

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

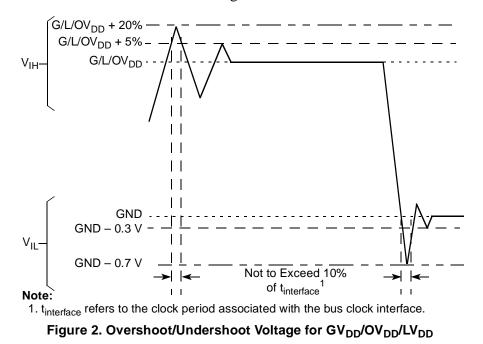
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	672-LBGA
Supplier Device Package	672-LBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347vvagd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Programmable field size up to 2048 bits
- Elliptic curve cryptography
- F2m and F(p) modes
- Programmable field size up to 511 bits
- Data encryption standard (DES) execution unit (DEU)
 - DES and 3DES algorithms
 - Two key (K1, K2) or three key (K1, K2, K3) for 3DES
 - ECB and CBC modes for both DES and 3DES
- Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric-key cipher
 - Key lengths of 128, 192, and 256 bits
 - ECB, CBC, CCM, and counter (CTR) modes
- ARC four execution unit (AFEU)
 - Stream cipher compatible with the RC4 algorithm
 - 40- to 128-bit programmable key
- Message digest execution unit (MDEU)
 - SHA with 160- or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
- Random number generator (RNG)
- Four crypto-channels, each supporting multi-command descriptor chains
 - Static and/or dynamic assignment of crypto-execution units through an integrated controller
 - Buffer size of 256 bytes for each execution unit, with flow control for large data sizes
- Universal serial bus (USB) dual role controller
 - USB on-the-go mode with both device and host functionality
 - Complies with USB specification Rev. 2.0
 - Can operate as a stand-alone USB device
 - One upstream facing port
 - Six programmable USB endpoints
 - Can operate as a stand-alone USB host controller
 - USB root hub with one downstream-facing port
 - Enhanced host controller interface (EHCI) compatible
 - High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operations
 - External PHY with UTMI, serial and UTMI+ low-pin interface (ULPI)
- Universal serial bus (USB) multi-port host controller
 - Can operate as a stand-alone USB host controller
 - USB root hub with one or two downstream-facing ports

2.1.2 Power Supply Voltage Specification


Table 2 provides the recommended operating conditions for the MPC8347E. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage	V _{DD}	1.2 V ± 60 mV	V	1
PLL supply voltage	AV _{DD}	1.2 V ± 60 mV	V	1
DDR DRAM I/O supply voltage	GV _{DD}	2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD1}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD2}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	

Note:

¹ GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8347E.

7 DUART

This section describes the DC and AC electrical specifications for the DUART interface of the MPC8347E.

7.1 DUART DC Electrical Characteristics

Table 17 provides the DC electrical characteristics for the DUART interface of the MPC8347E.

Table 17. DUART DC Electrical Characteristics

Parameter	Symbol	Min	Мах	Unit
High-level input voltage	V _{IH}	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	-0.3	0.8	V
Input current (0.8 V \leq V _{IN} \leq 2 V)	I _{IN}	—	±5	μA
High-level output voltage, I _{OH} = -100 μA	V _{OH}	OV _{DD} - 0.2	—	V
Low-level output voltage, $I_{OL} = 100 \ \mu A$	V _{OL}	—	0.2	V

7.2 DUART AC Electrical Specifications

Table 18 provides the AC timing parameters for the DUART interface of the MPC8347E.

Table 18. DUART AC Timing Specifications

Parameter	Value	Unit	Notes
Minimum baud rate	256	baud	
Maximum baud rate	>1,000,000	baud	1
Oversample rate	16		2

Notes:

- 1. Actual attainable baud rate will be limited by the latency of interrupt processing.
- 2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit. Subsequent bit values are sampled each 16th sample.

Ethernet: Three-Speed Ethernet, MII Management

Figure 10 shows the MII transmit AC timing diagram.

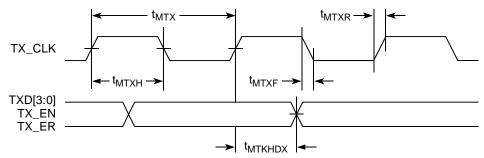
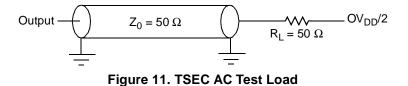


Figure 10. MII Transmit AC Timing Diagram

8.2.2.2 MII Receive AC Timing Specifications

Table 24 provides the MII receive AC timing specifications.

Table 24. MII Receive AC Timing Specifications


At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{MRXR}	1.0	_	4.0	ns
RX_CLK clock fall time V _{IH} (max) to V _{IL} (min)	t _{MRXF}	1.0	—	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular functionI. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Figure 11 provides the AC test load for TSEC.

Ethernet: Three-Speed Ethernet, MII Management

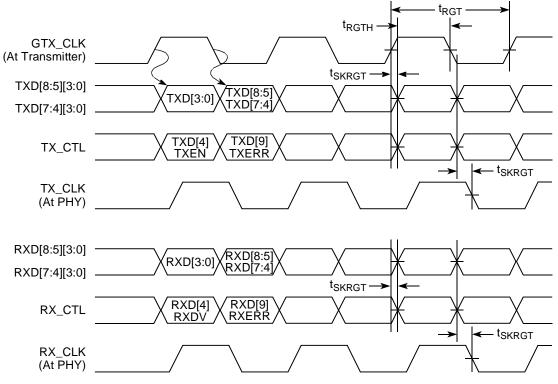
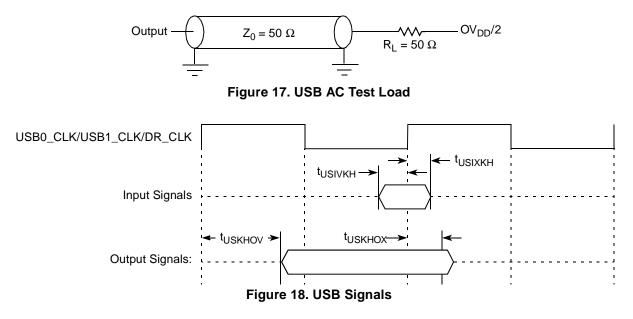



Figure 15. RGMII and RTBI AC Timing and Multiplexing Diagrams

Figure 17 and Figure 18 provide the AC test load and signals for the USB, respectively.

11 JTAG

JTAG

This section describes the DC and AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E

11.1 JTAG DC Electrical Characteristics

Table 36 provides the DC electrical characteristics for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		OV _{DD} - 0.3	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 36. JTAG interface DC Electrical Characteristics

11.2 JTAG AC Timing Specifications

This section describes the AC electrical specifications for the IEEE Std. 1149.1 (JTAG) interface of the MPC8347E. Table 37 provides the JTAG AC timing specifications as defined in Figure 27 through Figure 30.

Table 37. JTAG AC Timing Specifications (Independent of CLKIN)¹

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
JTAG external clock frequency of operation	f _{JTG}	0	33.3	MHz	
JTAG external clock cycle time	t _{JTG}	30	—	ns	
JTAG external clock pulse width measured at 1.4 V	t _{JTKHKL}	15	—	ns	
JTAG external clock rise and fall times	t _{JTGR} , t _{JTGF}	0	2	ns	
TRST assert time	t _{TRST}	25	—	ns	3
Input setup times: Boundary-scan data TMS, TDI	t _{JTDVKH} t _{JTIVKH}	4 4		ns	4
Input hold times: Boundary-scan data TMS, TDI	t _{JTDXKH} t _{JTIXKH}	10 10		ns	4
Valid times: Boundary-scan data TDO	^t jtkldv ^t jtklov	2 2	11 11	ns	5

12 I²C

This section describes the DC and AC electrical characteristics for the I²C interface of the MPC8347E.

12.1 I²C DC Electrical Characteristics

Table 38 provides the DC electrical characteristics for the I²C interface of the MPC8347E.

Table 38. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 10%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3\times\text{OV}_{\text{DD}}$	V	
Low level output voltage	V _{OL}	0	$0.2\times \text{OV}_{\text{DD}}$	V	1
Output fall time from $V_{IH}(min)$ to $V_{IL}(max)$ with a bus capacitance from 10 to 400 pF	t _{I2KLKV}	$20 + 0.1 \times C_B$	250	ns	2
Pulse width of spikes which must be suppressed by the input filter	t _{I2KHKL}	0	50	ns	3
Input current each I/O pin (input voltage is between $0.1 \times OV_{DD}$ and $0.9 \times OV_{DD}$ (max)	lı	-10	10	μA	4
Capacitance for each I/O pin	Cl	_	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. C_B = capacitance of one bus line in pF.

3. Refer to the MPC8349E Integrated Host Processor Family Reference Manual, for information on the digital filter used.

4. I/O pins obstruct the SDA and SCL lines if $\ensuremath{\mathsf{OV}_{\mathsf{DD}}}$ is switched off.

12.2 I²C AC Electrical Specifications

Table 39 provides the AC timing parameters for the I²C interface of the MPC8347E. Note that all values refer to $V_{IH}(min)$ and $V_{IL}(max)$ levels (see Table 38).

Table 39. I²C AC Electrical Specifications

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL}	1.3	—	μs
High period of the SCL clock	t _{I2CH}	0.6	—	μs
Setup time for a repeated START condition	t _{l2SVKH}	0.6	—	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL}	0.6	—	μs
Data setup time	t _{I2DVKH}	100	—	ns
Data hold time: CBUS compatible masters I ² C bus devices	t _{I2DXKL}	$\overline{0^2}$	0.9 ³	μs

Timers

14 Timers

This section describes the DC and AC electrical specifications for the timers.

14.1 Timer DC Electrical Characteristics

Table 43 provides the DC electrical characteristics for the MPC8347E timer pins, including TIN, $\overline{\text{TOUT}}$, $\overline{\text{TGATE}}$, and RTC_CLK.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 43. Timer DC Electrical Characteristics

14.2 Timer AC Timing Specifications

Table 44 provides the timer input and output AC timing specifications.

Table 44. Timers Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

SPI

Figure 36 provides the AC test load for the SPI.

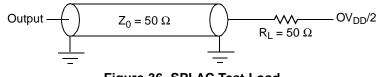
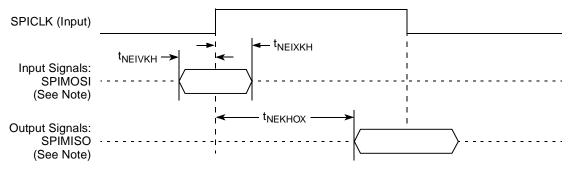



Figure 36. SPI AC Test Load

Figure 37 and Figure 38 represent the AC timings from Table 50. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 37 shows the SPI timings in slave mode (external clock).

Note: The clock edge is selectable on SPI.

Figure 38 shows the SPI timings in master mode (internal clock).

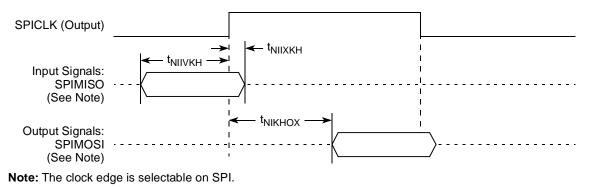


Figure 38. SPI AC Timing in Master Mode (Internal Clock) Diagram

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MECC[0:4]/MSRCID[0:4]	W4, W3, Y3, AA6, T1	I/O	GV _{DD}	
MECC[5]/MDVAL	U1	I/O	GV _{DD}	
MECC[6:7]	Y1, Y6	I/O	GV _{DD}	
MDM[0:8]	B1, F1, K1, R4, AD4, AJ1, AP3, AP7, Y4	0	GV _{DD}	
MDQS[0:8]	B2, F5, J1, P2, AC1, AJ2, AN4, AL8, W2	I/O	GV _{DD}	
MBA[0:1]	AD1, AA5	0	GV _{DD}	
MA[0:14]	W1, U4, T3, R3, P1, M1, N1, L3, L1, K2, Y2, K3, J3, AP2, AN6	0	GV _{DD}	
MWE	AF1	0	GV _{DD}	
MRAS	AF4	0	GV _{DD}	
MCAS	AG3	0	GV _{DD}	
MCS[0:3]	AG2, AG1, AK1, AL4	0	GV _{DD}	
MCKE[0:1]	H3, G1	0	O GV _{DD}	
MCK[0:5]	U2, F4, AM3, V3, F2, AN3	0	GV _{DD}	
MCK[0:5]	U3, E3, AN2, V4, E1, AM4	0	GV _{DD}	
(T)	Pins Reserved for Future DDR2 ney should be left unconnected for MPC834	7)	·	
MODT[0:3]	AH3, AJ5, AH1, AJ4	_	_	
MBA[2]	H4	_	—	
SPARE1	AA1	—	—	8
SPARE2	AB1	—	—	6
	Local Bus Controller Interface			1
LAD[0:31]	AM13, AP13, AL14, AM14, AN14, AP14, AK15, AJ15, AM15, AN15, AP15, AM16, AL16, AN16, AP16, AL17, AM17, AP17, AK17, AP18, AL18, AM18, AN18, AP19, AN19, AM19, AP20, AK19, AN20, AL20, AP21, AN21	I/O	OV _{DD}	
LDP[0]/CKSTOP_OUT	AM21	I/O	OV _{DD}	
LDP[1]/CKSTOP_IN	AP22	I/O	OV _{DD}	
LDP[2]	AN22	I/O	OV _{DD}	
LDP[3]	AM22	I/O	OV _{DD}	
LA[27:31]	AK21, AP23, AN23, AP24, AK22	0	OV _{DD}	
LCS[0:3]	AN24, AL23, AP25, AN25	0	OV _{DD}	
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	AK23, AP26, AL24, AM25	0	OV _{DD}	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LV _{DD} 2	C6, D9	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	E19, E29, F7, F9, F11,F13, F15, F17, F18, F21, F23, F25, F29, H29, J6, K29, M29, N6, P29, T29, U30, V6, V29, W29, AB29, AC5, AD29, AF6, AF29, AH29, AJ8, AJ12, AJ14, AJ16, AJ18, AJ20, AJ21, AJ23, AJ25, AJ26, AJ27, AJ28, AJ29, AK10	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B22, B28, C16, C17, C24, C26, D13, D15, D19, D29, E31, F28, G33, H30, L29, L32, N32, P31, R31, U32, W31, Y29, AA29, AC30, AE31, AF30, AG29, AJ17, AJ30, AK11, AL15, AL19, AL21, AL29, AL30, AM20, AM23, AM24, AM26, AM28, AN11, AN13	PCI, 10/100 Ethernet, and other standard (3.3 V)	OV _{DD}	
MVREF1	M3	I	DDR reference voltage	
MVREF2	AD2	I	DDR reference voltage	

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	nal Package Pin Number		Power Supply	Notes	
MCAS	AG6	0	GV _{DD}		
MCS[0:3]	AE7, AH7, AH4, AF2	0	GV _{DD}		
MCKE[0:1]	AG23, AH23	0	GV _{DD}	3	
MCK[0:5]	AH15, AE24, AE2, AF14, AE23, AD3	0	GV _{DD}		
MCK[0:5]	AG15, AD23, AE3, AG14, AF24, AD2	0	GV _{DD}		
(The	Pins Reserved for Future DDR2 ey should be left unconnected for MPC834	7)		1	
MODT[0:3]	AG5, AD4, AH6, AF4	_	_		
MBA[2]	AD22				
SPARE1	AF12	_	_	7	
SPARE2	AG11	_	_	6	
	Local Bus Controller Interface				
LAD[0:31]	T4, T5, T1, R2, R3, T2, R1, R4, P1, P2, P3, P4, N1, N4, N2, N3, M1, M2, M3, N5, M4, L1, L2, L3, K1, M5, K2, K3, J1, J2, L5, J3	I/O	OV _{DD}		
LDP[0]/CKSTOP_OUT	H1	I/O	OV _{DD}		
LDP[1]/CKSTOP_IN	К5	I/O	OV _{DD}		
LDP[2]	H2	I/O	OV _{DD}		
LDP[3]	G1	I/O	OV _{DD}		
LA[27:31]	J4, H3, G2, F1, G3	0	OV _{DD}		
LCS[0:3]	J5, H4, F2, E1	0	OV _{DD}		
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	F3, G4, D1, E2	0	OV _{DD}		
LBCTL	H5	0	OV _{DD}		
LALE	E3	0	OV _{DD}		
LGPL0/LSDA10/cfg_reset_source0	F4	I/O	OV _{DD}		
LGPL1/LSDWE/cfg_reset_source1	D2	I/O	OV _{DD}		
LGPL2/LSDRAS/LOE	C1	0	OV _{DD}		
LGPL3/LSDCAS/cfg_reset_source2	C2	I/O	OV _{DD}		
LGPL4/LGTA/LUPWAIT/LPBSE	C3	I/O	OV _{DD}		
LGPL5/cfg_clkin_div	В3	I/O	OV _{DD}		
LCKE	E4	0	OV _{DD}		
LCLK[0:2]	D4, A3, C4	0	OV _{DD}		
LSYNC_OUT	U3	0	OV _{DD}		
LSYNC_IN	Y2	I	OV _{DD}		

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	General Purpose I/O Timers		1	
GPIO1[0]/GTM1_TIN1/GTM2_TIN2	D27	I/O	OV _{DD}	
GPIO1[1]/GTM1_TGATE1/GTM2_TGATE2	E26	I/O	OV _{DD}	
GPIO1[2]/GTM1_TOUT1	D28	I/O	OV _{DD}	
GPIO1[3]/GTM1_TIN2/GTM2_TIN1	G25	I/O	OV _{DD}	
GPIO1[4]/GTM1_TGATE2/GTM2_TGATE1	J24	I/O	OV _{DD}	
GPIO1[5]/GTM1_TOUT2/GTM2_TOUT1	F26	I/O	OV _{DD}	
GPIO1[6]/GTM1_TIN3/GTM2_TIN4	E27	I/O	OV _{DD}	
GPIO1[7]/GTM1_TGATE3/GTM2_TGATE4	E28	I/O	OV _{DD}	
GPIO1[8]/GTM1_TOUT3	H25	I/O	OV _{DD}	
GPIO1[9]/GTM1_TIN4/GTM2_TIN3	F27	I/O	OV _{DD}	
GPIO1[10]/GTM1_TGATE4/GTM2_TGATE3	K24	I/O	OV _{DD}	
GPIO1[11]/GTM1_TOUT4/GTM2_TOUT3	G26	I/O	OV _{DD}	
	USB Port 1		4	
MPH1_D0_ENABLEN/DR_D0_ENABLEN	C28	I/O	OV _{DD}	
MPH1_D1_SER_TXD/DR_D1_SER_TXD	F25	I/O	OV _{DD}	
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0	B28	I/O	OV _{DD}	
MPH1_D3_SPEED/DR_D3_SPEED	C27	I/O	OV _{DD}	
MPH1_D4_DP/DR_D4_DP	D26	I/O	OV _{DD}	
MPH1_D5_DM/DR_D5_DM	E25	I/O	OV _{DD}	
MPH1_D6_SER_RCV/DR_D6_SER_RCV	C26	I/O	OV _{DD}	
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS	D25	I/O	OV _{DD}	
MPH1_NXT/DR_SESS_VLD_NXT	B26	I	OV _{DD}	
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	E24	I/O	OV _{DD}	
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	A27	0	OV _{DD}	
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	C25	I	OV _{DD}	
MPH1_PCTL0/DR_TX_VALID_PCTL0	A26	0	OV _{DD}	
MPH1_PCTL1/DR_TX_VALIDH_PCTL1	B25	0	OV _{DD}	
MPH1_CLK/DR_CLK	A25	I	OV _{DD}	
	USB Port 0			
MPH0_D0_ENABLEN/DR_D8_CHGVBUS	D24	I/O	OV _{DD}	
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS	C24	I/O	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

19.1 System PLL Configuration

The system PLL is controlled by the RCWL[SPMF] parameter. Table 56 shows the multiplication factor encodings for the system PLL.

RCWL[SPMF]	System PLL Multiplication Factor
0000	× 16
0001	Reserved
0010	× 2
0011	× 3
0100	× 4
0101	× 5
0110	× 6
0111	× 7
1000	× 8
1001	× 9
1010	× 10
1011	× 11
1100	× 12
1101	× 13
1110	× 14
1111	× 15

Table 56. System PLL Multiplication Factors

As described in Section 19, "Clocking," the LBIUCM, DDRCM, and SPMF parameters in the reset configuration word low and the CFG_CLKIN_DIV configuration input signal select the ratio between the primary clock input (CLKIN or PCI_CLK) and the internal coherent system bus clock (*csb_clk*). Table 57 and Table 58 show the expected frequency values for the CSB frequency for select *csb_clk* to CLKIN/PCI_SYNC_IN ratios.

20 Thermal

This section describes the thermal specifications of the MPC8347E.

20.1 Thermal Characteristics

Table 61 provides the package thermal characteristics for the $672 \ 35 \times 35 \ \text{mm}$ TBGA of the MPC8347E.

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	R _{θJA}	14	°C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	R _{θJMA}	11	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on single-layer board (1s)	R _{θJMA}	11	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on four-layer board (2s2p)	R _{θJMA}	8	°C/W	1, 3
Junction-to-ambient (@ 2 m/s) on single-layer board (1s)	R _{θJMA}	9	°C/W	1, 3
Junction-to-ambient (@ 2 m/s) on four-layer board (2s2p)	R _{θJMA}	7	°C/W	1, 3
Junction-to-board thermal	R _{θJB}	3.8	°C/W	4
Junction-to-case thermal	R _{θJC}	1.7	°C/W	5
Junction-to-package natural convection on top	ΨJT	1	°C/W	6

Table 61. Package Thermal Characteristics for TBGA

Notes:

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal, 1 m/s is approximately equal to 200 linear feet per minute (LFM).
- 4. Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 62 provides the package thermal characteristics for the 620 29×29 mm PBGA of the MPC8347E.

Table 62. Package Thermal Characteristics for PBGA

Characteristic	Symbol	Value	Unit	Notes
Junction-to-ambient natural convection on single-layer board (1s)	R _{θJA}	21	°C/W	1, 2
Junction-to-ambient natural convection on four-layer board (2s2p)	R _{θJMA}	15	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on single-layer board (1s)	R _{θJMA}	17	°C/W	1, 3
Junction-to-ambient (@ 200 ft/min) on four-layer board (2s2p)	R _{θJMA}	12	°C/W	1, 3
Junction-to-board thermal	R _{θJB}	6	°C/W	4

Thermal

Hast Sink Assuming Thermal Crosse	Air Flow	$29 \times 29 \text{ mm PBGA}$
Heat Sink Assuming Thermal Grease	AIT FIOW	Thermal Resistance
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	8.8
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	11.3
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	8.1
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	7.5
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	9.1
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	7.1
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	6.5
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	10.1
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	1 m/s	7.7
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	6.6
MEI, $75 \times 85 \times 12$ mm, adjacent board, 40 mm side bypass	1 m/s	6.9

Table 64. Heat Sink and Thermal Resistance of MPC8347E (PBGA) (continued)

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following list:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301	603-224-9988
Internet: www.aavidthermalloy.com	
Alpha Novatech 473 Sapena Ct. #12 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-567-8082
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-thermal.com	408-436-8770

22 Document Revision History

Table 66 provides a revision history of this document.

Table 66. Docum	ent Revision History
-----------------	----------------------

Revision	Date	Substantive Change(s)
11	2/2009	In Section 21.1, "System Clocking," removed "(AVDD1)" and "(AVDD2") from bulleted list. In Section 21.2, "PLL Power Supply Filtering," in the second paragraph, changed "provide five independent filter circuits," and "the five AVDD pins" to provide four independent filter circuits," and "the four AVDD pins."
		In Table 35, removed row for rise time (tl2CR). Removed minimum value of tl2CF. Added note 5 stating that the device does not follow the I2C-BUS Specifications version 2.1 regarding the tl2CF AC
		parameter. In Table 54, corrected the max csb_clk to 266 MHz.
		In Table 60, added PLL configurations 903, 923, A03, A23, and 503 for 533 MHz
		In Table 35, corrected t_{LBKHOV} parametr to t_{LBKLOV} (output data is driven on falling edge of clock in DLL bypass mode). Similarly, made the same correction to Figure 21, Figure 23, and Figure 24 for output signals.
		Added Figure 1 and Figure 4.
		In Table 9.2, clarified that AC table is for ULPI only.
		Added footnote 4 to Table 67.
		In Table 67, updated note 1 to say the following: "For temperature range = C, processor frequency is up to 667(TBGA) with a platform frequency of 333 and limited to 400 (PBGA) with a platform frequency of 266."
		Added footnote 10 and 11 to Table 51 and Table 52.
		In Table 51, Table 52, updated note 11 to say the following: "SEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net."
		Added footnote 6 to Table 7.
		In Table 7, updated the note 6 to say the following: "The Spread spectrum clocking. Is allowed with 1% input frequency down-spread at maximum 50KHz modulation rate regardless of input frequency."
		In 8.1.1, removed the note "The potential applied to the input of a GMII, MII, TBI, RGMII, or RTBI receiver may exceed the potential of the receiver power supply (that is, a RGMII driver powered from a 3.6 V supply driving VOH into a RGMII receiver powered from a 2.5-V supply). Tolerance for dissimilar RGMII driver and receiver supply potentials is implicit in these specifications."
10	4/2007	In Table 3, "Output Drive Capability," changed the values in the Output Impedance column and added USB to the seventh row.
		In Table 54, "Operating Frequencies for TBGA," added column for 400 MHz. In Section 21.7, "Pull-Up Resistor Requirements," deleted last two paragraphs and after first paragraph, added a new paragraph. Deleted Section 21.8, "JTAG Configuration Signals," and Figure 43, "JTAG Interface Connection."
9	3/2007	In Table 54, "Operating Frequencies for TBGA," in the 'Coherent system bus frequency (<i>csb_clk</i>)' row, changed the value in the 533 MHz column to 100–333.
		In Table 60, "Suggested PLL Configurations," under the subhead, '33 MHz CLKIN/PCI_CLK Options,' added row A03 between Ref. No. 724 and 804. Under the subhead '66 MHz CLKIN/PCI_CLK Options,' added row 503 between Ref. No. 305 and 404. For Ref. No. 306, changed the CORE PLL value to 0000110.
		In Section 23, "Ordering Information," replaced first paragraph and added a note. In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced first paragraph.

23 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and later versions (orderable part numbers ending with A or B), see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8347EAEC).

23.1 Part Numbers Fully Addressed by This Document

Table 67 shows an analysis of the Freescale part numbering nomenclature for the MPC8347E. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the MPC8347E product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	aa	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8347	Blank = Not included E = included	Blank = 0 to 105°C C = −40 to 105°C	ZU =TBGA VV = PB free TBGA ZQ = PBGA VR = PB Free PBGA	e300 core speed AD = 266 AG = 400 AJ = 533 AL = 667	D = 266 F = 333 ⁴	Blank = 1.1 or 1.0

Table 67. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to 400 (PBGA) with a platform frequency of 266 and up to 667(TBGA) with a platform frequency of 333

- 2. See Section 18, "Package and Pin Listings," for more information on available package types.
- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 up to 333 MHz (at a CSB of 333 MHz), but DDR2 at 400 MHz (CSB at 200 MHz) is NOT guaranteed.

Table 68 shows the SVR settings by device and package type.

Table	68.	SVR	Settings
-------	-----	-----	----------

Device	Package	SVR (Rev. 1.0)	
MPC8347E	TBGA	8052_0010	
MPC8347	TBGA	8053_0010	

Ordering Information

Table	68.	SVR	Settings	(continued)
-------	-----	-----	----------	-------------

ſ	MPC8347E	PBGA	8054_0010
F	MPC8347	PBGA	8055_0010

23.2 Part Marking

Parts are marked as in the example shown in Figure 44.

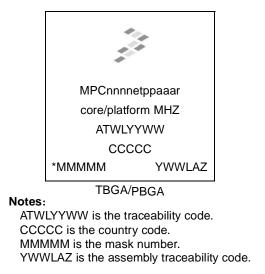


Figure 44. Freescale Part Marking for TBGA or PBGA Devices