



#### Welcome to E-XFL.COM

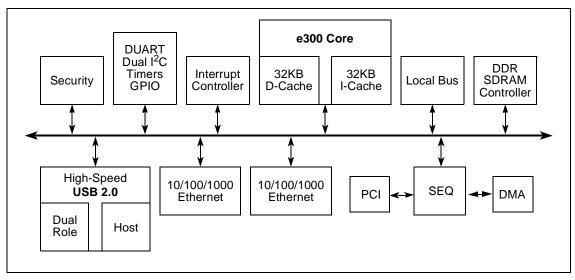
#### **Understanding Embedded - Microprocessors**

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

#### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details


| Product Status                  | Obsolete                                                              |
|---------------------------------|-----------------------------------------------------------------------|
| Core Processor                  | PowerPC e300                                                          |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                        |
| Speed                           | 400MHz                                                                |
| Co-Processors/DSP               | Security; SEC                                                         |
| RAM Controllers                 | DDR                                                                   |
| Graphics Acceleration           | No                                                                    |
| Display & Interface Controllers | -                                                                     |
| Ethernet                        | 10/100/1000Mbps (2)                                                   |
| SATA                            | -                                                                     |
| USB                             | USB 2.0 + PHY (2)                                                     |
| Voltage - I/O                   | 2.5V, 3.3V                                                            |
| Operating Temperature           | 0°C ~ 105°C (TA)                                                      |
| Security Features               | Cryptography, Random Number Generator                                 |
| Package / Case                  | 672-LBGA                                                              |
| Supplier Device Package         | 672-LBGA (35x35)                                                      |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347ezuagd |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 1 Overview

This section provides a high-level overview of the MPC8347E features. Figure 1 shows the major functional units within the MPC8347E.

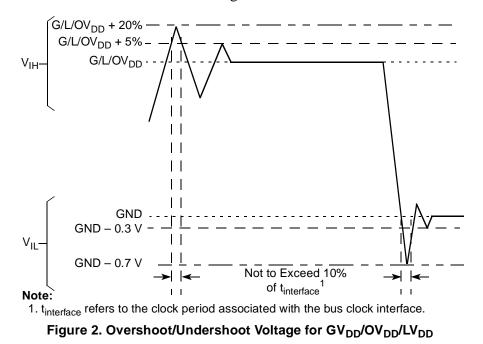


### Figure 1. MPC8347E Block Diagram

Major features of the MPC8347E are as follows:

- Embedded PowerPC e300 processor core; operates at up to 667 MHz
  - High-performance, superscalar processor core
  - Floating-point, integer, load/store, system register, and branch processing units
  - 32-Kbyte instruction cache, 32-Kbyte data cache
  - Lockable portion of L1 cache
  - Dynamic power management
  - Software-compatible with the other Freescale processor families that implement Power Architecture technology
- Double data rate, DDR SDRAM memory controller
  - Programmable timing for DDR-1 SDRAM
  - 32- or 64-bit data interface, up to 333-MHz data rate for TBGA, 266 MHz for PBGA
  - Four banks of memory, each up to 1 Gbyte
  - DRAM chip configurations from 64 Mbit to 1 Gbit with x8/x16 data ports
  - Full error checking and correction (ECC) support
  - Page mode support (up to 16 simultaneous open pages)
  - Contiguous or discontiguous memory mapping
  - Read-modify-write support
  - Sleep mode for self-refresh SDRAM
  - Auto refresh

## 2.1.2 Power Supply Voltage Specification


Table 2 provides the recommended operating conditions for the MPC8347E. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

| Characteristic                                                                                     | Symbol            | Recommended<br>Value             | Unit | Notes |
|----------------------------------------------------------------------------------------------------|-------------------|----------------------------------|------|-------|
| Core supply voltage                                                                                | V <sub>DD</sub>   | 1.2 V ± 60 mV                    | V    | 1     |
| PLL supply voltage                                                                                 | AV <sub>DD</sub>  | 1.2 V ± 60 mV                    | V    | 1     |
| DDR DRAM I/O supply voltage                                                                        | GV <sub>DD</sub>  | 2.5 V ± 125 mV                   | V    |       |
| Three-speed Ethernet I/O supply voltage                                                            | LV <sub>DD1</sub> | 3.3 V ± 330 mV<br>2.5 V ± 125 mV | V    |       |
| Three-speed Ethernet I/O supply voltage                                                            | LV <sub>DD2</sub> | 3.3 V ± 330 mV<br>2.5 V ± 125 mV | V    |       |
| PCI, local bus, DUART, system control and power management, I <sup>2</sup> C, and JTAG I/O voltage | OV <sub>DD</sub>  | 3.3 V ± 330 mV                   | V    |       |

#### Note:

<sup>1</sup> GV<sub>DD</sub>, LV<sub>DD</sub>, OV<sub>DD</sub>, AV<sub>DD</sub>, and V<sub>DD</sub> must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8347E.



# 5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8347E.

# 5.1 **RESET DC Electrical Characteristics**

Table 8 provides the DC electrical characteristics for the RESET pins of the MPC8347E.

| Table 8. | RESET | Pins DC | Electrical | Characteristics' |  |
|----------|-------|---------|------------|------------------|--|
|          |       |         |            |                  |  |

| Characteristic                   | Symbol          | Condition                 | Min  | Мах                    | Unit |
|----------------------------------|-----------------|---------------------------|------|------------------------|------|
| Input high voltage               | V <sub>IH</sub> |                           | 2.0  | OV <sub>DD</sub> + 0.3 | V    |
| Input low voltage                | V <sub>IL</sub> |                           | -0.3 | 0.8                    | V    |
| Input current                    | I <sub>IN</sub> |                           |      | ±5                     | μΑ   |
| Output high voltage <sup>2</sup> | V <sub>OH</sub> | I <sub>OH</sub> = -8.0 mA | 2.4  | —                      | V    |
| Output low voltage               | V <sub>OL</sub> | I <sub>OL</sub> = 8.0 mA  | _    | 0.5                    | V    |
| Output low voltage               | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA  | _    | 0.4                    | V    |

#### Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V<sub>OH</sub> is not relevant for those pins.

# 5.2 **RESET AC Electrical Characteristics**

Table 9 provides the reset initialization AC timing specifications of the MPC8347E.

Table 9. RESET Initialization Timing Specifications

| Parameter/Condition                                                                                                                                                          | Min | Мах | Unit                     | Notes |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------------------|-------|
| Required assertion time of HRESET or SRESET (input) to activate reset flow                                                                                                   | 32  | _   | <sup>t</sup> PCI_SYNC_IN | 1     |
| Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8347E is in PCI host mode                                                                  | 32  | _   | t <sub>CLKIN</sub>       | 2     |
| Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8347E is in PCI agent mode                                                           | 32  | _   | <sup>t</sup> PCI_SYNC_IN | 1     |
| HRESET/SRESET assertion (output)                                                                                                                                             | 512 | _   | t <sub>PCI_SYNC_IN</sub> | 1     |
| HRESET negation to SRESET negation (output)                                                                                                                                  | 16  | _   | t <sub>PCI_SYNC_IN</sub> | 1     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with<br>respect to negation of PORESET when the MPC8347E is in PCI<br>host mode  | 4   | _   | <sup>t</sup> clkin       | 2     |
| Input setup time for POR configuration signals<br>(CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with<br>respect to negation of PORESET when the MPC8347E is in PCI<br>agent mode | 4   | _   | <sup>t</sup> PCI_SYNC_IN | 1     |

# 8.3.2 MII Management AC Electrical Specifications

Table 30 provides the MII management AC timing specifications.

#### Table 30. MII Management AC Timing Specifications

At recommended operating conditions with  $LV_{DD}$  is 3.3 V ± 10% or 2.5 V ± 5%.

| Parameter/Condition        | Symbol <sup>1</sup> | Min | Тур | Мах | Unit | Notes |
|----------------------------|---------------------|-----|-----|-----|------|-------|
| MDC frequency              | f <sub>MDC</sub>    |     | 2.5 |     | MHz  | 2     |
| MDC period                 | t <sub>MDC</sub>    | _   | 400 | —   | ns   |       |
| MDC clock pulse width high | t <sub>MDCH</sub>   | 32  | —   | —   | ns   |       |
| MDC to MDIO delay          | t <sub>MDKHDX</sub> | 10  | —   | 170 | ns   | 3     |
| MDIO to MDC setup time     | t <sub>MDDVKH</sub> | 5   | —   | —   | ns   |       |
| MDIO to MDC hold time      | t <sub>MDDXKH</sub> | 0   | —   | —   | ns   |       |
| MDC rise time              | t <sub>MDCR</sub>   |     | _   | 10  | ns   |       |
| MDC fall time              | t <sub>MDHF</sub>   | _   | _   | 10  | ns   |       |

#### Notes:

1. The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>MDKHDX</sub> symbolizes management data timing (MD) for the time t<sub>MDC</sub> from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t<sub>MDDVKH</sub> symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>MDC</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub></sub>

- 2. This parameter is dependent on the csb\_clk speed (that is, for a csb\_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb\_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the csb\_clk speed (that is, for a csb\_clk of 267 MHz, the delay is 70 ns and for a csb\_clk of 333 MHz, the delay is 58 ns).

Figure 16 shows the MII management AC timing diagram.

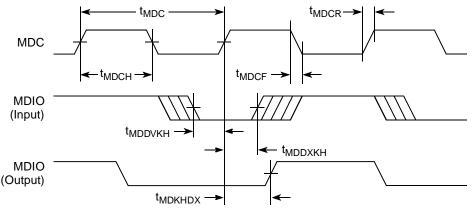



Figure 16. MII Management Interface Timing Diagram

| Table 35. Local Bus General Timing Parameters—DLL Bypass <sup>9</sup> (continued) |
|-----------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------|

| Parameter                                            | Symbol <sup>1</sup> | Min | Мах | Unit | Notes |
|------------------------------------------------------|---------------------|-----|-----|------|-------|
| Local bus clock to output valid                      | t <sub>LBKLOV</sub> | _   | 3   | ns   | 3     |
| Local bus clock to output high impedance for LAD/LDP | t <sub>LBKHOZ</sub> | _   | 4   | ns   | 8     |

Notes:

- The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state)</sub> for outputs. For example, t<sub>LBIXKH1</sub> symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t<sub>LBK</sub> clock reference (K) goes high (H), in this case for clock one (1). Also, t<sub>LBKHOX</sub> symbolizes local bus timing (LB) for the t<sub>LBK</sub> clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
  </sub>
- 2. All timings are in reference to the falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or the rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from  $OV_{DD}/2$  of the rising/falling edge of LCLK0 to  $0.4 \times OV_{DD}$  of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t<sub>LBOTOT1</sub> should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t<sub>LBOTOT2</sub> should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.the
- 7. t<sub>LBOTOT3</sub> should be used when RCWH[LALE] is set and when the load on the LALE output pin equals to the load on the LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

Figure 19 provides the AC test load for the local bus.

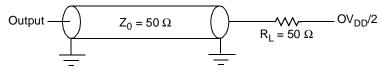



Figure 19. Local Bus C Test Load

| Parameter                                                                       | Symbol <sup>1</sup> | Min                                | Max | Unit |
|---------------------------------------------------------------------------------|---------------------|------------------------------------|-----|------|
| Fall time of both SDA and SCL signals <sup>5</sup>                              | t <sub>I2CF</sub>   |                                    | 300 | ns   |
| Setup time for STOP condition                                                   | t <sub>I2PVKH</sub> | 0.6                                |     | μs   |
| Bus free time between a STOP and START condition                                | t <sub>I2KHDX</sub> | 1.3                                | _   | μs   |
| Noise margin at the LOW level for each connected device (including hysteresis)  | V <sub>NL</sub>     | $0.1 \times OV_{DD}$               | —   | V    |
| Noise margin at the HIGH level for each connected device (including hysteresis) | V <sub>NH</sub>     | $0.2 \times \text{OV}_{\text{DD}}$ | —   | V    |

### Table 39. I<sup>2</sup>C AC Electrical Specifications (continued)

Notes:

- 1. The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t<sub>12DVKH</sub> symbolizes I<sup>2</sup>C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the high (H) state or setup time. Also, t<sub>12SXKL</sub> symbolizes I<sup>2</sup>C timing (I2) for the time that the data with respect to the start condition (S) goes invalid (X) relative to the t<sub>12C</sub> clock reference (K) going to the stop condition (P) reaches the valid state (V) relative to the t<sub>12C</sub> clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).</sub></sub>
- MPC8347E provides a hold time of at least 300 ns for the SDA signal (referred to the V<sub>IH</sub>(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t<sub>I2DVKH</sub> must be met only if the device does not stretch the LOW period (t<sub>I2CL</sub>) of the SCL signal.
- 4.  $C_B$  = capacitance of one bus line in pF.
- 5.) The MPC8347E does not follow the "I2C-BUS Specifications" version 2.1 regarding the tI2CF AC parameter.

Figure 31 provides the AC test load for the  $I^2C$ .

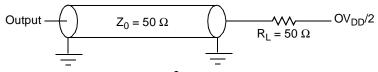



Figure 31. I<sup>2</sup>C AC Test Load

Figure 32 shows the AC timing diagram for the  $I^2C$  bus.

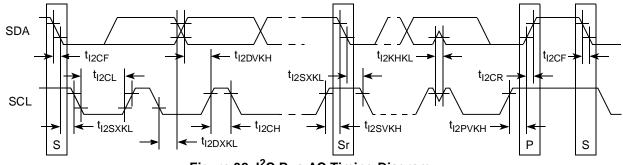



Figure 32. I<sup>2</sup>C Bus AC Timing Diagram

#### IPIC

# 16 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

# **16.1 IPIC DC Electrical Characteristics**

Table 47 provides the DC electrical characteristics for the external interrupt pins.

| Table 47. IPIC DC Electrical Char | acteristics <sup>1</sup> |
|-----------------------------------|--------------------------|
|-----------------------------------|--------------------------|

| Characteristic     | Symbol          | Condition                | Min  | Max                    | Unit | Notes |
|--------------------|-----------------|--------------------------|------|------------------------|------|-------|
| Input high voltage | V <sub>IH</sub> |                          | 2.0  | OV <sub>DD</sub> + 0.3 | V    |       |
| Input low voltage  | V <sub>IL</sub> |                          | -0.3 | 0.8                    | V    |       |
| Input current      | I <sub>IN</sub> |                          |      | ±5                     | μA   |       |
| Output low voltage | V <sub>OL</sub> | I <sub>OL</sub> = 8.0 mA | _    | 0.5                    | V    | 2     |
| Output low voltage | V <sub>OL</sub> | I <sub>OL</sub> = 3.2 mA | _    | 0.4                    | V    | 2     |

#### Notes:

1. This table applies for pins IRQ[0:7], IRQ\_OUT, and MCP\_OUT.

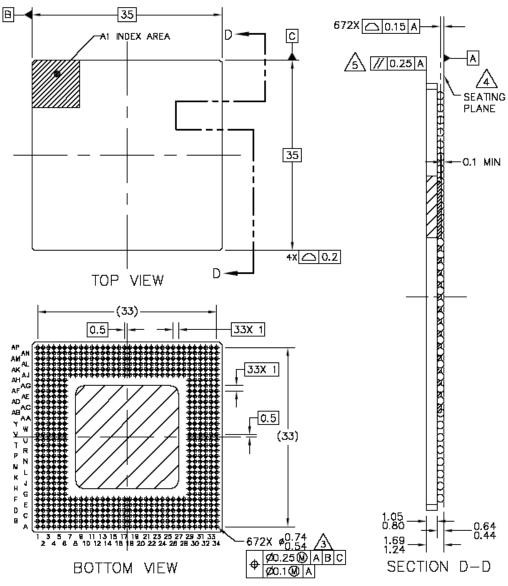
2.  $\overline{\text{IRQ}_\text{OUT}}$  and  $\overline{\text{MCP}_\text{OUT}}$  are open-drain pins; thus  $\text{V}_\text{OH}$  is not relevant for those pins.

# 16.2 IPIC AC Timing Specifications

Table 48 provides the IPIC input and output AC timing specifications.

## Table 48. IPIC Input AC Timing Specifications<sup>1</sup>

| Characteristic                  | Symbol <sup>2</sup> | Min | Unit |
|---------------------------------|---------------------|-----|------|
| IPIC inputs—minimum pulse width | t <sub>PICWID</sub> | 20  | ns   |


#### Notes:

1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.

 IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external synchronous logic. IPIC inputs must be valid for at least t<sub>PICWID</sub> ns to ensure proper operation in edge triggered mode. Package and Pin Listings

## 18.2 Mechanical Dimensions for the MPC8347E TBGA

Figure 39 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347E, 672-TBGA package.



#### Notes:

1.All dimensions are in millimeters.

2.Dimensions and tolerances per ASME Y14.5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

5.Parallelism measurement must exclude any effect of mark on top surface of package.

Figure 39. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347E TBGA

# 18.3 Package Parameters for the MPC8347E PBGA

The package parameters are as provided in the following list. The package type is  $29 \text{ mm} \times 29 \text{ mm}$ , 620 plastic ball grid array (PBGA).

| Package outline         | $29 \text{ mm} \times 29 \text{ mm}$                             |
|-------------------------|------------------------------------------------------------------|
| Interconnects           | 620                                                              |
| Pitch                   | 1.00 mm                                                          |
| Module height (maximum) | 2.46 mm                                                          |
| Module height (typical) | 2.23 mm                                                          |
| Module height (minimum) | 2.00 mm                                                          |
| Solder balls            | 62 Sn/36 Pb/2 Ag (ZQ package)<br>95.5 Sn/0.5 Cu/4Ag (VR package) |
| Ball diameter (typical) | 0.60 mm                                                          |

| Signal             | Package Pin Number                                                                                                                                                                                                                                      | Pin Type                                                         | Power<br>Supply             | Notes |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------|-------|
| LV <sub>DD</sub> 2 | C6, D9                                                                                                                                                                                                                                                  | Power for<br>three-speed<br>Ethernet #2<br>I/O (2.5 V,<br>3.3 V) | LV <sub>DD</sub> 2          |       |
| V <sub>DD</sub>    | E19, E29, F7, F9, F11,F13, F15, F17,<br>F18, F21, F23, F25, F29, H29, J6,<br>K29, M29, N6, P29, T29, U30, V6,<br>V29, W29, AB29, AC5, AD29, AF6,<br>AF29, AH29, AJ8, AJ12, AJ14, AJ16,<br>AJ18, AJ20, AJ21, AJ23, AJ25, AJ26,<br>AJ27, AJ28, AJ29, AK10 | Power for core<br>(1.2 V)                                        | V <sub>DD</sub>             |       |
| OV <sub>DD</sub>   | B22, B28, C16, C17, C24, C26, D13,<br>D15, D19, D29, E31, F28, G33, H30,<br>L29, L32, N32, P31, R31, U32, W31,<br>Y29, AA29, AC30, AE31, AF30, AG29,<br>AJ17, AJ30, AK11, AL15, AL19, AL21,<br>AL29, AL30, AM20, AM23, AM24,<br>AM26, AM28, AN11, AN13  | PCI, 10/100<br>Ethernet, and<br>other standard<br>(3.3 V)        | OV <sub>DD</sub>            |       |
| MVREF1             | M3                                                                                                                                                                                                                                                      | I                                                                | DDR<br>reference<br>voltage |       |
| MVREF2             | AD2                                                                                                                                                                                                                                                     | I                                                                | DDR<br>reference<br>voltage |       |

| Signal                  | Package Pin Number                                                                                                                                                                                                                                                                                                                                                                          | Pin Type | Power<br>Supply  | Notes |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------|
| PCI1_IRDY               | E13                                                                                                                                                                                                                                                                                                                                                                                         | I/O      | OV <sub>DD</sub> | 5     |
| PCI1_STOP               | C13                                                                                                                                                                                                                                                                                                                                                                                         | I/O      | OV <sub>DD</sub> | 5     |
| PCI1_DEVSEL             | B13                                                                                                                                                                                                                                                                                                                                                                                         | I/O      | OV <sub>DD</sub> | 5     |
| PCI1_IDSEL              | C17                                                                                                                                                                                                                                                                                                                                                                                         | I        | OV <sub>DD</sub> |       |
| PCI1_SERR               | C12                                                                                                                                                                                                                                                                                                                                                                                         | I/O      | OV <sub>DD</sub> | 5     |
| PCI1_PERR               | B12                                                                                                                                                                                                                                                                                                                                                                                         | I/O      | OV <sub>DD</sub> | 5     |
| PCI1_REQ[0]             | A21                                                                                                                                                                                                                                                                                                                                                                                         | I/O      | OV <sub>DD</sub> |       |
| PCI1_REQ[1]/CPCI1_HS_ES | C19                                                                                                                                                                                                                                                                                                                                                                                         | I        | OV <sub>DD</sub> |       |
| PCI1_REQ[2:4]           | C18, A19, E20                                                                                                                                                                                                                                                                                                                                                                               | I        | OV <sub>DD</sub> |       |
| PCI1_GNT0               | B20                                                                                                                                                                                                                                                                                                                                                                                         | I/O      | OV <sub>DD</sub> |       |
| PCI1_GNT1/CPCI1_HS_LED  | C20                                                                                                                                                                                                                                                                                                                                                                                         | 0        | OV <sub>DD</sub> |       |
| PCI1_GNT2/CPCI1_HS_ENUM | B19                                                                                                                                                                                                                                                                                                                                                                                         | 0        | OV <sub>DD</sub> |       |
| PCI1_GNT[3:4]           | A20, E18                                                                                                                                                                                                                                                                                                                                                                                    | 0        | OV <sub>DD</sub> |       |
| M66EN                   | L26                                                                                                                                                                                                                                                                                                                                                                                         | I        | OV <sub>DD</sub> |       |
|                         | DDR SDRAM Memory Interface                                                                                                                                                                                                                                                                                                                                                                  |          |                  |       |
| MDQ[0:63]               | AC25, AD27, AD25, AH27, AE28,<br>AD26, AD24, AF27, AF25, AF28,<br>AH24, AG26, AE25, AG25, AH26,<br>AH25, AG22, AH22, AE21, AD19,<br>AE22, AF23, AE19, AG20, AG19,<br>AD17, AE16, AF16, AF18, AG18,<br>AH17, AH16, AG9, AD12, AG7, AE8,<br>AD11, AH9, AH8, AF6, AF8, AE6,<br>AF1, AE4, AG8, AH3, AG3, AG4, AH2,<br>AD7, AB4, AB3, AG1, AD5, AC2, AC1,<br>AC4, AA3, Y4, AA4, AB1, AB2, Y5, Y3 | I/O      | GV <sub>DD</sub> |       |
| MECC[0:4]/MSRCID[0:4]   | AG13, AE14, AH12, AH10, AE15                                                                                                                                                                                                                                                                                                                                                                | I/O      | GV <sub>DD</sub> |       |
| MECC[5]/MDVAL           | AH14                                                                                                                                                                                                                                                                                                                                                                                        | I/O      | GV <sub>DD</sub> |       |
| MECC[6:7]               | AE13, AH11                                                                                                                                                                                                                                                                                                                                                                                  | I/O      | GV <sub>DD</sub> |       |
| MDM[0:8]                | AG28, AG24, AF20, AG17, AE9, AH5, AD1, AA2, AG12                                                                                                                                                                                                                                                                                                                                            | 0        | GV <sub>DD</sub> |       |
| MDQS[0:8]               | AE27, AE26, AE20, AH18, AG10, AF5, AC3, AA1, AH13                                                                                                                                                                                                                                                                                                                                           | I/O      | GV <sub>DD</sub> |       |
| MBA[0:1]                | AF10, AF11                                                                                                                                                                                                                                                                                                                                                                                  | 0        | GV <sub>DD</sub> |       |
| MA[0:14]                | AF13, AF15, AG16, AD16, AF17,<br>AH20, AH19, AH21, AD18, AG21,<br>AD13, AF21, AF22, AE1, AA5                                                                                                                                                                                                                                                                                                | 0        | GV <sub>DD</sub> |       |
| MWE                     | AD10                                                                                                                                                                                                                                                                                                                                                                                        | 0        | GV <sub>DD</sub> |       |
| MRAS                    | AF7                                                                                                                                                                                                                                                                                                                                                                                         | 0        | GV <sub>DD</sub> |       |

| Signal                         | I Package Pin Number                                                                                                                    |     | Power<br>Supply  | Notes |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-------|--|
| MCAS                           | AG6                                                                                                                                     | 0   | GV <sub>DD</sub> |       |  |
| MCS[0:3]                       | AE7, AH7, AH4, AF2                                                                                                                      | 0   | GV <sub>DD</sub> |       |  |
| MCKE[0:1]                      | AG23, AH23                                                                                                                              | 0   | GV <sub>DD</sub> | 3     |  |
| MCK[0:5]                       | AH15, AE24, AE2, AF14, AE23, AD3                                                                                                        | 0   | GV <sub>DD</sub> |       |  |
| MCK[0:5]                       | AG15, AD23, AE3, AG14, AF24, AD2                                                                                                        | 0   | GV <sub>DD</sub> |       |  |
| (The                           | Pins Reserved for Future DDR2<br>ey should be left unconnected for MPC834                                                               | 7)  |                  | 1     |  |
| MODT[0:3]                      | AG5, AD4, AH6, AF4                                                                                                                      | _   | _                |       |  |
| MBA[2]                         | AD22                                                                                                                                    |     |                  |       |  |
| SPARE1                         | AF12                                                                                                                                    | _   | _                | 7     |  |
| SPARE2                         | AG11                                                                                                                                    | _   | _                | 6     |  |
|                                | Local Bus Controller Interface                                                                                                          |     |                  |       |  |
| LAD[0:31]                      | T4, T5, T1, R2, R3, T2, R1, R4, P1, P2,<br>P3, P4, N1, N4, N2, N3, M1, M2, M3,<br>N5, M4, L1, L2, L3, K1, M5, K2, K3, J1,<br>J2, L5, J3 | I/O | OV <sub>DD</sub> |       |  |
| LDP[0]/CKSTOP_OUT              | H1                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LDP[1]/CKSTOP_IN               | K5                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LDP[2]                         | H2                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LDP[3]                         | G1                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LA[27:31]                      | J4, H3, G2, F1, G3                                                                                                                      | 0   | OV <sub>DD</sub> |       |  |
| LCS[0:3]                       | J5, H4, F2, E1                                                                                                                          | 0   | OV <sub>DD</sub> |       |  |
| LWE[0:3]/LSDDQM[0:3]/LBS[0:3]  | F3, G4, D1, E2                                                                                                                          | 0   | OV <sub>DD</sub> |       |  |
| LBCTL                          | H5                                                                                                                                      | 0   | OV <sub>DD</sub> |       |  |
| LALE                           | E3                                                                                                                                      | 0   | OV <sub>DD</sub> |       |  |
| LGPL0/LSDA10/cfg_reset_source0 | F4                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LGPL1/LSDWE/cfg_reset_source1  | D2                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LGPL2/LSDRAS/LOE               | C1                                                                                                                                      | 0   | OV <sub>DD</sub> |       |  |
| LGPL3/LSDCAS/cfg_reset_source2 | C2                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LGPL4/LGTA/LUPWAIT/LPBSE       | C3                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LGPL5/cfg_clkin_div            | B3                                                                                                                                      | I/O | OV <sub>DD</sub> |       |  |
| LCKE                           | E4                                                                                                                                      | 0   | OV <sub>DD</sub> |       |  |
| LCLK[0:2]                      | D4, A3, C4                                                                                                                              | 0   | OV <sub>DD</sub> |       |  |
| LSYNC_OUT                      | U3                                                                                                                                      | 0   | OV <sub>DD</sub> |       |  |
| LSYNC_IN                       | Y2                                                                                                                                      | I   | OV <sub>DD</sub> |       |  |

| Signal                          | Package Pin Number                    | Pin Type | Power<br>Supply   | Notes |
|---------------------------------|---------------------------------------|----------|-------------------|-------|
| MPH0_D2_VMO_SE0/DR_D10_DPPD     | B24                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D3_SPEED/DR_D11_DMMD       | A24                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D4_DP/DR_D12_VBUS_VLD      | D23                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D5_DM/DR_D13_SESS_END      | C23                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D6_SER_RCV/DR_D14          | B23                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_D7_DRVVBUS/DR_D15_IDPULLUP | A23                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_NXT/DR_RX_ACTIVE_ID        | D22                                   | I        | OV <sub>DD</sub>  |       |
| MPH0_DIR_DPPULLUP/DR_RESET      | C22                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_STP_SUSPEND/DR_TX_READY    | B22                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_PWRFAULT/DR_RX_VALIDH      | A22                                   | I        | OV <sub>DD</sub>  |       |
| MPH0_PCTL0/DR_LINE_STATE0       | E21                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_PCTL1/DR_LINE_STATE1       | D21                                   | I/O      | OV <sub>DD</sub>  |       |
| MPH0_CLK/DR_RX_VALID            | C21                                   | I        | OV <sub>DD</sub>  |       |
| Р                               | rogrammable Interrupt Controller      |          |                   |       |
| MCP_OUT                         | E8                                    | 0        | OV <sub>DD</sub>  | 2     |
| IRQ0/MCP_IN/GPIO2[12]           | J28                                   | I/O      | OV <sub>DD</sub>  |       |
| IRQ[1:5]/GPIO2[13:17]           | K25, J25, H26, L24, G27               | I/O      | OV <sub>DD</sub>  |       |
| IRQ[6]/GPIO2[18]/CKSTOP_OUT     | G28                                   | I/O      | OV <sub>DD</sub>  |       |
| IRQ[7]/GPIO2[19]/CKSTOP_IN      | J26                                   | I/O      | OV <sub>DD</sub>  |       |
|                                 | Ethernet Management Interface         |          |                   |       |
| EC_MDC                          | Y24                                   | 0        | LV <sub>DD1</sub> |       |
| EC_MDIO                         | Y25                                   | I/O      | LV <sub>DD1</sub> | 2     |
|                                 | Gigabit Reference Clock               | - 1      | 1                 |       |
| EC_GTX_CLK125                   | Y26                                   | I        | LV <sub>DD1</sub> |       |
| Three-Spe                       | ed Ethernet Controller (Gigabit Ether | net 1)   | 1                 |       |
| TSEC1_COL/GPIO2[20]             | M26                                   | I/O      | OV <sub>DD</sub>  |       |
| TSEC1_CRS/GPIO2[21]             | U25                                   | I/O      | LV <sub>DD1</sub> | -     |
| TSEC1_GTX_CLK                   | V24                                   | 0        | LV <sub>DD1</sub> | 3     |
| TSEC1_RX_CLK                    | U26                                   | I        | LV <sub>DD1</sub> | -     |
| TSEC1_RX_DV                     | U24                                   | I        | LV <sub>DD1</sub> | 1     |
| TSEC1_RX_ER/GPIO2[26]           | L28                                   | I/O      | OV <sub>DD</sub>  | 1     |
| TSEC1_RXD[7:4]/GPIO2[22:25]     | M27, M28, N26, N27                    | I/O      | OV <sub>DD</sub>  |       |
| TSEC1_RXD[3:0]                  | W26, W24, Y28, Y27                    | I        | LV <sub>DD1</sub> |       |
| TSEC1_TX_CLK                    | N25                                   | I        | OV <sub>DD</sub>  | 1     |

| Signal | Package Pin Number | Pin Type | Power<br>Supply             | Notes |
|--------|--------------------|----------|-----------------------------|-------|
| MVREF1 | AF19               | I        | DDR<br>reference<br>voltage |       |
| MVREF2 | AE10               | I        | DDR<br>reference<br>voltage |       |
|        | No Connection      |          |                             |       |
| NC     | V1, V2, V5         |          |                             |       |

#### Notes:

- 1. This pin is an open-drain signal. A weak pull-up resistor (1 k $\Omega$ ) should be placed on this pin to OV<sub>DD</sub>.
- 2. This pin is an open-drain signal. A weak pull-up resistor (2–10 k $\Omega$ ) should be placed on this pin to OV<sub>DD</sub>.
- 3. During reset, this output is actively driven rather than three-stated.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.
- 6. This pin must always be tied to GND.
- 7. This pin must always be left not connected.
- 8. Thermal sensitive resistor.
- 9. It is recommended that MDIC0 be tied to GRD using an 18 Ω resistor and MDIC1 be tied to DDR power using an 18 Ω resistor.
- 10.TSEC1\_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.

# 21.3 Decoupling Recommendations

Due to large address and data buses and high operating frequencies, the MPC8347E can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8347E system, and the MPC8347E itself requires a clean, tightly regulated source of power. Therefore, the system designer should place at least one decoupling capacitor at each  $V_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ , and  $LV_{DD}$  pin of the MPC8347E. These capacitors should receive their power from separate  $V_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ ,  $GV_{DD}$ ,  $LV_{DD}$ , and GND power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under the device using a standard escape pattern. Others can surround the part.

These capacitors should have a value of 0.01 or 0.1  $\mu$ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, distribute several bulk storage capacitors around the PCB, feeding the  $V_{DD}$ ,  $OV_{DD}$ ,  $GV_{DD}$ , and  $LV_{DD}$  planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors are 100–330  $\mu$ F (AVX TPS tantalum or Sanyo OSCON).

# 21.4 Connection Recommendations

To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to  $OV_{DD}$ ,  $GV_{DD}$ , or  $LV_{DD}$  as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external  $V_{DD}$ ,  $GV_{DD}$ ,  $LV_{DD}$ ,  $OV_{DD}$ , and GND pins of the MPC8347E.

# 21.5 Output Buffer DC Impedance

The MPC8347E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for  $I^2C$ ).

To measure  $Z_0$  for the single-ended drivers, an external resistor is connected from the chip pad to  $OV_{DD}$  or GND. Then the value of each resistor is varied until the pad voltage is  $OV_{DD}/2$  (see Figure 43). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and  $R_P$  is trimmed until the voltage at the pad equals  $OV_{DD}/2$ .  $R_P$  then becomes the resistance of the pull-up devices.  $R_P$  and  $R_N$  are designed to be close to each other in value. Then,  $Z_0 = (R_P + R_N)/2$ .

# 22 Document Revision History

Table 66 provides a revision history of this document.

| Table 66. Docum | ent Revision History |
|-----------------|----------------------|
|-----------------|----------------------|

| Revision | Date   | Substantive Change(s)                                                                                                                                                                                                                                                                                                                                                                             |
|----------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11       | 2/2009 | In Section 21.1, "System Clocking," removed "(AVDD1)" and "(AVDD2") from bulleted list.<br>In Section 21.2, "PLL Power Supply Filtering," in the second paragraph, changed "provide five independent filter circuits," and "the five AVDD pins" to provide four independent filter circuits," and "the four AVDD pins."                                                                           |
|          |        | In Table 35, removed row for rise time (tl2CR). Removed minimum value of tl2CF. Added note 5 stating that the device does not follow the I2C-BUS Specifications version 2.1 regarding the tl2CF AC                                                                                                                                                                                                |
|          |        | parameter.<br>In Table 54, corrected the max csb_clk to 266 MHz.                                                                                                                                                                                                                                                                                                                                  |
|          |        | In Table 60, added PLL configurations 903, 923, A03, A23, and 503 for 533 MHz                                                                                                                                                                                                                                                                                                                     |
|          |        | In Table 35, corrected $t_{LBKHOV}$ parametr to $t_{LBKLOV}$ (output data is driven on falling edge of clock in DLL bypass mode). Similarly, made the same correction to Figure 21, Figure 23, and Figure 24 for output signals.                                                                                                                                                                  |
|          |        | Added Figure 1 and Figure 4.                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | In Table 9.2, clarified that AC table is for ULPI only.                                                                                                                                                                                                                                                                                                                                           |
|          |        | Added footnote 4 to Table 67.                                                                                                                                                                                                                                                                                                                                                                     |
|          |        | In Table 67, updated note 1 to say the following: "For temperature range = C, processor frequency is up to 667(TBGA) with a platform frequency of 333 and limited to 400 (PBGA) with a platform frequency of 266."                                                                                                                                                                                |
|          |        | Added footnote 10 and 11 to Table 51 and Table 52.                                                                                                                                                                                                                                                                                                                                                |
|          |        | In Table 51, Table 52, updated note 11 to say the following: "SEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net."                                                                                      |
|          |        | Added footnote 6 to Table 7.                                                                                                                                                                                                                                                                                                                                                                      |
|          |        | In Table 7, updated the note 6 to say the following: "The Spread spectrum clocking. Is allowed with 1% input frequency down-spread at maximum 50KHz modulation rate regardless of input frequency."                                                                                                                                                                                               |
|          |        | In 8.1.1, removed the note "The potential applied to the input of a GMII, MII, TBI, RGMII, or RTBI receiver may exceed the potential of the receiver power supply (that is, a RGMII driver powered from a 3.6 V supply driving VOH into a RGMII receiver powered from a 2.5-V supply). Tolerance for dissimilar RGMII driver and receiver supply potentials is implicit in these specifications." |
| 10       | 4/2007 | In Table 3, "Output Drive Capability," changed the values in the Output Impedance column and added USB to the seventh row.                                                                                                                                                                                                                                                                        |
|          |        | In Table 54, "Operating Frequencies for TBGA," added column for 400 MHz.<br>In Section 21.7, "Pull-Up Resistor Requirements," deleted last two paragraphs and after first paragraph, added a new paragraph.<br>Deleted Section 21.8, "JTAG Configuration Signals," and Figure 43, "JTAG Interface Connection."                                                                                    |
| 9        | 3/2007 | In Table 54, "Operating Frequencies for TBGA," in the 'Coherent system bus frequency ( <i>csb_clk</i> )' row, changed the value in the 533 MHz column to 100–333.                                                                                                                                                                                                                                 |
|          |        | In Table 60, "Suggested PLL Configurations," under the subhead, '33 MHz CLKIN/PCI_CLK Options,' added row A03 between Ref. No. 724 and 804. Under the subhead '66 MHz CLKIN/PCI_CLK Options,' added row 503 between Ref. No. 305 and 404. For Ref. No. 306, changed the CORE PLL value to 0000110.                                                                                                |
|          |        | In Section 23, "Ordering Information," replaced first paragraph and added a note.<br>In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced first paragraph.                                                                                                                                                                                                                  |

| Revision | Date    | Substantive Change(s)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8        | 2/2007  | <ul> <li>Page 1, updated first paragraph to reflect PowerQUICC II information. Updated note after second paragraph.</li> <li>In the features list in Section 1, "Overview," corrected DDR data rate to show:</li> <li>266 MHz for PBGA parts for all silicon revisions</li> <li>333 MHz for DDR for TBGA parts for silicon Rev. 1.x</li> </ul>                                                                                                           |
|          |         | In Table 5, "MPC8347E Typical I/O Power Dissipation," added GV <sub>DD</sub> 1.8-V values for DDR2; added table footnote to designate rates that apply only to the TBGA package.<br>In Figure 43, "JTAG Interface Connection," updated with new figure.                                                                                                                                                                                                  |
|          |         | In Section 23, "Ordering Information," replicated note from document introduction.                                                                                                                                                                                                                                                                                                                                                                       |
|          |         | In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced third sentence of first paragraph directing customer to product summary page for available frequency configuration parts. Updated back page information.                                                                                                                                                                                                                      |
| 7        | 8/2006  | Changed all references to revision 2.0 silicon to revision 3.0 silicon.<br>Changed V <sub>IH</sub> minimum value in Table 36, "JTAG Interface DC Electrical Characteristics," to                                                                                                                                                                                                                                                                         |
|          |         | OV <sub>DD</sub> – 0.3.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |         | In Table 60, "Suggested PLL Configurations," deleted reference-number rows 902 and 703.                                                                                                                                                                                                                                                                                                                                                                  |
| 6        | 3/2006  | Section 2, "Electrical Characteristics," moved to second section and all other section, table, and figure numbering change accordingly.<br>Table 7, "CLKIN AC Timing Specifications:" Changed max rise and fall time from 1.2 to 2.3.<br>Table 22, "GMII Receive AC Timing Specifications:" Changed min t <sub>TTKHDX</sub> from 0.5 to 1.0.<br>Table 30, "MII Management AC Timing Specifications:" Changed max value of t <sub>MDKHDX</sub> from 70 to |
|          |         | <ul> <li>170.</li> <li>Table 34, "Local Bus General Timing Parameters—DLL on:" Changed min t<sub>LBIVKH2</sub> from 1.7 to 2.2.</li> <li>Table 36, "JTAG interface DC Electrical Characteristics:" Changed V<sub>IH</sub> input high voltage min to 2.0.</li> <li>Table 54, "Operating Frequencies for TBGA:"</li> </ul>                                                                                                                                 |
|          |         | <ul> <li>Updated TBD values.</li> <li>Changed maximum coherent system bus frequency for TBGA 667-MHz device to 333 MHz.<br/>Table 55, "Operating Frequencies for PBGA:"</li> </ul>                                                                                                                                                                                                                                                                       |
|          |         | <ul> <li>Updated TBD values.</li> <li>Changed PBGA maximum coherent system bus frequency to 266 MHz, and maximum DDR memory bus frequency to 133 MHz.</li> <li>Table 60, "Suggested PLL Configurations": Removed some values from suggested PLL</li> </ul>                                                                                                                                                                                               |
|          |         | configurations for reference numbers 902, 922, 903, and 923.                                                                                                                                                                                                                                                                                                                                                                                             |
|          |         | Table 67, "Part Numbering Nomenclature": Updated TBD values in note 1.<br>Added Table 68, "SVR Settings."<br>Added Section 23.2, "Part Marking."                                                                                                                                                                                                                                                                                                         |
| 5        | 10/2005 | In Table 57, updated AAVID 30x30x9.4 mm Pin Fin (natural convection) junction-to-ambient thermal resistance, from 11 to 10.                                                                                                                                                                                                                                                                                                                              |
| 4        | 9/2005  | Added Table 2, "MPC8347E Typical I/O Power Dissipation."                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3        | 8/2005  | Table 1: Updated values for power dissipation that were TBD in Revision 2.                                                                                                                                                                                                                                                                                                                                                                               |
| 2        | 5/2005  | Table 1: Typical values for power dissipation are changed to TBD.         Table 48: Footnote numbering was wrong. THERM0 should have footnote 9 instead of 8.                                                                                                                                                                                                                                                                                            |

#### Table 66. Document Revision History (continued)

| Revision | Date   | Substantive Change(s)                                                                                   |
|----------|--------|---------------------------------------------------------------------------------------------------------|
| 1        | 4/2005 | Table 1: Addition of note 1<br>Table 48: Addition of Therm0 (K32)<br>Table 49: Addition of Therm0 (B15) |
| 0        | 4/2005 | Initial release.                                                                                        |

### Table 66. Document Revision History (continued)



### THIS PAGE INTENTIONALLY LEFT BLANK

**Ordering Information** 

## THIS PAGE INTENTIONALLY LEFT BLANK