E·XFL

Welcome to E-XFL.COM

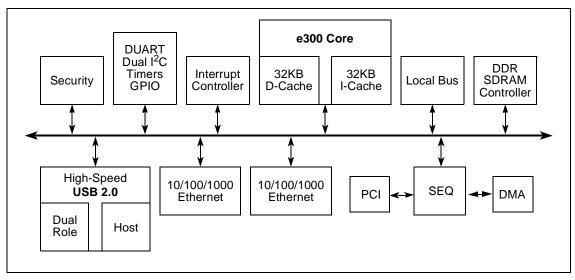
Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details


Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	Security; SEC
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	Cryptography, Random Number Generator
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347ezqaddb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

This section provides a high-level overview of the MPC8347E features. Figure 1 shows the major functional units within the MPC8347E.

Figure 1. MPC8347E Block Diagram

Major features of the MPC8347E are as follows:

- Embedded PowerPC e300 processor core; operates at up to 667 MHz
 - High-performance, superscalar processor core
 - Floating-point, integer, load/store, system register, and branch processing units
 - 32-Kbyte instruction cache, 32-Kbyte data cache
 - Lockable portion of L1 cache
 - Dynamic power management
 - Software-compatible with the other Freescale processor families that implement Power Architecture technology
- Double data rate, DDR SDRAM memory controller
 - Programmable timing for DDR-1 SDRAM
 - 32- or 64-bit data interface, up to 333-MHz data rate for TBGA, 266 MHz for PBGA
 - Four banks of memory, each up to 1 Gbyte
 - DRAM chip configurations from 64 Mbit to 1 Gbit with x8/x16 data ports
 - Full error checking and correction (ECC) support
 - Page mode support (up to 16 simultaneous open pages)
 - Contiguous or discontiguous memory mapping
 - Read-modify-write support
 - Sleep mode for self-refresh SDRAM
 - Auto refresh

Overview

- Data chaining and direct mode
- Interrupt on completed segment and chain
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI) for master or slave
- General-purpose parallel I/O (GPIO)
 - 52 parallel I/O pins multiplexed on various chip interfaces
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- Designed to comply with IEEE Std. 1149.1[™], JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

Power Characteristics

Table 5 shows the estimated typical I/O power dissipation for MPC8347E.

Interface	Parameter	DDR2 GV _{DD} (1.8 V)	DDR1 GV _{DD} (2.5 V)	OV _{DD} (3.3 V)	LV _{DD} (3.3 V)	LV _{DD} (2.5 V)	Unit	Comments
DDR I/O	200 MHz, 32 bits	—	0.42	_	_	_	W	—
2.5 V	% utilization 5 V 200 MHz, 64 bits		0.55	_	_		W	—
Rs = 20 Ω Rt = 50 Ω	266 MHz, 32 bits	—	0.5		_		W	—
2 pair of clocks	266 MHz, 64 bits	—	0.66	_	_	_	W	—
	300 MHz, ¹ 32 bits	—	0.54		_		W	—
	300 MHz, ¹ 64 bits	—	0.7	—	_	_	W	_
	333 MHz, ¹ 32 bits	—	0.58				W	—
	333 MHz, ¹ 64 bits	—	0.76	—	—	_	W	_
	400 MHz, ¹ 32 bits	—	_					—
	400 MHz, ¹ 64 bits	—	—		_			—
PCI I/O	33 MHz, 32 bits	—	_	0.04			W	—
load = 30 pF	66 MHz, 32 bits		_	0.07	_		W	_
Local bus I/O	167 MHz, 32 bits	—	_	0.34			W	—
load = 25 pF	133 MHz, 32 bits	—	_	0.27			W	—
	83 MHz, 32 bits	_	_	0.17			W	—
	66 MHz, 32 bits	_	_	0.14			W	—
	50 MHz, 32 bits	_	_	0.11			W	—
TSEC I/O	MII	—	—		0.01		W	Multiply by number of
load = 25 pF	GMII or TBI	—	—	_	0.06	_	W	interfaces used.
	RGMII or RTBI	—	—	—	_	0.04	W	
USB	12 MHz	—	—	0.01	_	_	W	Multiply by 2 if using
	480 MHz	—	—	0.2	—	_	W	2 ports.
Other I/O		—	—	0.01	—	—	W	—

Table 5. MPC8347E Typical I/O Power Dissipation

¹ TBGA package only.

6 DDR SDRAM

This section describes the DC and AC electrical specifications for the DDR SDRAM interface of the MPC8347E.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and earlier versions see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications*. See Section 23.1, "Part Numbers Fully Addressed by This Document," for silicon revision level determination.

6.1 DDR SDRAM DC Electrical Characteristics

Table 11 provides the recommended operating conditions for the DDR SDRAM component(s) of the MPC8347E.

Parameter/Condition	Symbol	Min	Мах	Unit	Notes
I/O supply voltage	GV _{DD}	2.375	2.625	V	1
I/O reference voltage	MV _{REF}	$0.49 imes GV_{DD}$	$0.51 imes GV_{DD}$	V	2
I/O termination voltage	V _{TT}	MV _{REF} – 0.04	MV _{REF} + 0.04	V	3
Input high voltage	V _{IH}	MV _{REF} + 0.18	GV _{DD} + 0.3	V	
Input low voltage	V _{IL}	-0.3	MV _{REF} - 0.18	V	
Output leakage current	I _{OZ}	-10	10	μA	4
Output high current (V _{OUT} = 1.95 V)	I _{OH}	-15.2	—	mA	
Output low current (V _{OUT} = 0.35 V)	I _{OL}	15.2	—	mA	
MV _{REF} input leakage current	I _{VREF}	—	5	μA	

Table 11. DDR SDRAM DC Electrical Characteristics

Notes:

1. ${\rm GV}_{\rm DD}$ is expected to be within 50 mV of the DRAM ${\rm GV}_{\rm DD}$ at all times.

 MV_{REF} is expected to be equal to 0.5 × GV_{DD}, and to track GV_{DD} DC variations as measured at the receiver. Peak-to-peak noise on MV_{REF} may not exceed ±2% of the DC value.

3. V_{TT} is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be equal to MV_{REF}. This rail should track variations in the DC level of MV_{REF}.

4. Output leakage is measured with all outputs disabled, 0 V \leq V_{OUT} \leq GV_{DD}.

Table 12 provides the DDR capacitance.

Table 12. DDR SDRAM Capacitance

Parameter/Condition	Symbol	Min	Max	Unit	Notes
Input/output capacitance: DQ, DQS	C _{IO}	6	8	pF	1
Delta input/output capacitance: DQ, DQS	C _{DIO}	_	0.5	pF	1

Note:

1. This parameter is sampled. GV_{DD} = 2.5 V ± 0.125 V, f = 1 MHz, T_A = 25°C, V_{OUT} = $GV_{DD}/2$, V_{OUT} (peak-to-peak) = 0.2 V.

DDR SDRAM

Load	Delay	Unit
4 devices (12 pF)	3.0	ns
9 devices (27 pF)	3.6	ns
36 devices (108 pF) + 40 pF compensation capacitor	5.0	ns
36 devices (108 pF) + 80 pF compensation capacitor	5.2	ns

Table 16. Expected Delays for Address/Command

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}	_		2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	۱ _{IL}	V _{IN} ¹ = GND		-15	—	μΑ

Table 20. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

Table 21 provides the GMII transmit AC timing specifications.

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{GTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{GTXH} /t _{GTX}	43.75		56.25	%
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.5		5.0	ns
GTX_CLK clock rise time, V _{IL} (min) to V _{IH} (max)	t _{GTXR}	_		1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{GTXF}	_		1.0	ns
GTX_CLK125 clock period	t _{G125} 2	_	8.0	—	ns
GTX_CLK125 reference clock duty cycle measured at $LV_{DD}/2$	t _{G125H} /t _{G125}	45		55	%

Notes:

1. The symbols for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This symbol represents the external GTX_CLK125 signal and does not follow the original symbol naming convention.

Table 21. GMII Transmit AC Timing Specifications

Figure 9 shows the GMII receive AC timing diagram.

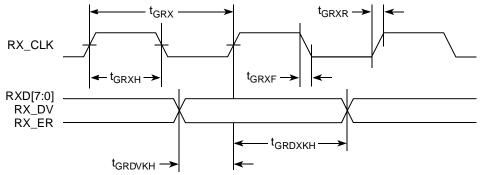


Figure 9. GMII Receive AC Timing Diagram

8.2.2 MII AC Timing Specifications

This section describes the MII transmit and receive AC timing specifications.

8.2.2.1 MII Transmit AC Timing Specifications

Table 23 provides the MII transmit AC timing specifications.

Table 23. MII Transmit AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
TX_CLK clock period 10 Mbps	t _{MTX}	_	400	—	ns
TX_CLK clock period 100 Mbps	t _{MTX}	_	40	—	ns
TX_CLK duty cycle	t _{MTXH} /t _{MTX}	35	-	65	%
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay	t _{MTKHDX}	1	5	15	ns
TX_CLK data clock rise V _{IL} (min) to V _{IH} (max)	t _{MTXR}	1.0	-	4.0	ns
TX_CLK data clock fall V _{IH} (max) to V _{IL} (min)	t _{MTXF}	1.0		4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{MTKHDX} symbolizes MII transmit timing (MT) for the time t_{MTX} clock reference (K) going high (H) until data outputs (D) are invalid (X). In general, the clock reference symbol is based on two to three letters representing the clock of a particular function. For example, the subscript of t_{MTX} represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub>

Figure 12 shows the MII receive AC timing diagram.

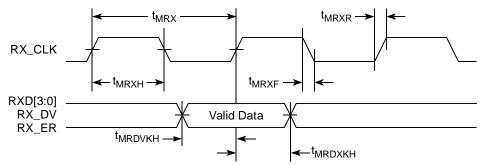


Figure 12. MII Receive AC Timing Diagram

8.2.3 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.3.1 TBI Transmit AC Timing Specifications

Table 25 provides the TBI transmit AC timing specifications.

Table 25. TBI Transmit AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{OV}_{\text{DD}}$ of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{TTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	_	60	%
GTX_CLK to TBI data TXD[7:0], TX_ER, TX_EN delay	t _{TTKHDX}	1.0	—	5.0	ns
GTX_CLK clock rise, V _{IL} (min) to V _{IH} (max)	t _{TTXR}	—	—	1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{TTXF}	—	—	1.0	ns
GTX_CLK125 reference clock period	t _{G125} 2	—	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	45	—	55	ns

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

2. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention

Figure 13 shows the TBI transmit AC timing diagram.

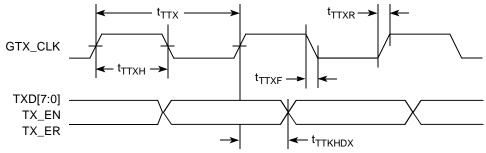


Figure 13. TBI Transmit AC Timing Diagram

8.2.3.2 TBI Receive AC Timing Specifications

Table 26 provides the TBI receive AC timing specifications.

Table 26. TBI Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
PMA_RX_CLK clock period	t _{TRX}		16.0		ns
PMA_RX_CLK skew	t _{SKTRX}	7.5	—	8.5	ns
RX_CLK duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) setup time to rising PMA_RX_CLK	t _{trdvkh} 2	2.5	—	—	ns
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) hold time to rising PMA_RX_CLK	t _{TRDXKH} 2	1.5	—	—	ns
RX_CLK clock rise time V _{IL} (min) to V _{IH} (max)	t _{TRXR}	0.7	—	2.4	ns
RX_CLK clock fall time V _{IH} (max) to V _{IL} (min)	t _{TRXF}	0.7	—	2.4	ns

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript SK followed by the clock that is being skewed (TRX).
</sub>

2. Setup and hold time of even numbered RCG are measured from the riding edge of PMA_RX_CLK1. Setup and hold times of odd-numbered RCG are measured from the riding edge of PMA_RX_CLK0.

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to the MII management interface signals management data input/output (MDIO) and management data clock (MDC). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 2.5 or 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 28 and Table 29.

Parameter	Symbol	Conditions		Min	Max	Unit
Supply voltage (2.5 V)	LV _{DD}	-	_		2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	_	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	I _{IH}	$V_{IN}^{1} = LV_{DD}$		—	10	μA
Input low current	IIL	V _{IN} = LV _{DD}		-15	—	μΑ

Table 28. MII Management DC Electrical Characteristics Powered at 2.5 V

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 29. MII Management DC Electrical	Characteristics Powered at 3.3 V

Parameter	Symbol	Cond	itions	Min	Мах	Unit
Supply voltage (3.3 V)	LV _{DD}	_	_	2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.10	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-	_	2.00	—	V
Input low voltage	V _{IL}	-	_	—	0.80	V
Input high current	IIH	LV _{DD} = Max	$V_{IN}^{1} = 2.1 V$	_	40	μA
Input low current	١ _{IL}	LV _{DD} = Max	V _{IN} = 0.5 V	-600	—	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.3.2 MII Management AC Electrical Specifications

Table 30 provides the MII management AC timing specifications.

Table 30. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10% or 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}		2.5		MHz	2
MDC period	t _{MDC}	_	400	—	ns	
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	
MDC to MDIO delay	t _{MDKHDX}	10	—	170	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	
MDC rise time	t _{MDCR}		_	10	ns	
MDC fall time	t _{MDHF}	_	_	10	ns	

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

- 2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a csb_clk of 333 MHz, the delay is 58 ns).

Figure 16 shows the MII management AC timing diagram.

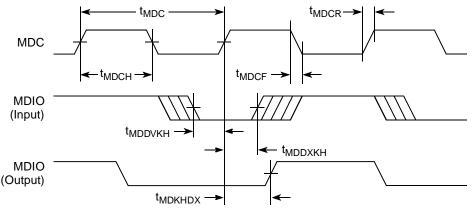


Figure 16. MII Management Interface Timing Diagram

IPIC

16 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

16.1 IPIC DC Electrical Characteristics

Table 47 provides the DC electrical characteristics for the external interrupt pins.

Table 47. IPIC DC Electrical Characteristics¹

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V	
Input low voltage	V _{IL}		-0.3	0.8	V	
Input current	I _{IN}			±5	μA	
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V	2
Output low voltage	V _{OL}	I _{OL} = 3.2 mA		0.4	V	2

Notes:

1. This table applies for pins $\overline{IRQ}[0:7]$, \overline{IRQ}_{OUT} , and \overline{MCP}_{OUT} .

2. $\overline{\text{IRQ}_\text{OUT}}$ and $\overline{\text{MCP}_\text{OUT}}$ are open-drain pins; thus V_OH is not relevant for those pins.

16.2 IPIC AC Timing Specifications

Table 48 provides the IPIC input and output AC timing specifications.

Table 48. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PICWID}	20	ns

Notes:

1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.

 IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external synchronous logic. IPIC inputs must be valid for at least t_{PICWID} ns to ensure proper operation in edge triggered mode.

18.3 Package Parameters for the MPC8347E PBGA

The package parameters are as provided in the following list. The package type is $29 \text{ mm} \times 29 \text{ mm}$, 620 plastic ball grid array (PBGA).

Package outline	$29 \text{ mm} \times 29 \text{ mm}$
Interconnects	620
Pitch	1.00 mm
Module height (maximum)	2.46 mm
Module height (typical)	2.23 mm
Module height (minimum)	2.00 mm
Solder balls	62 Sn/36 Pb/2 Ag (ZQ package) 95.5 Sn/0.5 Cu/4Ag (VR package)
Ball diameter (typical)	0.60 mm

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SPIMISO	C7	I/O	OV _{DD}	
SPICLK	B7	I/O	OV _{DD}	
SPISEL	A7	I	OV _{DD}	
	Clocks			
PCI_CLK_OUT[0:2]	Y1, W3, W2	0	OV _{DD}	
PCI_CLK_OUT[3]/LCS[6]	W1	0	OV _{DD}	
PCI_CLK_OUT[4]/LCS[7]	V3	0	OV _{DD}	
PCI_SYNC_IN/PCI_CLOCK	U4	I	OV _{DD}	
PCI_SYNC_OUT	U5	0	OV _{DD}	3
RTC/PIT_CLOCK	E9	I	OV_{DD}	
CLKIN	W5	I	OV_{DD}	
	JTAG			•
тск	H27	I	OV _{DD}	
TDI	H28	I	OV_{DD}	4
TDO	M24	0	OV _{DD}	3
TMS	J27	I	OV _{DD}	4
TRST	K26	I	OV _{DD}	4
	Test			•
TEST	F28	I	OV _{DD}	6
TEST_SEL	ТЗ	I	OV _{DD}	6
	РМС			•
QUIESCE	K27	0	OV _{DD}	
	System Control			•
PORESET	K28	Ι	OV _{DD}	
HRESET	M25	I/O	OV _{DD}	1
SRESET	L27	I/O	OV _{DD}	2
	Thermal Management			
THERM0	B15	I	_	8
	Power and Ground Signals			
AV _{DD} 1	C15	Power for e300 PLL (1.2 V)	AV _{DD} 1	
AV _{DD} 2	U1	Power for system PLL (1.2 V)	AV _{DD} 2	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
AV _{DD} 3	AF9	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	U2	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	 A2, B1, B2, D10, D18, E6, E14, E22, F9, F12, F15, F18, F21, F24, G5, H6, J23, L4, L6, L12, L13, L14, L15, L16, L17, M11, M12, M13, M14, M15, M16 M17, M18, M23, N11, N12, N13, N14, N15, N16, N17, N18, P6, P11, P12, P13, P14, P15, P16, P17, P18, P24, R5, R11, R12, R13, R14, R15, R16, R17, R18, R23, T11, T12, T13, T14, T15, T16, T17, T18, U6, U11, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V23, V25, W4, Y6, AA23, AB24, AC5, AC8, AC11, AC14, AC17, AC20, AD9, AD15, AD21, AE12, AE18, AF3, AF26 			
GV _{DD}	U9, V9, W10, W19, Y11, Y12, Y14, Y15, Y17, Y18, AA6, AB5, AC9, AC12 AC15, AC18, AC21, AC24, AD6, AD8 AD14, AD20, AE5, AE11, AE17, AG2 AG27	voltage	GV _{DD}	
LV _{DD} 1	U20, W25	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	
LV _{DD} 2	V20, Y23	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	J11, J12, J15, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, L10, L11, L18, L19, M10, M19, N10, N19, P9, P10, P19, R10, R19, R20, T10, T19, U10, U19, V10, V11, V18, V19, W11, W12, W13, W14, W15, W16, W17, W18	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B27, D3, D11, D19, E15, E23, F5, F8, F11, F14, F17, F20, G24, H23, H24, J6, J14, J17, J18, K4, L9, L20, L23, L25, M6, M9, M20, P5, P20, P23, R6, R9, R24, U23, V4, V6	Ethernet, and other standard	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

As shown in Figure 41, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349E Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

 ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + RCWL[LBIUCM])$

lbiu_clk is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 53 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
TSEC1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2, I ² C1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
Security core	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR, USB MPH	csb_clk/3	Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 53. Configurable Clock Units

20 Thermal

This section describes the thermal specifications of the MPC8347E.

20.1 Thermal Characteristics

Table 61 provides the package thermal characteristics for the $672 \ 35 \times 35 \ \text{mm}$ TBGA of the MPC8347E.

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	R _{θJA}	14	°C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	R _{θJMA}	11	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on single-layer board (1s)	R _{θJMA}	11	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on four-layer board (2s2p)	R _{θJMA}	8	°C/W	1, 3
Junction-to-ambient (@ 2 m/s) on single-layer board (1s)	R _{θJMA}	9	°C/W	1, 3
Junction-to-ambient (@ 2 m/s) on four-layer board (2s2p)	R _{θJMA}	7	°C/W	1, 3
Junction-to-board thermal	R _{θJB}	3.8	°C/W	4
Junction-to-case thermal	R _{θJC}	1.7	°C/W	5
Junction-to-package natural convection on top	ΨJT	1	°C/W	6

Table 61. Package Thermal Characteristics for TBGA

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 62 provides the package thermal characteristics for the 620 29×29 mm PBGA of the MPC8347E.

Table 62. Package Thermal Characteristics for PBGA

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	R _{θJA}	21	°C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	R _{θJMA}	15	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on single-layer board (1s)	R _{θJMA}	17	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on four-layer board (2s2p)	R _{θJMA}	12	°C/W	1, 3
Junction-to-board thermal	R _{θJB}	6	°C/W	4

System Design Information

21 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8347E.

21.1 System Clocking

The MPC8347E includes two PLLs:

- 1. The platform PLL generates the platform clock from the externally supplied CLKIN input. The frequency ratio between the platform and CLKIN is selected using the platform PLL ratio configuration bits as described in Section 19.1, "System PLL Configuration."
- 2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio between the e300 core clock and the platform clock is selected using the e300 PLL ratio configuration bits as described in Section 19.2, "Core PLL Configuration."

21.2 PLL Power Supply Filtering

Each PLL gets power through independent power supply pins (AV_{DD}1, AV_{DD}2, respectively). The AV_{DD} level should always equal to V_{DD} , and preferably these voltages are derived directly from V_{DD} through a low frequency filter scheme.

There are a number of ways to provide power reliably to the PLLs, but the recommended solution is to provide four independent filter circuits as illustrated in Figure 42, one to each of the four AV_{DD} pins. Independent filters to each PLL reduce the opportunity to cause noise injection from one PLL to the other.

The circuit filters noise in the PLL resonant frequency range from 500 kHz to 10 MHz. It should be built with surface mount capacitors with minimum effective series inductance (ESL). Consistent with the recommendations of Dr. Howard Johnson in *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a single large value capacitor.

To minimize noise coupled from nearby circuits, each circuit should be placed as closely as possible to the specific AV_{DD} pin being supplied. It should be possible to route directly from the capacitors to the AV_{DD} pin, which is on the periphery of package, without the inductance of vias.

Figure 42 shows the PLL power supply filter circuit.

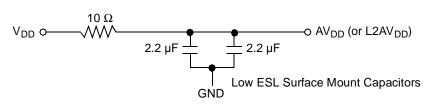


Figure 42. PLL Power Supply Filter Circuit

Revision	Date	Substantive Change(s)
8	2/2007	 Page 1, updated first paragraph to reflect PowerQUICC II information. Updated note after second paragraph. In the features list in Section 1, "Overview," corrected DDR data rate to show: 266 MHz for PBGA parts for all silicon revisions 333 MHz for DDR for TBGA parts for silicon Rev. 1.x
		In Table 5, "MPC8347E Typical I/O Power Dissipation," added GV _{DD} 1.8-V values for DDR2; added table footnote to designate rates that apply only to the TBGA package. In Figure 43, "JTAG Interface Connection," updated with new figure.
		In Section 23, "Ordering Information," replicated note from document introduction.
		In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced third sentence of first paragraph directing customer to product summary page for available frequency configuration parts. Updated back page information.
7	8/2006	Changed all references to revision 2.0 silicon to revision 3.0 silicon. Changed V _{IH} minimum value in Table 36, "JTAG Interface DC Electrical Characteristics," to
		OV _{DD} – 0.3.
		In Table 60, "Suggested PLL Configurations," deleted reference-number rows 902 and 703.
6	3/2006	 Section 2, "Electrical Characteristics," moved to second section and all other section, table, and figure numbering change accordingly. Table 7, "CLKIN AC Timing Specifications:" Changed max rise and fall time from 1.2 to 2.3. Table 22, "GMII Receive AC Timing Specifications:" Changed min t_{TTKHDX} from 0.5 to 1.0. Table 30, "MII Management AC Timing Specifications:" Changed max value of t_{MDKHDX} from 70 to
		 170. Table 34, "Local Bus General Timing Parameters—DLL on:" Changed min t_{LBIVKH2} from 1.7 to 2.2. Table 36, "JTAG interface DC Electrical Characteristics:" Changed V_{IH} input high voltage min to 2.0. Table 54, "Operating Frequencies for TBGA:"
		 Updated TBD values. Changed maximum coherent system bus frequency for TBGA 667-MHz device to 333 MHz. Table 55, "Operating Frequencies for PBGA:"
		 Updated TBD values. Changed PBGA maximum coherent system bus frequency to 266 MHz, and maximum DDR memory bus frequency to 133 MHz. Table 60, "Suggested PLL Configurations": Removed some values from suggested PLL
		configurations for reference numbers 902, 922, 903, and 923.
		Table 67, "Part Numbering Nomenclature": Updated TBD values in note 1. Added Table 68, "SVR Settings." Added Section 23.2, "Part Marking."
5	10/2005	In Table 57, updated AAVID 30x30x9.4 mm Pin Fin (natural convection) junction-to-ambient thermal resistance, from 11 to 10.
4	9/2005	Added Table 2, "MPC8347E Typical I/O Power Dissipation."
3	8/2005	Table 1: Updated values for power dissipation that were TBD in Revision 2.
2	5/2005	Table 1: Typical values for power dissipation are changed to TBD. Table 48: Footnote numbering was wrong. THERM0 should have footnote 9 instead of 8.

Table 66. Document Revision History (continued)

Revision	Date	Substantive Change(s)	
1	4/2005	Table 1: Addition of note 1 Table 48: Addition of Therm0 (K32) Table 49: Addition of Therm0 (B15)	
0	4/2005	Initial release.	

Table 66. Document Revision History (continued)