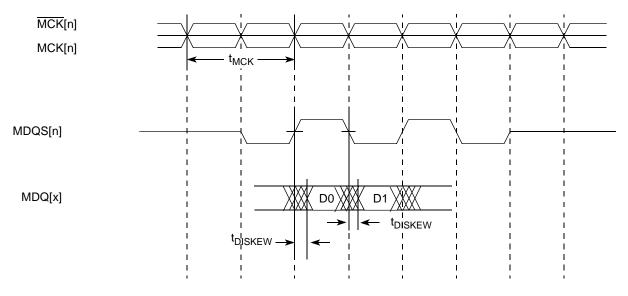


Figure 4. DDR Input Timing Diagram

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 14 and Table 15 provide the output AC timing specifications and measurement conditions for the DDR SDRAM interface.

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	_		2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	۱ _{IL}	V _{IN} ¹ =	GND	-15	—	μΑ

Table 20. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

Table 21 provides the GMII transmit AC timing specifications.

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{GTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{GTXH} /t _{GTX}	43.75		56.25	%
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.5		5.0	ns
GTX_CLK clock rise time, V _{IL} (min) to V _{IH} (max)	t _{GTXR}	_		1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{GTXF}	_		1.0	ns
GTX_CLK125 clock period	t _{G125} 2	_	8.0	—	ns
GTX_CLK125 reference clock duty cycle measured at $LV_{DD}/2$	t _{G125H} /t _{G125}	45		55	%

Notes:

1. The symbols for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This symbol represents the external GTX_CLK125 signal and does not follow the original symbol naming convention.

Table 21. GMII Transmit AC Timing Specifications

Figure 14 shows the TBI receive AC timing diagram.

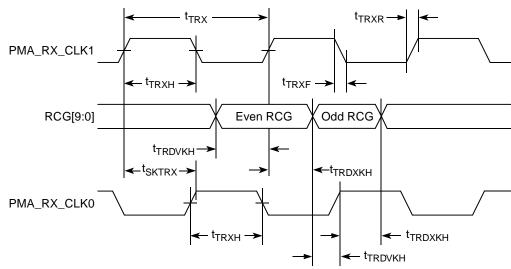


Figure 14. TBI Receive AC Timing Diagram

8.2.4 RGMII and RTBI AC Timing Specifications

Table 27 presents the RGMII and RTBI AC timing specifications.

Table 27. RGMII and RTBI AC Timing Specifications

At recommended operating conditions with LV_{DD} of 2.5 V \pm 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
Data to clock output skew (at transmitter)	t _{SKRGT}	-0.5	—	0.5	ns
Data to clock input skew (at receiver) ²	t _{SKRGT}	1.0	—	2.8	ns
Clock cycle duration ³	t _{RGT}	7.2	8.0	8.8	ns
Duty cycle for 1000Base-T ^{4, 5}	t _{RGTH} /t _{RGT}	45	50	55	%
Duty cycle for 10BASE-T and 100BASE-TX ^{3, 5}	t _{RGTH} /t _{RGT}	40	50	60	%
Rise time (20%–80%)	t _{RGTR}	_	—	0.75	ns
Fall time (20%–80%)	t _{RGTF}	_	—	0.75	ns
GTX_CLK125 reference clock period	t _{G12} 6	_	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	47	—	53	%

Notes:

 In general, the clock reference symbol for this section is based on the symbols RGT to represent RGMII and RTBI timing. For example, the subscript of t_{RGT} represents the TBI (T) receive (RX) clock. Also, the notation for rise (R) and fall (F) times follows the clock symbol. For symbols representing skews, the subscript is SK followed by the clock being skewed (RGT).

2. This implies that PC board design requires clocks to be routed so that an additional trace delay of greater than 1.5 ns is added to the associated clock signal.

3. For 10 and 100 Mbps, t_{RGT} scales to 400 ns \pm 40 ns and 40 ns \pm 4 ns, respectively.

- 4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet clock domains as long as the minimum duty cycle is not violated and stretching occurs for no more than three t_{RGT} of the lowest speed transitioned.
- 5. Duty cycle reference is $LV_{DD}/2$.

6. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention.

Local Bus

Figure 20 through Figure 25 show the local bus signals.

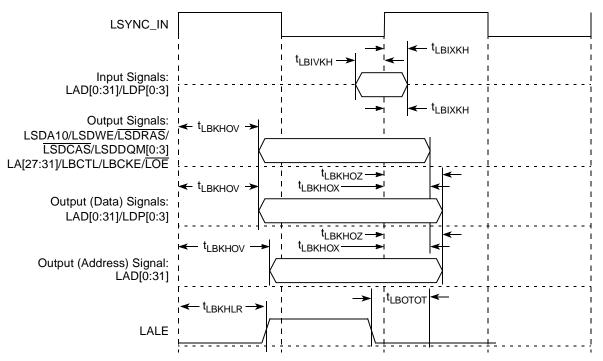


Figure 20. Local Bus Signals, Nonspecial Signals Only (DLL Enabled)

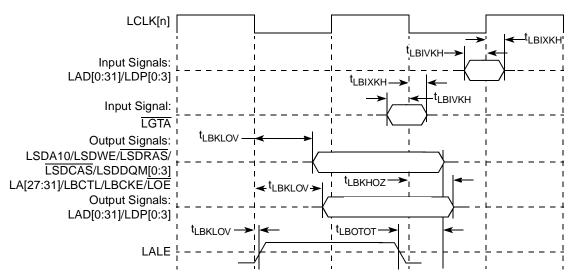


Figure 21. Local Bus Signals, Nonspecial Signals Only (DLL Bypass Mode)

Parameter	Symbol ¹	Min	Max	Unit
Fall time of both SDA and SCL signals ⁵	t _{I2CF}		300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6		μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	—	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	—	V

Table 39. I²C AC Electrical Specifications (continued)

Notes:

- 1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) goes invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaches the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}
- MPC8347E provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{I2DVKH} must be met only if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.
- 5.) The MPC8347E does not follow the "I2C-BUS Specifications" version 2.1 regarding the tI2CF AC parameter.

Figure 31 provides the AC test load for the I^2C .

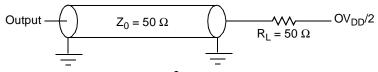


Figure 31. I²C AC Test Load

Figure 32 shows the AC timing diagram for the I^2C bus.

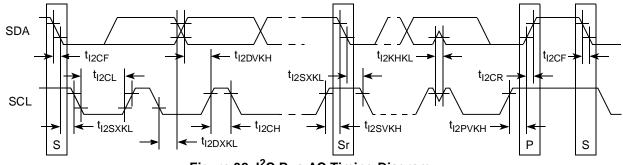


Figure 32. I²C Bus AC Timing Diagram

Figure 34 shows the PCI input AC timing diagram.

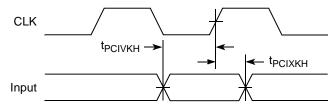
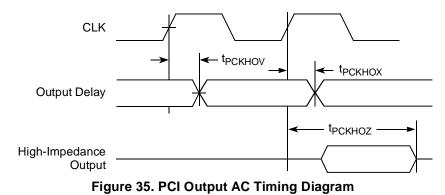



Figure 34. PCI Input AC Timing Diagram

Figure 35 shows the PCI output AC timing diagram.

MPC8347E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 11

Timers

14 Timers

This section describes the DC and AC electrical specifications for the timers.

14.1 Timer DC Electrical Characteristics

Table 43 provides the DC electrical characteristics for the MPC8347E timer pins, including TIN, $\overline{\text{TOUT}}$, $\overline{\text{TGATE}}$, and RTC_CLK.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 43. Timer DC Electrical Characteristics

14.2 Timer AC Timing Specifications

Table 44 provides the timer input and output AC timing specifications.

Table 44. Timers Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MECC[0:4]/MSRCID[0:4]	W4, W3, Y3, AA6, T1	I/O	GV _{DD}	
MECC[5]/MDVAL	U1	I/O	GV _{DD}	
MECC[6:7]	Y1, Y6	I/O	GV _{DD}	
MDM[0:8]	B1, F1, K1, R4, AD4, AJ1, AP3, AP7, Y4	0	GV _{DD}	
MDQS[0:8]	B2, F5, J1, P2, AC1, AJ2, AN4, AL8, W2	I/O	GV _{DD}	
MBA[0:1]	AD1, AA5	0	GV _{DD}	
MA[0:14]	W1, U4, T3, R3, P1, M1, N1, L3, L1, K2, Y2, K3, J3, AP2, AN6	0	GV _{DD}	
MWE	AF1	0	GV _{DD}	
MRAS	AF4	0	GV _{DD}	
MCAS	AG3	0	GV _{DD}	
MCS[0:3]	AG2, AG1, AK1, AL4	0	GV _{DD}	
MCKE[0:1]	H3, G1	0	GV _{DD}	3
MCK[0:5]	U2, F4, AM3, V3, F2, AN3	0	GV _{DD}	
MCK[0:5]	U3, E3, AN2, V4, E1, AM4	0	GV _{DD}	
(T)	Pins Reserved for Future DDR2 ney should be left unconnected for MPC834	7)	·	
MODT[0:3]	AH3, AJ5, AH1, AJ4	_	_	
MBA[2]	H4	_	—	
SPARE1	AA1	—	—	8
SPARE2	AB1	—	—	6
	Local Bus Controller Interface			1
LAD[0:31]	AM13, AP13, AL14, AM14, AN14, AP14, AK15, AJ15, AM15, AN15, AP15, AM16, AL16, AN16, AP16, AL17, AM17, AP17, AK17, AP18, AL18, AM18, AN18, AP19, AN19, AM19, AP20, AK19, AN20, AL20, AP21, AN21	I/O	OV _{DD}	
LDP[0]/CKSTOP_OUT	AM21	I/O	OV _{DD}	
LDP[1]/CKSTOP_IN	AP22	I/O	OV _{DD}	
LDP[2]	AN22	I/O	OV _{DD}	
LDP[3]	AM22	I/O	OV _{DD}	
LA[27:31]	AK21, AP23, AN23, AP24, AK22	0	OV _{DD}	
LCS[0:3]	AN24, AL23, AP25, AN25	0	OV _{DD}	
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AK23, AP26, AL24, AM25	0	OV _{DD}	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MPH1_NXT/DR_SESS_VLD_NXT	D27	I	OV _{DD}	
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	A28	I/O	OV _{DD}	
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	F26	0	OV _{DD}	
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	E27	I	OV _{DD}	
MPH1_PCTL0/DR_TX_VALID_PCTL0	A29	0	OV _{DD}	
MPH1_PCTL1/DR_TX_VALIDH_PCTL1	D28	0	OV _{DD}	
MPH1_CLK/DR_CLK	B29	I	OV _{DD}	
	USB Port 0			
MPH0_D0_ENABLEN/DR_D8_CHGVBUS	C29	I/O	OV _{DD}	
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS	A30	I/O	OV _{DD}	
MPH0_D2_VMO_SE0/DR_D10_DPPD	E28	I/O	OV _{DD}	
MPH0_D3_SPEED/DR_D11_DMMD	B30	I/O	OV _{DD}	
MPH0_D4_DP/DR_D12_VBUS_VLD	C30	I/O	OV _{DD}	
MPH0_D5_DM/DR_D13_SESS_END	A31	I/O	OV _{DD}	
MPH0_D6_SER_RCV/DR_D14	B31	I/O	OV _{DD}	
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP	C31	I/O	OV _{DD}	
MPH0_NXT/DR_RX_ACTIVE_ID	B32	I	OV _{DD}	
MPH0_DIR_DPPULLUP/DR_RESET	A32	I/O	OV _{DD}	
MPH0_STP_SUSPEND/DR_TX_READY	A33	I/O	OV _{DD}	
MPH0_PWRFAULT/DR_RX_VALIDH	C32	I	OV _{DD}	
MPH0_PCTL0/DR_LINE_STATE0	D31	I/O	OV _{DD}	
MPH0_PCTL1/DR_LINE_STATE1	E30	I/O	OV _{DD}	
MPH0_CLK/DR_RX_VALID	B33	I	OV _{DD}	
Р	rogrammable Interrupt Controller	- I	•	•
MCP_OUT	AN33	0	OV _{DD}	2
IRQ0/MCP_IN/GPIO2[12]	C19	I/O	OV _{DD}	
IRQ[1:5]/GPIO2[13:17]	C22, A22, D21, C21, B21	I/O	OV _{DD}	
IRQ[6]/GPIO2[18]/CKSTOP_OUT	A21	I/O	OV _{DD}	
IRQ[7]/GPIO2[19]/CKSTOP_IN	C20	I/O	OV _{DD}	
	Ethernet Management Interface	1	1	
EC_MDC	A7	0	LV _{DD1}	
EC_MDIO	E9	I/O	LV _{DD1}	2

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD} 2	C6, D9	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	E19, E29, F7, F9, F11,F13, F15, F17, F18, F21, F23, F25, F29, H29, J6, K29, M29, N6, P29, T29, U30, V6, V29, W29, AB29, AC5, AD29, AF6, AF29, AH29, AJ8, AJ12, AJ14, AJ16, AJ18, AJ20, AJ21, AJ23, AJ25, AJ26, AJ27, AJ28, AJ29, AK10	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B22, B28, C16, C17, C24, C26, D13, D15, D19, D29, E31, F28, G33, H30, L29, L32, N32, P31, R31, U32, W31, Y29, AA29, AC30, AE31, AF30, AG29, AJ17, AJ30, AK11, AL15, AL19, AL21, AL29, AL30, AM20, AM23, AM24, AM26, AM28, AN11, AN13	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	
MVREF1	M3	I	DDR reference voltage	
MVREF2	AD2	I	DDR reference voltage	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
TSEC1_TXD[7:4]/GPIO2[27:30]	N28, P25, P26, P27	I/O	OV _{DD}	
TSEC1_TXD[3:0]	V28, V27, V26, W28	26, W28 O		10
TSEC1_TX_EN	W27	0	LV _{DD1}	
TSEC1_TX_ER/GPIO2[31]	N24	I/O	OV _{DD}	
Three-Spec	ed Ethernet Controller (Gigabit Ethe	ernet 2)	1	1
TSEC2_COL/GPIO1[21]	P28	I/O	OV _{DD}	
TSEC2_CRS/GPIO1[22]	AC28	I/O	LV _{DD2}	
TSEC2_GTX_CLK	AC27	0	LV _{DD2}	
TSEC2_RX_CLK	AB25	I	LV _{DD2}	
TSEC2_RX_DV/GPIO1[23]	AC26	I/O	LV _{DD2}	
TSEC2_RXD[7:4]/GPIO1[26:29]	R28, T24, T25, T26	I/O	OV _{DD}	
TSEC2_RXD[3:0]/GPIO1[13:16]	AA25, AA26, AA27, AA28	I/O	LV _{DD2}	
TSEC2_RX_ER/GPIO1[25]	R25	I/O	OV _{DD}	
TSEC2_TXD[7]/GPIO1[31]	T27	I/O	OV _{DD}	
TSEC2_TXD[6]/DR_XCVR_TERM_SEL	T28	0	OV _{DD}	
TSEC2_TXD[5]/DR_UTMI_OPMODE1	U28	0	OV _{DD}	
TSEC2_TXD[4]/DR_UTMI_OPMODE0	U27	0	OV _{DD}	
TSEC2_TXD[3:0]/GPIO1[17:20]	AB26, AB27, AA24, AB28	I/O	LV _{DD2}	
TSEC2_TX_ER/GPIO1[24]	R27	I/O	OV _{DD}	
TSEC2_TX_EN/GPIO1[12]	AD28	I/O	LV _{DD2}	3
TSEC2_TX_CLK/GPIO1[30]	R26	I/O	OV _{DD}	
	DUART		1	4
UART_SOUT[1:2]/MSRCID[0:1]/LSRCID[0:1]	B4, A4	0	OV _{DD}	
UART_SIN[1:2]/MSRCID[2:3]/LSRCID[2:3]	D5, C5	I/O	OV _{DD}	
UART_CTS[1]/MSRCID4/LSRCID4	B5	I/O	OV _{DD}	
UART_CTS[2]/MDVAL/LDVAL	A5	I/O	OV _{DD}	
UART_RTS[1:2]	D6, C6	0	OV _{DD}	
	I ² C interface		1	4
IIC1_SDA	E5	I/O	OV _{DD}	2
IIC1_SCL	A6	I/O	OV _{DD}	2
IIC2_SDA	В6	I/O	OV _{DD}	2
IIC2_SCL	E7	I/O	OV _{DD}	2
	SPI	·	•	<u> </u>
SPIMOSI	D7	I/O	OV _{DD}	

As shown in Figure 41, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349E Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

 ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + RCWL[LBIUCM])$

lbiu_clk is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 53 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
TSEC1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2, I ² C1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
Security core	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR, USB MPH	csb_clk/3	Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 53. Configurable Clock Units

Clocking

Table 54 provides the operating frequencies for the MPC8347E TBGA under recommended operating conditions (see Table 2).

Characteristic ¹	400 MHz	533 MHz	667 MHz	Unit
e300 core frequency (<i>core_clk</i>)	266–400	266–533	266–667	MHz
Coherent system bus frequency (<i>csb_clk</i>)	100–266	100–266	100–333	MHz
DDR and memory bus frequency (MCLK) ²	100–133	100–133	100–166.67	MHz
Local bus frequency (LCLK <i>n</i>) ³	16.67–133	16.67–133	16.67–133	MHz
PCI input frequency (CLKIN or PCI_CLK)	25–66	25–66	25–66	MHz
Security core maximum internal operating frequency	133	133	166	MHz
USB_DR, USB_MPH maximum internal operating frequency	133	133	166	MHz

Table 54. Operating Frequencies for TBGA

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.

² The DDR data rate is 2x the DDR memory bus frequency.

³ The local bus frequency is 1/2, 1/4, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the *csb_clk* frequency (depending on RCWL[LBIUCM]).

Table 55 provides the operating frequencies for the MPC8347E PBGA under recommended operating conditions.

Characteristic ¹	266 MHz 333 MHz 400 MHz		400 MHz	Unit	
e300 core frequency (<i>core_clk</i>)	200–266	200–266 200–333 200–400			
Coherent system bus frequency (<i>csb_clk</i>)	100–266			MHz	
Local bus frequency (LCLKn) ²	16.67–133				
PCI input frequency (CLKIN or PCI_CLK)	25-66				
Security core maximum internal operating frequency	133			MHz	
USB_DR, USB_MPH maximum internal operating frequency	133				

Table 55. Operating Frequencies for PBGA

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.

² The local bus frequency is 1/2, 1/4, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the *csb_clk* frequency (depending on RCWL[LBIUCM]).

	Tyco Electronics Chip Coolers TM P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-2800
	Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102
Interfac	ce material vendors include the following:	
	Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801	781-935-4850
	Internet: www.chomerics.com	
	Dow-Corning Corporation Dow-Corning Electronic Materials P.O. Box 994 Midland, MI 48686-0997 Internet: www.dowcorning.com	800-248-2481
	Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
	The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572

20.3 Heat Sink Attachment

When heat sinks are attached, an interface material is required, preferably thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces that can lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. The recommended maximum force on the top of the package is 10 lb force (4.5 kg force). Any adhesive attachment should attach to painted or plastic surfaces, and its performance should be verified under the application requirements.

20.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally

Thermal

required in the heat sink. Minimize the size of the clearance to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 T_J = junction temperature (°C) T_C = case temperature of the package (°C) $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W) P_D = power dissipation (W)

Revision	Date	Substantive Change(s)
8	2/2007	 Page 1, updated first paragraph to reflect PowerQUICC II information. Updated note after second paragraph. In the features list in Section 1, "Overview," corrected DDR data rate to show: 266 MHz for PBGA parts for all silicon revisions 333 MHz for DDR for TBGA parts for silicon Rev. 1.x
		In Table 5, "MPC8347E Typical I/O Power Dissipation," added GV _{DD} 1.8-V values for DDR2; added table footnote to designate rates that apply only to the TBGA package. In Figure 43, "JTAG Interface Connection," updated with new figure.
		In Section 23, "Ordering Information," replicated note from document introduction.
		In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced third sentence of first paragraph directing customer to product summary page for available frequency configuration parts. Updated back page information.
7	8/2006	Changed all references to revision 2.0 silicon to revision 3.0 silicon. Changed V _{IH} minimum value in Table 36, "JTAG Interface DC Electrical Characteristics," to
		OV _{DD} – 0.3.
		In Table 60, "Suggested PLL Configurations," deleted reference-number rows 902 and 703.
6	3/2006	 Section 2, "Electrical Characteristics," moved to second section and all other section, table, and figure numbering change accordingly. Table 7, "CLKIN AC Timing Specifications:" Changed max rise and fall time from 1.2 to 2.3. Table 22, "GMII Receive AC Timing Specifications:" Changed min t_{TTKHDX} from 0.5 to 1.0. Table 30, "MII Management AC Timing Specifications:" Changed max value of t_{MDKHDX} from 70 to
		 170. Table 34, "Local Bus General Timing Parameters—DLL on:" Changed min t_{LBIVKH2} from 1.7 to 2.2. Table 36, "JTAG interface DC Electrical Characteristics:" Changed V_{IH} input high voltage min to 2.0. Table 54, "Operating Frequencies for TBGA:"
		 Updated TBD values. Changed maximum coherent system bus frequency for TBGA 667-MHz device to 333 MHz. Table 55, "Operating Frequencies for PBGA:"
		 Updated TBD values. Changed PBGA maximum coherent system bus frequency to 266 MHz, and maximum DDR memory bus frequency to 133 MHz. Table 60, "Suggested PLL Configurations": Removed some values from suggested PLL
		configurations for reference numbers 902, 922, 903, and 923.
		Table 67, "Part Numbering Nomenclature": Updated TBD values in note 1. Added Table 68, "SVR Settings." Added Section 23.2, "Part Marking."
5	10/2005	In Table 57, updated AAVID 30x30x9.4 mm Pin Fin (natural convection) junction-to-ambient thermal resistance, from 11 to 10.
4	9/2005	Added Table 2, "MPC8347E Typical I/O Power Dissipation."
3	8/2005	Table 1: Updated values for power dissipation that were TBD in Revision 2.
2	5/2005	Table 1: Typical values for power dissipation are changed to TBD. Table 48: Footnote numbering was wrong. THERM0 should have footnote 9 instead of 8.

Table 66. Document Revision History (continued)

THIS PAGE INTENTIONALLY LEFT BLANK