

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

2.5V, 3.3V 0°C ~ 105°C (TA)
- USB 2.0 + PHY (2)
- 10/100/1000Mbps (2)
No
DDR
-
1 Core, 32-Bit 533MHz
PowerPC e300
Obsolete

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1.2 Power Supply Voltage Specification

Table 2 provides the recommended operating conditions for the MPC8347E. Note that the values in Table 2 are the recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.

Characteristic	Symbol	Recommended Value	Unit	Notes
Core supply voltage	V _{DD}	1.2 V ± 60 mV	V	1
PLL supply voltage	AV _{DD}	1.2 V ± 60 mV	V	1
DDR DRAM I/O supply voltage	GV _{DD}	2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD1}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
Three-speed Ethernet I/O supply voltage	LV _{DD2}	3.3 V ± 330 mV 2.5 V ± 125 mV	V	
PCI, local bus, DUART, system control and power management, I ² C, and JTAG I/O voltage	OV _{DD}	3.3 V ± 330 mV	V	

Note:

¹ GV_{DD}, LV_{DD}, OV_{DD}, AV_{DD}, and V_{DD} must track each other and must vary in the same direction—either in the positive or negative direction.

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8347E.

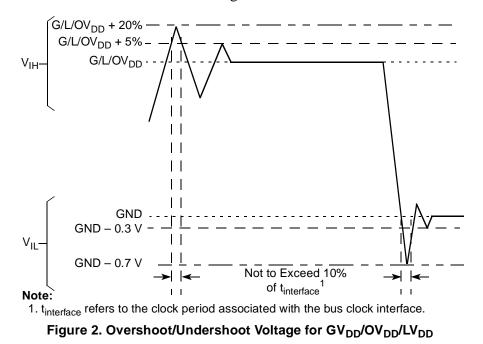


Figure 3 shows the undershoot and overshoot voltage of the PCI interface of the MPC8347E for the 3.3-V signals, respectively.

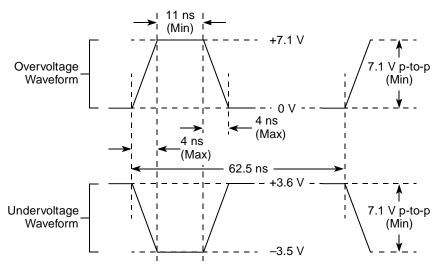


Figure 3. Maximum AC Waveforms on PCI Interface for 3.3-V Signaling

2.1.3 Output Driver Characteristics

Table 3 provides information on the characteristics of the output driver strengths. The values are preliminary estimates.

Driver Type	Output Impedance (Ω)	Supply Voltage
Local bus interface utilities signals	40	OV _{DD} = 3.3 V
PCI signals (not including PCI output clocks)	25	
PCI output clocks (including PCI_SYNC_OUT)	40	
DDR signal	18	GV _{DD} = 2.5 V
TSEC/10/100 signals	40	LV _{DD} = 2.5/3.3 V
DUART, system control, I ² C, JTAG, USB	40	OV _{DD} = 3.3 V
GPIO signals	40	OV _{DD} = 3.3 V, LV _{DD} = 2.5/3.3 V

Table 3. Output Drive Capability

2.2 Power Sequencing

MPC8347E does not require the core supply voltage and I/O supply voltages to be applied in any particular order. Note that during the power ramp up, before the power supplies are stable, there may be a period of time that I/O pins are actively driven. After the power is stable, as long as **PORESET** is asserted, most I/O pins are three-stated. To minimize the time that I/O pins are actively driven, it is recommended to apply core voltage before I/O voltage and assert **PORESET** before the power supplies fully ramp up.

5 **RESET Initialization**

This section describes the DC and AC electrical specifications for the reset initialization timing and electrical requirements of the MPC8347E.

5.1 **RESET DC Electrical Characteristics**

Table 8 provides the DC electrical characteristics for the RESET pins of the MPC8347E.

Table 8.	RESET	Pins DC	Electrical	Characteristics'	

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μΑ
Output high voltage ²	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

Notes:

1. This table applies for pins PORESET, HRESET, SRESET, and QUIESCE.

2. HRESET and SRESET are open drain pins, thus V_{OH} is not relevant for those pins.

5.2 **RESET AC Electrical Characteristics**

Table 9 provides the reset initialization AC timing specifications of the MPC8347E.

Table 9. RESET Initialization Timing Specifications

Parameter/Condition	Min	Мах	Unit	Notes
Required assertion time of HRESET or SRESET (input) to activate reset flow	32	_	^t PCI_SYNC_IN	1
Required assertion time of PORESET with stable clock applied to CLKIN when the MPC8347E is in PCI host mode	32	_	tCLKIN	2
Required assertion time of PORESET with stable clock applied to PCI_SYNC_IN when the MPC8347E is in PCI agent mode	32	_	^t PCI_SYNC_IN	1
HRESET/SRESET assertion (output)	512	_	t _{PCI_SYNC_IN}	1
HRESET negation to SRESET negation (output)	16	_	t _{PCI_SYNC_IN}	1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI host mode	4	_	^t clkin	2
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:2] and CFG_CLKIN_DIV) with respect to negation of PORESET when the MPC8347E is in PCI agent mode	4	_	^t PCI_SYNC_IN	1

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 13 provides the input AC timing specifications for the DDR SDRAM interface.

Table 13. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V \pm 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	
AC input high voltage	V _{IH}	MV _{REF} + 0.31	GV _{DD} + 0.3	V	
MDQS—MDQ/MECC input skew per byte 333 MHz 266 MHz		_	750 1125	ps	1

Note:

1. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 <= n <= 7) or ECC (MECC[{0...7}] if n = 8).

Figure 4 illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

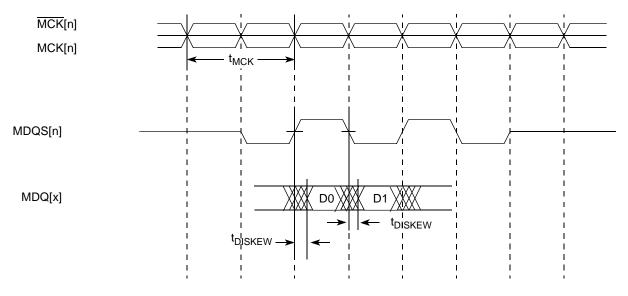


Figure 4. DDR Input Timing Diagram

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 14 and Table 15 provide the output AC timing specifications and measurement conditions for the DDR SDRAM interface.

Figure 12 shows the MII receive AC timing diagram.

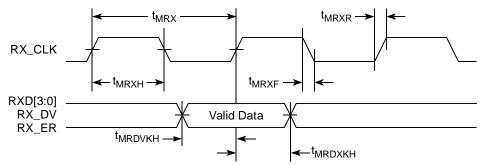


Figure 12. MII Receive AC Timing Diagram

8.2.3 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.3.1 TBI Transmit AC Timing Specifications

Table 25 provides the TBI transmit AC timing specifications.

Table 25. TBI Transmit AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{OV}_{\text{DD}}$ of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{TTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	_	60	%
GTX_CLK to TBI data TXD[7:0], TX_ER, TX_EN delay	t _{TTKHDX}	1.0	—	5.0	ns
GTX_CLK clock rise, V _{IL} (min) to V _{IH} (max)	t _{TTXR}	—	—	1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{TTXF}	—	—	1.0	ns
GTX_CLK125 reference clock period	t _{G125} 2	—	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	45	—	55	ns

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

2. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention

Figure 13 shows the TBI transmit AC timing diagram.

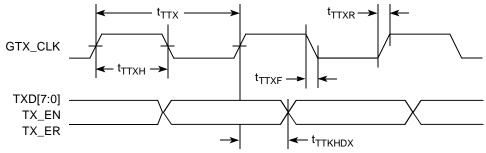


Figure 13. TBI Transmit AC Timing Diagram

8.2.3.2 TBI Receive AC Timing Specifications

Table 26 provides the TBI receive AC timing specifications.

Table 26. TBI Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
PMA_RX_CLK clock period	t _{TRX}		16.0		ns
PMA_RX_CLK skew	t _{SKTRX}	7.5	—	8.5	ns
RX_CLK duty cycle	t _{TRXH} /t _{TRX}	40	—	60	%
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) setup time to rising PMA_RX_CLK	t _{trdvkh} 2	2.5	—	—	ns
RXD[7:0], RX_DV, RX_ER (RCG[9:0]) hold time to rising PMA_RX_CLK	t _{TRDXKH} 2	1.5	—	—	ns
RX_CLK clock rise time V _{IL} (min) to V _{IH} (max)	t _{TRXR}	0.7	—	2.4	ns
RX_CLK clock fall time V _{IH} (max) to V _{IL} (min)	t _{TRXF}	0.7	—	2.4	ns

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TRDVKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{TRX} clock reference (K) going to the high (H) state or setup time. Also, t_{TRDXKH} symbolizes TBI receive timing (TR) with respect to the time data input signals (D) went invalid (X) relative to the t_{TRX} clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TRX} represents the TBI (T) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall). For symbols representing skews, the subscript SK followed by the clock that is being skewed (TRX).
</sub>

2. Setup and hold time of even numbered RCG are measured from the riding edge of PMA_RX_CLK1. Setup and hold times of odd-numbered RCG are measured from the riding edge of PMA_RX_CLK0.

Ethernet: Three-Speed Ethernet, MII Management

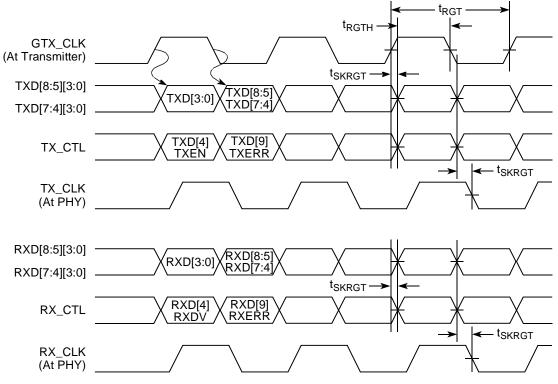


Figure 15. RGMII and RTBI AC Timing and Multiplexing Diagrams

Table 35. Local Bus General Timing Parameters—DLL Bypass ⁹ (continued)

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus clock to output valid	t _{LBKLOV}	_	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	_	4	ns	8

Notes:

- The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to the falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or the rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from $OV_{DD}/2$ of the rising/falling edge of LCLK0 to $0.4 \times OV_{DD}$ of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.the
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on the LALE output pin equals to the load on the LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

Figure 19 provides the AC test load for the local bus.

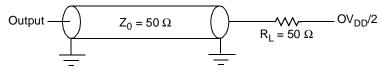


Figure 19. Local Bus C Test Load

Parameter	Symbol ¹	Min	Max	Unit
Fall time of both SDA and SCL signals ⁵	t _{I2CF}		300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6		μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	—	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	—	V

Table 39. I²C AC Electrical Specifications (continued)

Notes:

- 1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) goes invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaches the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}
- MPC8347E provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{I2DVKH} must be met only if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.
- 5.) The MPC8347E does not follow the "I2C-BUS Specifications" version 2.1 regarding the tI2CF AC parameter.

Figure 31 provides the AC test load for the I^2C .

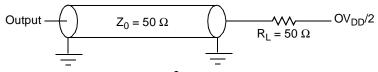


Figure 31. I²C AC Test Load

Figure 32 shows the AC timing diagram for the I^2C bus.

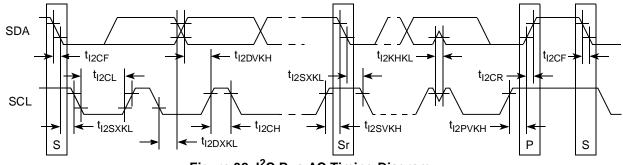


Figure 32. I²C Bus AC Timing Diagram

13 PCI

This section describes the DC and AC electrical specifications for the PCI bus of the MPC8347E.

13.1 PCI DC Electrical Characteristics

Table 40 provides the DC electrical characteristics for the PCI interface of the MPC8347E.

Parameter	Symbol	Test Condition	Min	Мах	Unit
High-level input voltage	V _{IH}	$V_{OUT} \ge V_{OH}$ (min) or	2	OV _{DD} + 0.3	V
Low-level input voltage	V _{IL}	$V_{OUT} \le V_{OL}$ (max)	-0.3	0.8	V
Input current	I _{IN}	$V_{IN}^{1} = 0 V \text{ or } V_{IN} = OV_{DD}$	_	±5	μA
High-level output voltage	V _{OH}	OV _{DD} = min, I _{OH} = -100 μA	OV _{DD} – 0.2	_	V
Low-level output voltage	V _{OL}	OV _{DD} = min, I _{OL} = 100 μA	_	0.2	V

 Table 40. PCI DC Electrical Characteristics

Note:

1. The symbol V_{IN} , in this case, represents the OV_{IN} symbol referenced in Table 1.

13.2 PCI AC Electrical Specifications

This section describes the general AC timing parameters of the PCI bus of the MPC8347E. Note that the PCI_CLK or PCI_SYNC_IN signal is used as the PCI input clock depending on whether the MPC8347E is configured as a host or agent device. Table 41 provides the PCI AC timing specifications at 66 MHz.

Table 41. PCI A	C Timing	Specifications	at 66 MHz ¹
-----------------	----------	-----------------------	------------------------

Parameter	Symbol ²	Min	Мах	Unit	Notes
Clock to output valid	^t PCKHOV	_	6.0	ns	3
Output hold from clock	t _{PCKHOX}	1	—	ns	3
Clock to output high impedance	t _{PCKHOZ}		14	ns	3, 4
Input setup to clock	t _{PCIVKH}	3.0		ns	3, 5

Table 41. PCI AC Timing Specifications at 66 MHz¹ (continued)

Parameter	Symbol ²	Min	Max	Unit	Notes
Input hold from clock	t _{PCIXKH}	0	—	ns	3, 5

Notes:

- 1. PCI timing depends on M66EN and the ratio between PCI1/PCI2. Refer to the PCI chapter of the reference manual for a description of M66EN.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.}
- 3. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 4. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 5. Input timings are measured at the pin.

Table 42 provides the PCI AC timing specifications at 33 MHz.

Parameter	Symbol ¹	Min	Max	Unit	Notes
Clock to output valid	^t PCKHOV	_	11	ns	2
Output hold from clock	^t РСКНОХ	2	-	ns	2
Clock to output high impedance	t _{PCKHOZ}	_	14	ns	2, 3
Input setup to clock	t _{PCIVKH}	3.0	_	ns	2, 4
Input hold from clock	t _{PCIXKH}	0		ns	2, 4

Notes:

- The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{PCIVKH} symbolizes PCI timing (PC) with respect to the time the input signals (I) reach the valid state (V) relative to the PCI_SYNC_IN clock, t_{SYS}, reference (K) going to the high (H) state or setup time. Also, t_{PCRHFV} symbolizes PCI timing (PC) with respect to the time hard reset (R) went high (H) relative to the frame signal (F) going to the valid (V) state.
 </sub>
- 2. See the timing measurement conditions in the PCI 2.2 Local Bus Specifications.
- 3. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 4. Input timings are measured at the pin.

Figure 33 provides the AC test load for PCI.

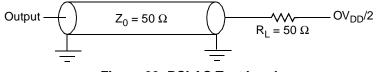


Figure 33. PCI AC Test Load

15 GPIO

This section describes the DC and AC electrical specifications for the GPIO.

15.1 GPIO DC Electrical Characteristics

Table 45 provides the DC electrical characteristics for the MPC8347E GPIO.

Table 45. GPIO DC Electrical Characteristics

Characteristic	Symbol	Condition	Min	Max	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μΑ
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	_	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	_	0.4	V

15.2 GPIO AC Timing Specifications

Table 46 provides the GPIO input and output AC timing specifications.

Table 46. GPIO Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
GPIO inputs—minimum pulse width	t _{PIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

 GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized before use by external synchronous logic. GPIO inputs must be valid for at least t_{PIWID} ns to ensure proper operation.

Signal	Package Pin Number	Pin Type	Power Supply	Notes
LBCTL	AN26	0	OV _{DD}	
LALE	AK24	0	OV _{DD}	
LGPL0/LSDA10/cfg_reset_source0	AP27	I/O	OV _{DD}	
LGPL1/LSDWE/cfg_reset_source1	AL25	I/O	OV _{DD}	
LGPL2/LSDRAS/LOE	AJ24	0	OV _{DD}	
LGPL3/LSDCAS/cfg_reset_source2	AN27	I/O	OV _{DD}	
LGPL4/LGTA/LUPWAIT/LPBSE	AP28	I/O	OV _{DD}	
LGPL5/cfg_clkin_div	AL26	I/O	OV _{DD}	
LCKE	AM27	0	OV _{DD}	
LCLK[0:2]	AN28, AK26, AP29	0	OV _{DD}	
LSYNC_OUT	AM12	0	OV _{DD}	
LSYNC_IN	AJ10	I	OV _{DD}	
	General Purpose I/O Timers	-		-
GPIO1[0]/GTM1_TIN1/GTM2_TIN2	F24	I/O	OV _{DD}	
GPIO1[1]/GTM1_TGATE1/GTM2_TGATE2	E24	I/O	OV _{DD}	
GPIO1[2]/GTM1_TOUT1	B25	I/O	OV _{DD}	
GPIO1[3]/GTM1_TIN2/GTM2_TIN1	D24	I/O	OV _{DD}	
GPIO1[4]/GTM1_TGATE2/GTM2_TGATE1	A25	I/O	OV _{DD}	
GPIO1[5]/GTM1_TOUT2/GTM2_TOUT1	B24	I/O	OV _{DD}	
GPIO1[6]/GTM1_TIN3/GTM2_TIN4	A24	I/O	OV _{DD}	
GPIO1[7]/GTM1_TGATE3/GTM2_TGATE4	D23	I/O	OV _{DD}	
GPIO1[8]/GTM1_TOUT3	B23	I/O	OV _{DD}	
GPIO1[9]/GTM1_TIN4/GTM2_TIN3	A23	I/O	OV _{DD}	
GPIO1[10]/GTM1_TGATE4/GTM2_TGATE3	F22	I/O	OV _{DD}	
GPIO1[11]/GTM1_TOUT4/GTM2_TOUT3	E22	I/O	OV _{DD}	
	USB Port 1	·		
MPH1_D0_ENABLEN/DR_D0_ENABLEN	A26	I/O	OV _{DD}	
MPH1_D1_SER_TXD/DR_D1_SER_TXD	B26	I/O	OV _{DD}	
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0	D25	I/O	OV _{DD}	
MPH1_D3_SPEED/DR_D3_SPEED	A27	I/O	OV _{DD}	
MPH1_D4_DP/DR_D4_DP	B27	I/O	OV _{DD}	
MPH1_D5_DM/DR_D5_DM	C27	I/O	OV _{DD}	
MPH1_D6_SER_RCV/DR_D6_SER_RCV	D26	I/O	OV _{DD}	
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS	E26	I/O	OV _{DD}	T

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Table 51. MPC8347E (TBGA)	Pinout Listing (continued)
---------------------------	----------------------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	System Control			I
PORESET	C18	I	OV _{DD}	
HRESET	B18	I/O	OV_{DD}	1
SRESET	D18	I/O	OV_{DD}	2
	Thermal Management			
THERM0	K32	I		9
	Power and Ground Signals			
AV _{DD} 1	L31	Power for e300 PLL (1.2 V)	AV _{DD} 1	
AV _{DD} 2	AP12	Power for system PLL (1.2 V)	AV _{DD} 2	
AV _{DD} 3	AE1	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	AJ13	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	 A1, A34, C1, C7, C10, C11, C15, C23, C25, C28, D1, D8, D20, D30, E7, E13, E15, E17, E18, E21, E23, E25, E32, F6, F19, F27, F30, F34, G31, H5, J4, J34, K30, L5, M2, M5, M30, M33, N3, N5, P30, R5, R32, T5, T30, U6, U29, U33, V2, V5, V30, W6, W30, Y30, AA2, AA30, AB2, AB6, AB30, AC3, AC6, AD31, AE5, AF2, AF5, AF31, AG30, AG31, AH4, AJ3, AJ19, AJ22, AK7, AK13, AK14, AK16, AK18, AK20, AK25, AK28, AL3, AL5, AL10, AL12, AL22, AL27, AM1, AM6, AM7, AN12, AN17, AN34, AP1, AP8, AP34 		_	
GV _{DD}	A2, E2, G5, G6, J5, K4, K5, L4, N4, P5, R6, T6, U5, V1, W5, Y5, AA4, AB3, AC4, AD5, AF3, AG5, AH2, AH5, AH6, AJ6, AK6, AK8, AK9, AL6	Power for DDR DRAM I/O voltage (2.5 V)	GV _{DD}	
LV _{DD} 1	C9, D11	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply GV _{DD}	Notes	
MCAS	AG6	0			
MCS[0:3]	AE7, AH7, AH4, AF2	0	GV _{DD}		
MCKE[0:1]	AG23, AH23	0	GV _{DD}	3	
MCK[0:5]	AH15, AE24, AE2, AF14, AE23, AD3	0	GV _{DD}		
MCK[0:5]	AG15, AD23, AE3, AG14, AF24, AD2	0	GV _{DD}		
(The	Pins Reserved for Future DDR2 ey should be left unconnected for MPC834	7)			
MODT[0:3]	AG5, AD4, AH6, AF4	_	_		
MBA[2]	AD22				
SPARE1	AF12	_	_	7	
SPARE2	AG11	_	_	6	
	Local Bus Controller Interface				
LAD[0:31]	T4, T5, T1, R2, R3, T2, R1, R4, P1, P2, P3, P4, N1, N4, N2, N3, M1, M2, M3, N5, M4, L1, L2, L3, K1, M5, K2, K3, J1, J2, L5, J3	I/O	OV _{DD}		
LDP[0]/CKSTOP_OUT	H1	I/O	OV _{DD}		
LDP[1]/CKSTOP_IN	К5	I/O	OV _{DD}		
LDP[2]	H2	I/O	OV _{DD}		
LDP[3]	G1	I/O	OV _{DD}		
LA[27:31]	J4, H3, G2, F1, G3	0	OV _{DD}		
LCS[0:3]	J5, H4, F2, E1	0	OV _{DD}		
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	F3, G4, D1, E2	0	OV _{DD}		
LBCTL	H5	0	OV _{DD}		
LALE	E3	0	OV _{DD}		
LGPL0/LSDA10/cfg_reset_source0	F4	I/O	OV _{DD}		
LGPL1/LSDWE/cfg_reset_source1	D2	I/O	OV _{DD}		
LGPL2/LSDRAS/LOE	C1	0	OV _{DD}		
LGPL3/LSDCAS/cfg_reset_source2	C2	I/O	OV _{DD}		
LGPL4/LGTA/LUPWAIT/LPBSE	C3	I/O	OV _{DD}		
LGPL5/cfg_clkin_div	В3	I/O	OV _{DD}		
LCKE	E4	0	OV _{DD}		
LCLK[0:2]	D4, A3, C4	0	OV _{DD}		
LSYNC_OUT	U3	0	OV _{DD}		
LSYNC_IN	Y2	I	OV _{DD}		

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	General Purpose I/O Timers		1	
GPIO1[0]/GTM1_TIN1/GTM2_TIN2	D27	I/O	OV _{DD}	
GPIO1[1]/GTM1_TGATE1/GTM2_TGATE2	E26	I/O	OV _{DD}	
GPIO1[2]/GTM1_TOUT1	D28	I/O	OV _{DD}	
GPIO1[3]/GTM1_TIN2/GTM2_TIN1	G25	I/O	OV _{DD}	
GPIO1[4]/GTM1_TGATE2/GTM2_TGATE1	J24	I/O	OV _{DD}	
GPIO1[5]/GTM1_TOUT2/GTM2_TOUT1	F26	I/O	OV _{DD}	
GPIO1[6]/GTM1_TIN3/GTM2_TIN4	E27	I/O	OV _{DD}	
GPIO1[7]/GTM1_TGATE3/GTM2_TGATE4	E28	I/O	OV _{DD}	
GPIO1[8]/GTM1_TOUT3	H25	I/O	OV _{DD}	
GPIO1[9]/GTM1_TIN4/GTM2_TIN3	F27	I/O	OV _{DD}	
GPIO1[10]/GTM1_TGATE4/GTM2_TGATE3	K24	I/O	OV _{DD}	
GPIO1[11]/GTM1_TOUT4/GTM2_TOUT3	G26	I/O	OV _{DD}	
	USB Port 1		4	
MPH1_D0_ENABLEN/DR_D0_ENABLEN	C28	I/O	OV _{DD}	
MPH1_D1_SER_TXD/DR_D1_SER_TXD	F25	I/O	OV _{DD}	
MPH1_D2_VMO_SE0/DR_D2_VMO_SE0	B28	I/O	OV _{DD}	
MPH1_D3_SPEED/DR_D3_SPEED	C27	I/O	OV _{DD}	
MPH1_D4_DP/DR_D4_DP	D26	I/O	OV _{DD}	
MPH1_D5_DM/DR_D5_DM	E25	I/O	OV _{DD}	
MPH1_D6_SER_RCV/DR_D6_SER_RCV	C26	I/O	OV _{DD}	
MPH1_D7_DRVVBUS/DR_D7_DRVVBUS	D25	I/O	OV _{DD}	
MPH1_NXT/DR_SESS_VLD_NXT	B26	I	OV _{DD}	
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	E24	I/O	OV _{DD}	
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	A27	0	OV _{DD}	
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	C25	I	OV _{DD}	
MPH1_PCTL0/DR_TX_VALID_PCTL0	A26	0	OV _{DD}	
MPH1_PCTL1/DR_TX_VALIDH_PCTL1	B25	0	OV _{DD}	
MPH1_CLK/DR_CLK	A25	I	OV _{DD}	
	USB Port 0			
MPH0_D0_ENABLEN/DR_D8_CHGVBUS	D24	I/O	OV _{DD}	
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS	C24	I/O	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
AV _{DD} 3	AF9	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	U2	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	 A2, B1, B2, D10, D18, E6, E14, E22, F9, F12, F15, F18, F21, F24, G5, H6, J23, L4, L6, L12, L13, L14, L15, L16, L17, M11, M12, M13, M14, M15, M16 M17, M18, M23, N11, N12, N13, N14, N15, N16, N17, N18, P6, P11, P12, P13, P14, P15, P16, P17, P18, P24, R5, R11, R12, R13, R14, R15, R16, R17, R18, R23, T11, T12, T13, T14, T15, T16, T17, T18, U6, U11, U12, U13, U14, U15, U16, U17, U18, V12, V13, V14, V15, V16, V17, V23, V25, W4, Y6, AA23, AB24, AC5, AC8, AC11, AC14, AC17, AC20, AD9, AD15, AD21, AE12, AE18, AF3, AF26 			
GV _{DD}	U9, V9, W10, W19, Y11, Y12, Y14, Y15, Y17, Y18, AA6, AB5, AC9, AC12 AC15, AC18, AC21, AC24, AD6, AD8 AD14, AD20, AE5, AE11, AE17, AG2 AG27	voltage	GV _{DD}	
LV _{DD} 1	U20, W25	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	
LV _{DD} 2	V20, Y23	Power for three-speed Ethernet #2 I/O (2.5 V, 3.3 V)	LV _{DD} 2	
V _{DD}	J11, J12, J15, K10, K11, K12, K13, K14, K15, K16, K17, K18, K19, L10, L11, L18, L19, M10, M19, N10, N19, P9, P10, P19, R10, R19, R20, T10, T19, U10, U19, V10, V11, V18, V19, W11, W12, W13, W14, W15, W16, W17, W18	Power for core (1.2 V)	V _{DD}	
OV _{DD}	B27, D3, D11, D19, E15, E23, F5, F8, F11, F14, F17, F20, G24, H23, H24, J6, J14, J17, J18, K4, L9, L20, L23, L25, M6, M9, M20, P5, P20, P23, R6, R9, R24, U23, V4, V6	Ethernet, and other standard	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

	Tyco Electronics Chip Coolers TM P.O. Box 3668 Harrisburg, PA 17105-3668 Internet: www.chipcoolers.com	800-522-2800
	Wakefield Engineering 33 Bridge St. Pelham, NH 03076 Internet: www.wakefield.com	603-635-5102
Interfac	ce material vendors include the following:	
	Chomerics, Inc. 77 Dragon Ct. Woburn, MA 01801	781-935-4850
	Internet: www.chomerics.com	
	Dow-Corning Corporation Dow-Corning Electronic Materials P.O. Box 994 Midland, MI 48686-0997 Internet: www.dowcorning.com	800-248-2481
	Shin-Etsu MicroSi, Inc. 10028 S. 51st St. Phoenix, AZ 85044 Internet: www.microsi.com	888-642-7674
	The Bergquist Company 18930 West 78th St. Chanhassen, MN 55317 Internet: www.bergquistcompany.com	800-347-4572

20.3 Heat Sink Attachment

When heat sinks are attached, an interface material is required, preferably thermal grease and a spring clip. The spring clip should connect to the printed-circuit board, either to the board itself, to hooks soldered to the board, or to a plastic stiffener. Avoid attachment forces that can lift the edge of the package or peel the package from the board. Such peeling forces reduce the solder joint lifetime of the package. The recommended maximum force on the top of the package is 10 lb force (4.5 kg force). Any adhesive attachment should attach to painted or plastic surfaces, and its performance should be verified under the application requirements.

20.3.1 Experimental Determination of the Junction Temperature with a Heat Sink

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally

Revision	Date	Substantive Change(s)
8	2/2007	 Page 1, updated first paragraph to reflect PowerQUICC II information. Updated note after second paragraph. In the features list in Section 1, "Overview," corrected DDR data rate to show: 266 MHz for PBGA parts for all silicon revisions 333 MHz for DDR for TBGA parts for silicon Rev. 1.x
		In Table 5, "MPC8347E Typical I/O Power Dissipation," added GV _{DD} 1.8-V values for DDR2; added table footnote to designate rates that apply only to the TBGA package. In Figure 43, "JTAG Interface Connection," updated with new figure.
		In Section 23, "Ordering Information," replicated note from document introduction.
		In Section 23.1, "Part Numbers Fully Addressed by This Document," replaced third sentence of first paragraph directing customer to product summary page for available frequency configuration parts. Updated back page information.
7	8/2006	Changed all references to revision 2.0 silicon to revision 3.0 silicon. Changed V _{IH} minimum value in Table 36, "JTAG Interface DC Electrical Characteristics," to
		OV _{DD} – 0.3.
		In Table 60, "Suggested PLL Configurations," deleted reference-number rows 902 and 703.
6	3/2006	Section 2, "Electrical Characteristics," moved to second section and all other section, table, and figure numbering change accordingly. Table 7, "CLKIN AC Timing Specifications:" Changed max rise and fall time from 1.2 to 2.3. Table 22, "GMII Receive AC Timing Specifications:" Changed min t _{TTKHDX} from 0.5 to 1.0. Table 30, "MII Management AC Timing Specifications:" Changed max value of t _{MDKHDX} from 70 to
		 170. Table 34, "Local Bus General Timing Parameters—DLL on:" Changed min t_{LBIVKH2} from 1.7 to 2.2. Table 36, "JTAG interface DC Electrical Characteristics:" Changed V_{IH} input high voltage min to 2.0. Table 54, "Operating Frequencies for TBGA:"
		 Updated TBD values. Changed maximum coherent system bus frequency for TBGA 667-MHz device to 333 MHz. Table 55, "Operating Frequencies for PBGA:"
		 Updated TBD values. Changed PBGA maximum coherent system bus frequency to 266 MHz, and maximum DDR memory bus frequency to 133 MHz. Table 60, "Suggested PLL Configurations": Removed some values from suggested PLL
		configurations for reference numbers 902, 922, 903, and 923.
		Table 67, "Part Numbering Nomenclature": Updated TBD values in note 1. Added Table 68, "SVR Settings." Added Section 23.2, "Part Marking."
5	10/2005	In Table 57, updated AAVID 30x30x9.4 mm Pin Fin (natural convection) junction-to-ambient thermal resistance, from 11 to 10.
4	9/2005	Added Table 2, "MPC8347E Typical I/O Power Dissipation."
3	8/2005	Table 1: Updated values for power dissipation that were TBD in Revision 2.
2	5/2005	Table 1: Typical values for power dissipation are changed to TBD. Table 48: Footnote numbering was wrong. THERM0 should have footnote 9 instead of 8.

Table 66. Document Revision History (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 +1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IIEEE 802.3, 802.3u, 802.3x, 802.3z, 802.3ac, 802.11i, and 1149.1 are trademarks or registered trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc., 2005–2009. All rights reserved.

Document Number: MPC8347EEC Rev. 11 02/2009

