
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347vragd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Enhanced host controller interface (EHCI) compatible
- Complies with USB Specification Rev. 2.0
- High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
- Direct connection to a high-speed device without an external hub
- External PHY with serial and low-pin count (ULPI) interfaces
- Local bus controller (LBC)
 - Multiplexed 32-bit address and data operating at up to 133 MHz
 - Four chip selects support four external slaves
 - Up to eight-beat burst transfers
 - 32-, 16-, and 8-bit port sizes controlled by an on-chip memory controller
 - Three protocol engines on a per chip select basis:
 - General-purpose chip select machine (GPCM)
 - Three user-programmable machines (UPMs)
 - Dedicated single data rate SDRAM controller
 - Parity support
 - Default boot ROM chip select with configurable bus width (8-, 16-, or 32-bit)
- Programmable interrupt controller (PIC)
 - Functional and programming compatibility with the MPC8260 interrupt controller
 - Support for 8 external and 35 internal discrete interrupt sources
 - Support for 1 external (optional) and 7 internal machine checkstop interrupt sources
 - Programmable highest priority request
 - Four groups of interrupts with programmable priority
 - External and internal interrupts directed to host processor
 - Redirects interrupts to external INTA pin in core disable mode.
 - Unique vector number for each interrupt source
- Dual industry-standard I²C interfaces
 - Two-wire interface
 - Multiple master support
 - Master or slave I^2C mode support
 - On-chip digital filtering rejects spikes on the bus
 - System initialization data optionally loaded from I²C-1 EPROM by boot sequencer embedded hardware
- DMA controller
 - Four independent virtual channels
 - Concurrent execution across multiple channels with programmable bandwidth control
 - All channels accessible to local core and remote PCI masters
 - Misaligned transfer capability

3 Power Characteristics

The estimated typical power dissipation for the MPC8347E device is shown in Table 4.

	Core Frequency (MHz)	CSB Frequency (MHz)	Typical at T _J = 65	Typical ^{2,3}	Maximum ⁴	Unit
PBGA	266	266	1.3	1.6	1.8	W
		133	1.1	1.4	1.6	W
	400	266	1.5	1.9	2.1	W
		133	1.4	1.7	1.9	W
	400	200	1.5	1.8	2.0	W
		100	1.3	1.7	1.9	W
TBGA	333	333	2.0	3.0	3.2	W
		166	1.8	2.8	2.9	W
	400	266	2.1	3.0	3.3	W
		133	1.9	2.9	3.1	W
	450	300	2.3	3.2	3.5	W
		150	2.1	3.0	3.2	W
	500	333	2.4	3.3	3.6	W
		166	2.2	3.1	3.4	W
	533	266	2.4	3.3	3.6	W
		133	2.2	3.1	3.4	W

Table 4. MPC8347E Power Dissipation¹

¹ The values do not include I/O supply power (OV_{DD}, LV_{DD}, GV_{DD}) or AV_{DD}. For I/O power values, see Table 5.

² Typical power is based on a voltage of V_{DD} = 1.2 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.

³ Thermal solutions may need to design to a value higher than typical power based on the end application, T_A target, and I/O power.

⁴ Maximum power is based on a voltage of V_{DD} = 1.2 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.

Parameter/Condition	Min	Мах	Unit	Notes
Input hold time for POR configuration signals with respect to negation of HRESET	0	_	ns	
Time for the MPC8347E to turn off POR configuration signals with respect to the assertion of HRESET	_	4	ns	3
Time for the MPC8347E to turn on POR configuration signals with respect to the negation of HRESET	1	_	^t PCI_SYNC_IN	1, 3

Table 9. RESET Initialization Timing Specifications (continued)

Notes:

1. t_{PCI_SYNC_IN} is the clock period of the input clock applied to PCI_SYNC_IN. In PCI host mode, the primary clock is applied to the CLKIN input, and PCI_SYNC_IN period depends on the value of CFG_CLKIN_DIV. See the *MPC8349E PowerQUICC™ II Pro Integrated Host Processor Family Reference Manual*.

- 2. t_{CLKIN} is the clock period of the input clock applied to CLKIN. It is valid only in PCI host mode. See the MPC8349E PowerQUICC™ II Pro Integrated Host Processor Family Reference Manual.
- 3. POR configuration signals consist of CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV.

Table 10 lists the PLL and DLL lock times.

Table 10. PLL and DLL Lock Times

Parameter/Condition	Min	Мах	Unit	Notes
PLL lock times	-	100	μs	
DLL lock times	7680	122,880	csb_clk cycles	1, 2

Notes:

1. DLL lock times are a function of the ratio between the output clock and the coherency system bus clock (csb_clk). A 2:1 ratio results in the minimum and an 8:1 ratio results in the maximum.

2. The csb_clk is determined by the CLKIN and system PLL ratio. See Section 19, "Clocking."

8 Ethernet: Three-Speed Ethernet, MII Management

This section provides the AC and DC electrical characteristics for three-speeds (10/100/1000 Mbps) and MII management.

8.1 Three-Speed Ethernet Controller (TSEC)— GMII/MII/TBI/RGMII/RTBI Electrical Characteristics

The electrical characteristics specified here apply to the gigabit media independent interface (GMII), the media independent interface (MII), ten-bit interface (TBI), reduced gigabit media independent interface (RGMII), and reduced ten-bit interface (RTBI) signals except management data input/output (MDIO) and management data clock (MDC). The MII, GMII, and TBI interfaces are defined for 3.3 V, and the RGMII and RTBI interfaces are defined for 2.5 V. The RGMII and RTBI interfaces follow the Hewlett-Packard *Reduced Pin-Count Interface for Gigabit Ethernet Physical Layer Device Specification*, Version 1.2a (9/22/2000). The electrical characteristics for MDIO and MDC are specified in Section 8.3, "Ethernet Management Interface Electrical Characteristics."

8.1.1 **TSEC DC Electrical Characteristics**

GMII, MII, TBI, RGMII, and RTBI drivers and receivers comply with the DC parametric attributes specified in Table 19 and Table 20. The RGMII and RTBI signals in Table 20 are based on a 2.5-V CMOS interface voltage as defined by JEDEC EIA/JESD8-5.

Parameter	Symbol	Conditions		Min	Мах	Unit
Supply voltage 3.3 V	LV _{DD} ²	-	_	2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -4.0 mA	LV _{DD} = Min	2.40	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 4.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	—	_	2.0	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	_	-0.3	0.90	V
Input high current	IIH	$V_{IN}^{1} = LV_{DD}$		—	40	μΑ
Input low current	۱ _{IL}	V _{IN} ¹ = GND		-600	—	μΑ

Table 19. GMII/TBI and MII DC Electrical Characteristics

Notes:

1. The symbol V_{IN}, in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

2. GMII/MII pins not needed for RGMII or RTBI operation are powered by the $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ supply.

Parameters	Symbol	Conditions		Min	Max	Unit
Supply voltage 2.5 V	LV _{DD}			2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	$LV_{DD} = Min$	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	LV _{DD} + 0.3	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	I _{IH}	V _{IN} ¹ =	LV _{DD}	—	10	μA
Input low current	۱ _{IL}	V _{IN} ¹ = GND		-15	—	μΑ

Table 20. RGMII/RTBI (When Operating at 2.5 V) DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

8.2 GMII, MII, TBI, RGMII, and RTBI AC Timing Specifications

The AC timing specifications for GMII, MII, TBI, RGMII, and RTBI are presented in this section.

8.2.1 GMII Timing Specifications

This section describes the GMII transmit and receive AC timing specifications.

8.2.1.1 GMII Transmit AC Timing Specifications

Table 21 provides the GMII transmit AC timing specifications.

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{GTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{GTXH} /t _{GTX}	43.75		56.25	%
GTX_CLK to GMII data TXD[7:0], TX_ER, TX_EN delay	t _{GTKHDX}	0.5		5.0	ns
GTX_CLK clock rise time, V _{IL} (min) to V _{IH} (max)	t _{GTXR}	_		1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{GTXF}	_		1.0	ns
GTX_CLK125 clock period	t _{G125} 2	_	8.0	—	ns
GTX_CLK125 reference clock duty cycle measured at $LV_{DD}/2$	t _{G125H} /t _{G125}	45		55	%

Notes:

1. The symbols for timing specifications follow the pattern t_{(first two letters of functional block)(signal)(state)(reference)(state)} for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{GTKHDV} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the time date input signals (D) reaching the valid state (V) to state or setup time. Also, t_{GTKHDX} symbolizes GMII transmit timing (GT) with respect to the t_{GTX} clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GTX} represents the GMII(G) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. This symbol represents the external GTX_CLK125 signal and does not follow the original symbol naming convention.

Table 21. GMII Transmit AC Timing Specifications

Figure 13 shows the TBI transmit AC timing diagram.

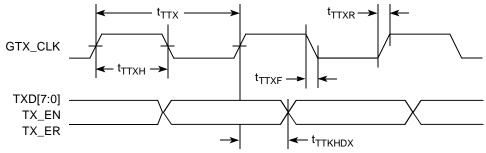


Figure 13. TBI Transmit AC Timing Diagram

8.2.3.2 TBI Receive AC Timing Specifications

Table 26 provides the TBI receive AC timing specifications.

Table 26. TBI Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
PMA_RX_CLK clock period	t _{TRX}		16.0		ns
PMA_RX_CLK skew	t _{SKTRX}	7.5	—	8.5	ns
RX_CLK duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) setup time to rising PMA_RX_CLK	t _{trdvkh} 2	2.5	—	—	ns
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) hold time to rising PMA_RX_CLK	t _{TRDXKH} 2	1.5	_	—	ns
RX_CLK clock rise time V _{IL} (min) to V _{IH} (max)	t _{TRXR}	0.7	—	2.4	ns
RX_CLK clock fall time V _{IH} (max) to V _{IL} (min)	t _{TRXF}	0.7	—	2.4	ns

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript SK followed by the clock that is being skewed (TRX).
</sub>

2. Setup and hold time of even numbered RCG are measured from the riding edge of PMA_RX_CLK1. Setup and hold times of odd-numbered RCG are measured from the riding edge of PMA_RX_CLK0.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1	—	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	3.8	ns	8

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to the rising edge of LSYNC_IN.

- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on the LALE output pin equals the load on the LAD output pins.
- 8. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

Table 35. Local Bus General Timing Parameters—DLL Bypass⁹

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	15	_	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	_	ns	3, 4
Input hold from local bus clock	t _{lbixkh}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	_	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5		ns	7

Local Bus

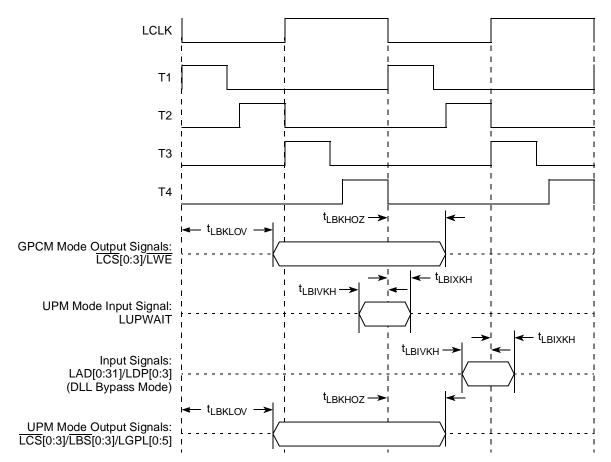


Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)

Figure 34 shows the PCI input AC timing diagram.

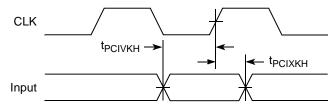
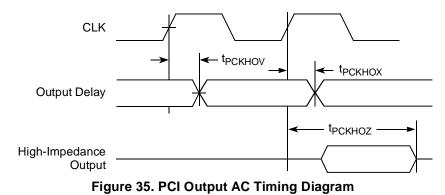



Figure 34. PCI Input AC Timing Diagram

Figure 35 shows the PCI output AC timing diagram.

MPC8347E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 11

IPIC

16 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

16.1 IPIC DC Electrical Characteristics

Table 47 provides the DC electrical characteristics for the external interrupt pins.

Table 47. IPIC DC Electrical Char	acteristics ¹
-----------------------------------	--------------------------

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V	
Input low voltage	V _{IL}		-0.3	0.8	V	
Input current	I _{IN}			±5	μA	
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V	2
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V	2

Notes:

1. This table applies for pins IRQ[0:7], IRQ_OUT, and MCP_OUT.

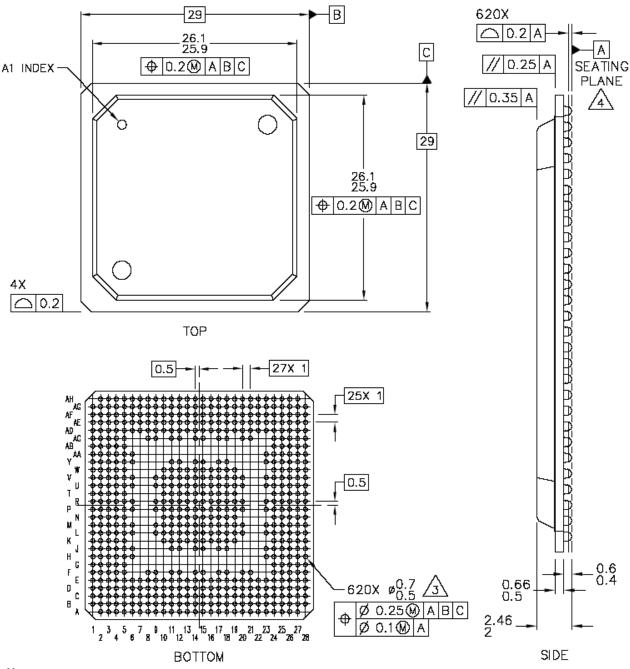
2. $\overline{\text{IRQ}_\text{OUT}}$ and $\overline{\text{MCP}_\text{OUT}}$ are open-drain pins; thus V_OH is not relevant for those pins.

16.2 IPIC AC Timing Specifications

Table 48 provides the IPIC input and output AC timing specifications.

Table 48. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PICWID}	20	ns


Notes:

1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.

 IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external synchronous logic. IPIC inputs must be valid for at least t_{PICWID} ns to ensure proper operation in edge triggered mode. Package and Pin Listings

18.4 Mechanical Dimensions for the MPC8347E PBGA

Figure 40 shows the mechanical dimensions and bottom surface nomenclature for the MPC8347E, 620-PBGA package.

Notes:

1.All dimensions are in millimeters.

2.Dimensioning and tolerancing per ASME Y14. 5M-1994.

3.Maximum solder ball diameter measured parallel to datum A.

4.Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Figure 40. Mechanical Dimensions and Bottom Surface Nomenclature for the MPC8347E PBGA

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MPH1_NXT/DR_SESS_VLD_NXT	D27	I	OV _{DD}	
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	A28	I/O	OV _{DD}	
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	F26	0	OV _{DD}	
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	E27	I	OV _{DD}	
MPH1_PCTL0/DR_TX_VALID_PCTL0	A29	0	OV _{DD}	
MPH1_PCTL1/DR_TX_VALIDH_PCTL1	D28	0	OV _{DD}	
MPH1_CLK/DR_CLK	B29	I	OV _{DD}	
	USB Port 0			
MPH0_D0_ENABLEN/DR_D8_CHGVBUS	C29	I/O	OV _{DD}	
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS	A30	I/O	OV _{DD}	
MPH0_D2_VMO_SE0/DR_D10_DPPD	E28	I/O	OV _{DD}	
MPH0_D3_SPEED/DR_D11_DMMD	B30	I/O	OV _{DD}	
MPH0_D4_DP/DR_D12_VBUS_VLD	C30	I/O	OV _{DD}	
MPH0_D5_DM/DR_D13_SESS_END	A31	I/O	OV _{DD}	
MPH0_D6_SER_RCV/DR_D14	B31	I/O	OV _{DD}	
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP	C31	I/O	OV _{DD}	
MPH0_NXT/DR_RX_ACTIVE_ID	B32	I	OV _{DD}	
MPH0_DIR_DPPULLUP/DR_RESET	A32	I/O	OV _{DD}	
MPH0_STP_SUSPEND/DR_TX_READY	A33	I/O	OV _{DD}	
MPH0_PWRFAULT/DR_RX_VALIDH	C32	I	OV _{DD}	
MPH0_PCTL0/DR_LINE_STATE0	D31	I/O	OV _{DD}	
MPH0_PCTL1/DR_LINE_STATE1	E30	I/O	OV _{DD}	
MPH0_CLK/DR_RX_VALID	B33	I	OV _{DD}	
P	rogrammable Interrupt Controller	1		
MCP_OUT	AN33	0	OV _{DD}	2
IRQ0/MCP_IN/GPIO2[12]	C19	I/O	OV _{DD}	
IRQ[1:5]/GPIO2[13:17]	C22, A22, D21, C21, B21	I/O	OV _{DD}	
IRQ[6]/GPIO2[18]/CKSTOP_OUT	A21	I/O	OV _{DD}	
IRQ[7]/GPIO2[19]/CKSTOP_IN	C20	I/O	OV _{DD}	
	Ethernet Management Interface	1	1	
EC_MDC	A7	0	LV _{DD1}	
EC_MDIO	E9	I/O	LV _{DD1}	2

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SPIMISO	C7	I/O	OV_{DD}	
SPICLK	B7	I/O	OV _{DD}	
SPISEL	A7	I	OV _{DD}	
	Clocks			
PCI_CLK_OUT[0:2]	Y1, W3, W2	0	OV_DD	
PCI_CLK_OUT[3]/LCS[6]	W1	0	OV _{DD}	
PCI_CLK_OUT[4]/LCS[7]	V3	0	OV _{DD}	
PCI_SYNC_IN/PCI_CLOCK	U4	I	OV_DD	
PCI_SYNC_OUT	U5	0	OV _{DD}	3
RTC/PIT_CLOCK	E9	I	OV_DD	
CLKIN	W5	I	OV_DD	
	JTAG			
тск	H27	I	OV _{DD}	
TDI	H28	I	OV_{DD}	4
TDO	M24	0	OV _{DD}	3
TMS	J27	I	OV _{DD}	4
TRST	K26	I	OV _{DD}	4
	Test			
TEST	F28	I	OV _{DD}	6
TEST_SEL	ТЗ	I	OV _{DD}	6
	PMC			
QUIESCE	K27	0	OV _{DD}	
	System Control			
PORESET	K28	I	OV _{DD}	
HRESET	M25	I/O	OV _{DD}	1
SRESET	L27	I/O	OV _{DD}	2
	Thermal Management			
THERM0	B15	I	_	8
	Power and Ground Signals	I		
AV _{DD} 1	C15	Power for e300 PLL (1.2 V)	AV _{DD} 1	
AV _{DD} 2	U1	Power for system PLL (1.2 V)	AV _{DD} 2	

Signal	Package Pin Number	Pin Type	Power Supply	Notes
AV _{DD} 3	AF9	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	U2	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	 A2, B1, B2, D10, D18, E6, E14, E22, F9, F12, F15, F18, F21, F24, G5, H6, J23, L4, L6, L12, L13, L14, L15, L16, L17, M11, M12, M13, M14, M15, M16 M17, M18, M23, N11, N12, N13, N14, N15, N16, N17, N18, P6, P11, P12, P13, P14, P15, P16, P17, P18, P24, R5, R11, R12, R13, R14, R15, R16, R17, R18, R23, T11, T12, T13, T14, T15, T16, T17, T18, U6, U11, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V23, V25, W4, Y6, AA23, AB24, AC5, AC8, AC11, AC14, AC17, AC20, AD9, AD15, AD21, AE12, AE18, AF3, AF26 			
GV _{DD}	U9, V9, W10, W19, Y11, Y12, Y14, Y15, Y17, Y18, AA6, AB5, AC9, AC12 AC15, AC18, AC21, AC24, AD6, AD8 AD14, AD20, AE5, AE11, AE17, AG2 AG27	voltage	GV _{DD}	
LV _{DD} 1	U20, W25	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	
LV _{DD} 2	V20, Y23	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	J11, J12, J15, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, L10, L11, L18, L19, M10, M19, N10, N19, P9, P10, P19, R10, R19, R20, T10, T19, U10, U19, V10, V11, V18, V19, W11, W12, W13, W14, W15, W16, W17, W18	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B27, D3, D11, D19, E15, E23, F5, F8, F11, F14, F17, F20, G24, H23, H24, J6, J14, J17, J18, K4, L9, L20, L23, L25, M6, M9, M20, P5, P20, P23, R6, R9, R24, U23, V4, V6	Ethernet, and other standard	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

As shown in Figure 41, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349E Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

 ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + RCWL[LBIUCM])$

lbiu_clk is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 53 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
TSEC1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2, I ² C1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
Security core	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR, USB MPH	csb_clk/3	Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 53. Configurable Clock Units

Thermal

many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

20.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, use the thermal characterization parameter (Ψ_{JT}) to determine the junction temperature and a measure of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

Thermal

Heat Sink Assuming Thermal Crosse	Air Flow	$29 \times 29 \text{ mm PBGA}$	
Heat Sink Assuming Thermal Grease	AIT FIOW	Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	8.8	
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	11.3	
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	8.1	
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	7.5	
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	9.1	
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	7.1	
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	6.5	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	10.1	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	1 m/s	7.7	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	6.6	
MEI, $75 \times 85 \times 12$ mm, adjacent board, 40 mm side bypass	1 m/s	6.9	

Table 64. Heat Sink and Thermal Resistance of MPC8347E (PBGA) (continued)

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following list:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301	603-224-9988
Internet: www.aavidthermalloy.com	
Alpha Novatech 473 Sapena Ct. #12 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-567-8082
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-thermal.com	408-436-8770

	Tyco Electronics Chip Coolers TM P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-2800
	Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102
Interfac	ce material vendors include the following:	
	Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801	781-935-4850
	Internet: www.chomerics.com	
	Dow-Corning Corporation Dow-Corning Electronic Materials P.O. Box 994 Midland, MI 48686-0997 Internet: www.dowcorning.com	800-248-2481
	Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
	The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572

20.3 Heat Sink Attachment

When heat sinks are attached, an interface material is required, preferably thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces that can lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. The recommended maximum force on the top of the package is 10 lb force (4.5 kg force). Any adhesive attachment should attach to painted or plastic surfaces, and its performance should be verified under the application requirements.

20.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally

21.3 Decoupling Recommendations

Due to large address and data buses and high operating frequencies, the MPC8347E can generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8347E system, and the MPC8347E itself requires a clean, tightly regulated source of power. Therefore, the system designer should place at least one decoupling capacitor at each V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} pin of the MPC8347E. These capacitors should receive their power from separate V_{DD} , OV_{DD} , GV_{DD} , GV_{DD} , LV_{DD} , and GND power planes in the PCB, with short traces to minimize inductance. Capacitors can be placed directly under the device using a standard escape pattern. Others can surround the part.

These capacitors should have a value of 0.01 or 0.1 μ F. Only ceramic SMT (surface mount technology) capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.

In addition, distribute several bulk storage capacitors around the PCB, feeding the V_{DD} , OV_{DD} , GV_{DD} , and LV_{DD} planes, to enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick response time. They should also be connected to the power and ground planes through two vias to minimize inductance. Suggested bulk capacitors are 100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

21.4 Connection Recommendations

To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to OV_{DD} , GV_{DD} , or LV_{DD} as required. Unused active high inputs should be connected to GND. All NC (no-connect) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD} , GV_{DD} , LV_{DD} , OV_{DD} , and GND pins of the MPC8347E.

21.5 Output Buffer DC Impedance

The MPC8347E drivers are characterized over process, voltage, and temperature. For all buses, the driver is a push-pull single-ended driver type (open drain for I^2C).

To measure Z_0 for the single-ended drivers, an external resistor is connected from the chip pad to OV_{DD} or GND. Then the value of each resistor is varied until the pad voltage is $OV_{DD}/2$ (see Figure 43). The output impedance is the average of two components, the resistances of the pull-up and pull-down devices. When data is held high, SW1 is closed (SW2 is open) and R_P is trimmed until the voltage at the pad equals $OV_{DD}/2$. R_P then becomes the resistance of the pull-up devices. R_P and R_N are designed to be close to each other in value. Then, $Z_0 = (R_P + R_N)/2$.

System Design Information

the large value of the pull-up/pull-down resistor should minimize the disruption of signal quality or speed for the output pins.

21.7 Pull-Up Resistor Requirements

The MPC8347E requires high resistance pull-up resistors (10 k Ω is recommended) on open-drain pins, including I²C pins, the Ethernet Management MDIO pin, and IPIC interrupt pins.

For more information on required pull-up resistors and the connections required for the JTAG interface, refer to application note AN2931, *PowerQUICCTM Design Checklist*.