
E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC e300
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	-
RAM Controllers	DDR
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100/1000Mbps (2)
SATA	-
USB	USB 2.0 + PHY (2)
Voltage - I/O	2.5V, 3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	620-BBGA Exposed Pad
Supplier Device Package	620-HBGA (29x29)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347zqadd

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- Data chaining and direct mode
- Interrupt on completed segment and chain
- DUART
 - Two 4-wire interfaces (RxD, TxD, RTS, CTS)
 - Programming model compatible with the original 16450 UART and the PC16550D
- Serial peripheral interface (SPI) for master or slave
- General-purpose parallel I/O (GPIO)
 - 52 parallel I/O pins multiplexed on various chip interfaces
- System timers
 - Periodic interrupt timer
 - Real-time clock
 - Software watchdog timer
 - Eight general-purpose timers
- Designed to comply with IEEE Std. 1149.1[™], JTAG boundary scan
- Integrated PCI bus and SDRAM clock generation

3 Power Characteristics

The estimated typical power dissipation for the MPC8347E device is shown in Table 4.

	Core Frequency (MHz)	CSB Frequency (MHz)	Typical at T _J = 65	Typical ^{2,3}	Maximum ⁴	Unit
PBGA	266	266	1.3	1.6	1.8	W
		133	1.1	1.4	1.6	W
	400	266	1.5	1.9	2.1	W
		133	1.4	1.7	1.9	W
	400	200	1.5	1.8	2.0	W
		100	1.3	1.7	1.9	W
TBGA	333	333	2.0	3.0	3.2	W
		166	1.8	2.8	2.9	W
	400	266	2.1	3.0	3.3	W
		133	1.9	2.9	3.1	W
	450	300	2.3	3.2	3.5	W
		150	2.1	3.0	3.2	W
	500	333	2.4	3.3	3.6	W
		166	2.2	3.1	3.4	W
	533	266	2.4	3.3	3.6	W
		133	2.2	3.1	3.4	W

Table 4. MPC8347E Power Dissipation¹

¹ The values do not include I/O supply power (OV_{DD}, LV_{DD}, GV_{DD}) or AV_{DD}. For I/O power values, see Table 5.

² Typical power is based on a voltage of V_{DD} = 1.2 V, a junction temperature of T_J = 105°C, and a Dhrystone benchmark application.

³ Thermal solutions may need to design to a value higher than typical power based on the end application, T_A target, and I/O power.

⁴ Maximum power is based on a voltage of V_{DD} = 1.2 V, worst case process, a junction temperature of T_J = 105°C, and an artificial smoke test.

6.2 DDR SDRAM AC Electrical Characteristics

This section provides the AC electrical characteristics for the DDR SDRAM interface.

6.2.1 DDR SDRAM Input AC Timing Specifications

Table 13 provides the input AC timing specifications for the DDR SDRAM interface.

Table 13. DDR SDRAM Input AC Timing Specifications

At recommended operating conditions with GV_{DD} of 2.5 V \pm 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
AC input low voltage	V _{IL}	—	MV _{REF} – 0.31	V	
AC input high voltage	V _{IH}	MV _{REF} + 0.31	GV _{DD} + 0.3	V	
MDQS—MDQ/MECC input skew per byte 333 MHz 266 MHz		_	750 1125	ps	1

Note:

1. Maximum possible skew between a data strobe (MDQS[n]) and any corresponding bit of data (MDQ[8n + {0...7}] if 0 <= n <= 7) or ECC (MECC[{0...7}] if n = 8).

Figure 4 illustrates the DDR input timing diagram showing the t_{DISKEW} timing parameter.

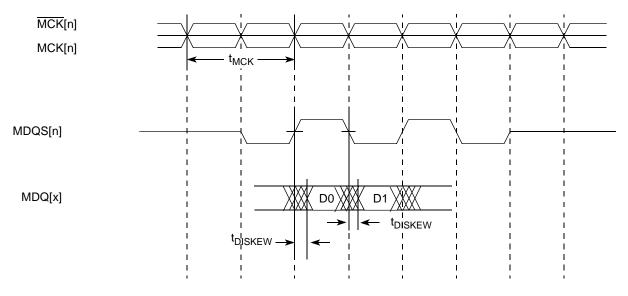


Figure 4. DDR Input Timing Diagram

6.2.2 DDR SDRAM Output AC Timing Specifications

Table 14 and Table 15 provide the output AC timing specifications and measurement conditions for the DDR SDRAM interface.

Ethernet: Three-Speed Ethernet, MII Management

Figure 10 shows the MII transmit AC timing diagram.

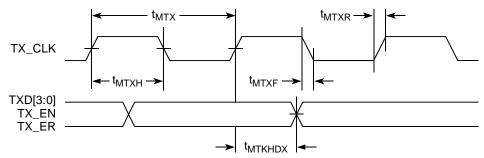


Figure 10. MII Transmit AC Timing Diagram

8.2.2.2 MII Receive AC Timing Specifications

Table 24 provides the MII receive AC timing specifications.

Table 24. MII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period 10 Mbps	t _{MRX}	—	400	—	ns
RX_CLK clock period 100 Mbps	t _{MRX}	—	40	—	ns
RX_CLK duty cycle	t _{MRXH} /t _{MRX}	35	—	65	%
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK	t _{MRDVKH}	10.0	—	—	ns
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK	t _{MRDXKH}	10.0	—	—	ns
RX_CLK clock rise V _{IL} (min) to V _{IH} (max)	t _{MRXR}	1.0	—	4.0	ns
RX_CLK clock fall time V _{IH} (max) to V _{IL} (min)	t _{MRXF}	1.0	—	4.0	ns

Note:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t<sub>(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MRDVKH} symbolizes MII receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MRX} clock reference (K) going to the high (H) state or setup time. Also, t_{MRDXKL} symbolizes MII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{MRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular functionI. For example, the subscript of t_{MRX} represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).
</sub></sub>

Figure 11 provides the AC test load for TSEC.

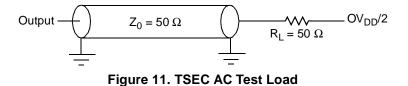


Figure 12 shows the MII receive AC timing diagram.

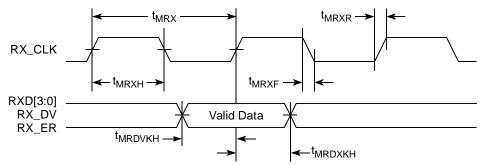


Figure 12. MII Receive AC Timing Diagram

8.2.3 TBI AC Timing Specifications

This section describes the TBI transmit and receive AC timing specifications.

8.2.3.1 TBI Transmit AC Timing Specifications

Table 25 provides the TBI transmit AC timing specifications.

Table 25. TBI Transmit AC Timing Specifications

At recommended operating conditions with $\text{LV}_{\text{DD}}/\text{OV}_{\text{DD}}$ of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
GTX_CLK clock period	t _{TTX}	_	8.0	—	ns
GTX_CLK duty cycle	t _{TTXH} /t _{TTX}	40	_	60	%
GTX_CLK to TBI data TXD[7:0], TX_ER, TX_EN delay	t _{TTKHDX}	1.0	—	5.0	ns
GTX_CLK clock rise, V _{IL} (min) to V _{IH} (max)	t _{TTXR}	—	—	1.0	ns
GTX_CLK clock fall time, V _{IH} (max) to V _{IL} (min)	t _{TTXF}	—	—	1.0	ns
GTX_CLK125 reference clock period	t _{G125} 2	—	8.0	—	ns
GTX_CLK125 reference clock duty cycle	t _{G125H} /t _{G125}	45	—	55	ns

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{TTKHDV} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the valid state (V) or setup time. Also, t_{TTKHDX} symbolizes the TBI transmit timing (TT) with respect to the time from t_{TTX} (K) going high (H) until the referenced data signals (D) reach the invalid state (X) or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{TTX} represents the TBI (T) transmit (TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

2. This symbol represents the external GTX_CLK125 and does not follow the original symbol naming convention

Ethernet: Three-Speed Ethernet, MII Management

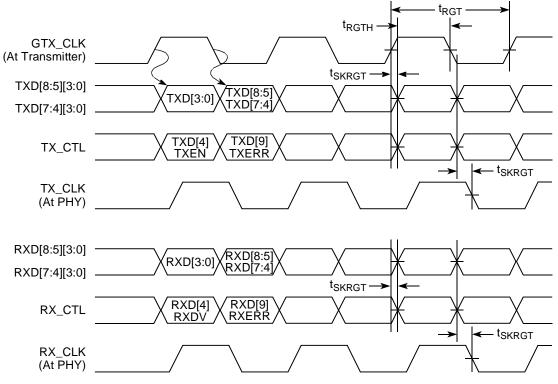


Figure 15. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.3 Ethernet Management Interface Electrical Characteristics

The electrical characteristics specified here apply to the MII management interface signals management data input/output (MDIO) and management data clock (MDC). The electrical characteristics for GMII, RGMII, TBI and RTBI are specified in Section 8.1, "Three-Speed Ethernet Controller (TSEC)—GMII/MII/TBI/RGMII/RTBI Electrical Characteristics."

8.3.1 MII Management DC Electrical Characteristics

The MDC and MDIO are defined to operate at a supply voltage of 2.5 or 3.3 V. The DC electrical characteristics for MDIO and MDC are provided in Table 28 and Table 29.

Parameter	Symbol	Cond	itions	Min	Max	Unit
Supply voltage (2.5 V)	LV _{DD}	-	_	2.37	2.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.00	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND – 0.3	0.40	V
Input high voltage	V _{IH}	—	LV _{DD} = Min	1.7	_	V
Input low voltage	V _{IL}	—	LV _{DD} = Min	-0.3	0.70	V
Input high current	I _{IH}	V _{IN} ¹ =	= LV _{DD}	—	10	μA
Input low current	IIL	V _{IN} =	LV _{DD}	-15	—	μΑ

Table 28. MII Management DC Electrical Characteristics Powered at 2.5 V

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Table 29. MII Management DC Electrical	Characteristics Powered at 3.3 V

Parameter	Symbol	Cond	itions	Min	Мах	Unit
Supply voltage (3.3 V)	LV _{DD}	_	_	2.97	3.63	V
Output high voltage	V _{OH}	I _{OH} = -1.0 mA	LV _{DD} = Min	2.10	LV _{DD} + 0.3	V
Output low voltage	V _{OL}	I _{OL} = 1.0 mA	LV _{DD} = Min	GND	0.50	V
Input high voltage	V _{IH}	-	_	2.00	—	V
Input low voltage	V _{IL}	-	_	—	0.80	V
Input high current	IIH	LV _{DD} = Max	$V_{IN}^{1} = 2.1 V$	_	40	μA
Input low current	١ _{IL}	LV _{DD} = Max	V _{IN} = 0.5 V	-600	—	μA

Note:

1. The symbol V_{IN} , in this case, represents the LV_{IN} symbol referenced in Table 1 and Table 2.

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Output hold from local bus clock for LAD/LDP	t _{LBKHOX2}	1	—	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	—	3.8	ns	8

Notes:

The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
</sub>

2. All timings are in reference to the rising edge of LSYNC_IN.

- 3. All signals are measured from $OV_{DD}/2$ of the rising edge of LSYNC_IN to $0.4 \times OV_{DD}$ of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on the LALE output pin equals the load on the LAD output pins.
- 8. For active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to that of the leakage current specification.

Table 35. Local Bus General Timing Parameters—DLL Bypass⁹

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus cycle time	t _{LBK}	15	_	ns	2
Input setup to local bus clock	t _{LBIVKH}	7	_	ns	3, 4
Input hold from local bus clock	t _{lbixkh}	1.0	—	ns	3, 4
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT1}	1.5	_	ns	5
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT2}	3	—	ns	6
LALE output fall to LAD output transition (LATCH hold time)	t _{LBOTOT3}	2.5		ns	7

Table 35. Local Bus General Timing Parameters—DLL Bypass ⁹ (continued)

Parameter	Symbol ¹	Min	Мах	Unit	Notes
Local bus clock to output valid	t _{LBKLOV}	_	3	ns	3
Local bus clock to output high impedance for LAD/LDP	t _{LBKHOZ}	_	4	ns	8

Notes:

- The symbols for timing specifications follow the pattern of t<sub>(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state)} for outputs. For example, t_{LBIXKH1} symbolizes local bus timing (LB) for the input (I) to go invalid (X) with respect to the time the t_{LBK} clock reference (K) goes high (H), in this case for clock one (1). Also, t_{LBKHOX} symbolizes local bus timing (LB) for the t_{LBK} clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or output hold time.
 </sub>
- 2. All timings are in reference to the falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or the rising edge of LCLK0 (for all other inputs).
- 3. All signals are measured from $OV_{DD}/2$ of the rising/falling edge of LCLK0 to $0.4 \times OV_{DD}$ of the signal in question for 3.3 V signaling levels.
- 4. Input timings are measured at the pin.
- 5. t_{LBOTOT1} should be used when RCWH[LALE] is not set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.
- 6. t_{LBOTOT2} should be used when RCWH[LALE] is set and when the load on the LALE output pin is at least 10 pF less than the load on the LAD output pins.the
- 7. t_{LBOTOT3} should be used when RCWH[LALE] is set and when the load on the LALE output pin equals to the load on the LAD output pins.
- 8. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered through the component pin is less than or equal to the leakage current specification.
- 9. DLL bypass mode is not recommended for use at frequencies above 66 MHz.

Figure 19 provides the AC test load for the local bus.

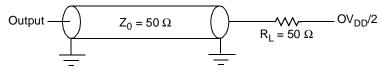


Figure 19. Local Bus C Test Load

Local Bus

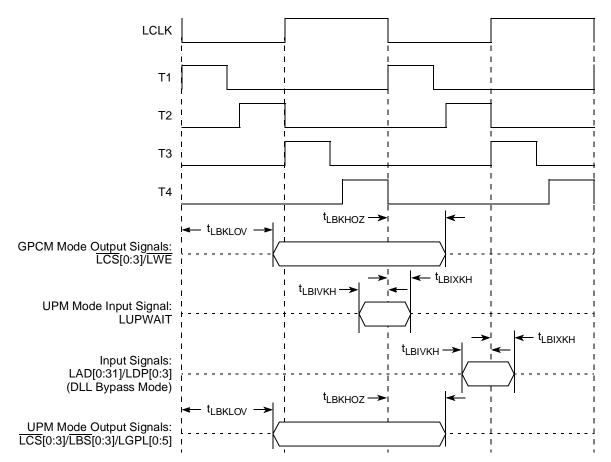


Figure 24. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (DLL Bypass Mode)

Figure 34 shows the PCI input AC timing diagram.

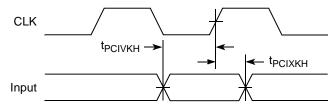
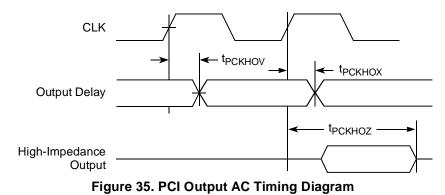



Figure 34. PCI Input AC Timing Diagram

Figure 35 shows the PCI output AC timing diagram.

MPC8347E PowerQUICC™ II Pro Integrated Host Processor Hardware Specifications, Rev. 11

Signal	Package Pin Number	Pin Type	Power Supply	Notes
PCI1_IRDY	E13	I/O	OV _{DD}	5
PCI1_STOP	C13	I/O	OV _{DD}	5
PCI1_DEVSEL	B13	I/O	OV _{DD}	5
PCI1_IDSEL	C17	I	OV _{DD}	
PCI1_SERR	C12	I/O	OV _{DD}	5
PCI1_PERR	B12	I/O	OV _{DD}	5
PCI1_REQ[0]	A21	I/O	OV _{DD}	
PCI1_REQ[1]/CPCI1_HS_ES	C19	I	OV _{DD}	
PCI1_REQ[2:4]	C18, A19, E20	I	OV _{DD}	
PCI1_GNT0	B20	I/O	OV _{DD}	
PCI1_GNT1/CPCI1_HS_LED	C20	0	OV _{DD}	
PCI1_GNT2/CPCI1_HS_ENUM	B19	0	OV _{DD}	
PCI1_GNT[3:4]	A20, E18	0	OV _{DD}	
M66EN	L26	I	OV _{DD}	
	DDR SDRAM Memory Interface			
MDQ[0:63]	AC25, AD27, AD25, AH27, AE28, AD26, AD24, AF27, AF25, AF28, AH24, AG26, AE25, AG25, AH26, AH25, AG22, AH22, AE21, AD19, AE22, AF23, AE19, AG20, AG19, AD17, AE16, AF16, AF18, AG18, AH17, AH16, AG9, AD12, AG7, AE8, AD11, AH9, AH8, AF6, AF8, AE6, AF1, AE4, AG8, AH3, AG3, AG4, AH2, AD7, AB4, AB3, AG1, AD5, AC2, AC1, AC4, AA3, Y4, AA4, AB1, AB2, Y5, Y3	I/O	GV _{DD}	
MECC[0:4]/MSRCID[0:4]	AG13, AE14, AH12, AH10, AE15	I/O	GV _{DD}	
MECC[5]/MDVAL	AH14	I/O	GV _{DD}	
MECC[6:7]	AE13, AH11	I/O	GV _{DD}	
MDM[0:8]	AG28, AG24, AF20, AG17, AE9, AH5, AD1, AA2, AG12	0	GV _{DD}	
MDQS[0:8]	AE27, AE26, AE20, AH18, AG10, AF5, AC3, AA1, AH13	I/O	GV _{DD}	
MBA[0:1]	AF10, AF11	0	GV _{DD}	
MA[0:14]	AF13, AF15, AG16, AD16, AF17, AH20, AH19, AH21, AD18, AG21, AD13, AF21, AF22, AE1, AA5	0	GV _{DD}	
MWE	AD10	0	GV _{DD}	
MRAS	AF7	0	GV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
SPIMISO	C7	I/O	OV_{DD}	
SPICLK	B7	I/O	OV _{DD}	
SPISEL	A7	I	OV _{DD}	
	Clocks			
PCI_CLK_OUT[0:2]	Y1, W3, W2	0	OV_DD	
PCI_CLK_OUT[3]/LCS[6]	W1	0	OV _{DD}	
PCI_CLK_OUT[4]/LCS[7]	V3	0	OV _{DD}	
PCI_SYNC_IN/PCI_CLOCK	U4	I	OV_DD	
PCI_SYNC_OUT	U5	0	OV _{DD}	3
RTC/PIT_CLOCK	E9	I	OV_DD	
CLKIN	W5	I	OV_DD	
	JTAG			
тск	H27	I	OV _{DD}	
TDI	H28	I	OV_{DD}	4
TDO	M24	0	OV _{DD}	3
TMS	J27	I	OV _{DD}	4
TRST	K26	I	OV _{DD}	4
	Test			
TEST	F28	I	OV _{DD}	6
TEST_SEL	ТЗ	I	OV _{DD}	6
	PMC			
QUIESCE	K27	0	OV _{DD}	
	System Control			
PORESET	K28	I	OV _{DD}	
HRESET	M25	I/O	OV _{DD}	1
SRESET	L27	I/O	OV _{DD}	2
	Thermal Management			
THERM0	B15	I	_	8
	Power and Ground Signals			
AV _{DD} 1	C15	Power for e300 AV _{DD} 1 PLL (1.2 V)		
AV _{DD} 2	U1	Power for system PLL (1.2 V)	AV _{DD} 2	

Clocking

Table 54 provides the operating frequencies for the MPC8347E TBGA under recommended operating conditions (see Table 2).

Characteristic ¹	400 MHz	533 MHz	667 MHz	Unit
e300 core frequency (<i>core_clk</i>)	266–400	266–533	266–667	MHz
Coherent system bus frequency (<i>csb_clk</i>)	100–266	100–266	100–333	MHz
DDR and memory bus frequency (MCLK) ²	100–133	100–133	100–166.67	MHz
Local bus frequency (LCLK <i>n</i>) ³	16.67–133	16.67–133	16.67–133	MHz
PCI input frequency (CLKIN or PCI_CLK)	25–66	25–66	25–66	MHz
Security core maximum internal operating frequency	133	133	166	MHz
USB_DR, USB_MPH maximum internal operating frequency	133	133	166	MHz

Table 54. Operating Frequencies for TBGA

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.

² The DDR data rate is 2x the DDR memory bus frequency.

³ The local bus frequency is 1/2, 1/4, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the *csb_clk* frequency (depending on RCWL[LBIUCM]).

Table 55 provides the operating frequencies for the MPC8347E PBGA under recommended operating conditions.

Characteristic ¹	266 MHz	333 MHz	400 MHz	Unit
e300 core frequency (<i>core_clk</i>)	200–266	200–333	200–400	MHz
Coherent system bus frequency (<i>csb_clk</i>) 100–266				MHz
Local bus frequency (LCLKn) ²	16.67–133			
PCI input frequency (CLKIN or PCI_CLK)	25–66			
Security core maximum internal operating frequency	133			
USB_DR, USB_MPH maximum internal operating frequency		MHz		

Table 55. Operating Frequencies for PBGA

¹ The CLKIN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen so that the resulting *csb_clk*, MCLK, LCLK[0:2], and *core_clk* frequencies do not exceed their respective maximum or minimum operating frequencies. The value of SCCR[ENCCM], SCCR[USBDRCM], and SCCR[USBMPHCM] must be programmed so that the maximum internal operating frequency of the Security core and USB modules does not exceed the respective values listed in this table.

² The local bus frequency is 1/2, 1/4, or 1/8 of the *lbiu_clk* frequency (depending on LCCR[CLKDIV]) which is in turn 1x or 2x the *csb_clk* frequency (depending on RCWL[LBIUCM]).

Ref No. ¹	RC	RCWL 400 M		RCWL 400 MHz Device 533 MHz Device			ice	533	3 MHz Dev	ice	667	7 MHz Dev	ice
	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)		
				33 M		PCI_CLK	Options	Į	Į		1		
922	1001	0100010	_	—	—	—	_	f300	33	300	300		
723	0111	0100011	33	233	350	33	233	350	33	233	350		
604	0110	0000100	33	200	400	33	200	400	33	200	400		
624	0110	0100100	33	200	400	33	200	400	33	200	400		
803	1000	0000011	33	266	400	33	266	400	33	266	400		
823	1000	0100011	33	266	400	33	266	400	33	266	400		
903	1001	0000011			•	33	300	450	33	300	450		
923	1001	0100011				33	300	450	33	300	450		
704	0111	0000011				33	233	466	33	233	466		
724	0111	0100011				33	233	466	33	233	466		
A03	1010	0000011				33	333	500	33	333	500		
804	1000	0000100				33	266	533	33	266	533		
705	0111	0000101					—		33	233	583		
606	0110	0000110				_		33	200	600			
904	1001	0000100		_		_		33	300	600			
805	1000	0000101		_		—		33	266	667			
A04	1010	0000100		_			_		33	333	667		
				66 M		/PCI_CLK	Options						
304	0011	0000100	66	200	400	66	200	400	66	200	400		
324	0011	0100100	66	200	400	66	200	400	66	200	400		
403	0100	0000011	66	266	400	66	266	400	66	266	400		
423	0100	0100011	66	266	400	66	266	400	66	266	400		
305	0011	0000101		_		66	200	500	66	200	500		
503	0101	0000011	—		66	333	500	66	333	500			
404	0100	0000100		_		66	266	533	66	266	533		
306	0011	0000110		_					66	200	600		
405	0100	0000101		_					66	266	667		
504	0101	0000100							66	333	667		

¹ The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and COREPLL settings given in the table.

² The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.

Thermal

many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_A = ambient temperature for the package (°C)

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition: the component is soldered to a board with internal planes.

20.2.3 Experimental Determination of Junction Temperature

To determine the junction temperature of the device in the application after prototypes are available, use the thermal characterization parameter (Ψ_{JT}) to determine the junction temperature and a measure of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 T_J = junction temperature (°C)

 T_T = thermocouple temperature on top of package (°C)

 Ψ_{JT} = junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per the JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

20.2.4 Heat Sinks and Junction-to-Case Thermal Resistance

Some application environments require a heat sink to provide the necessary thermal management of the device. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

Thermal

Hast Sink Assuming Thermal Crosse	Air Flow	$29 \times 29 \text{ mm PBGA}$	
Heat Sink Assuming Thermal Grease	AIT FIOW	Thermal Resistance	
AAVID $30 \times 30 \times 9.4$ mm pin fin	2 m/s	8.8	
AAVID 31 \times 35 \times 23 mm pin fin	Natural convection	11.3	
AAVID 31 \times 35 \times 23 mm pin fin	1 m/s	8.1	
AAVID 31 \times 35 \times 23 mm pin fin	2 m/s	7.5	
Wakefield, $53 \times 53 \times 25$ mm pin fin	Natural convection	9.1	
Wakefield, $53 \times 53 \times 25$ mm pin fin	1 m/s	7.1	
Wakefield, $53 \times 53 \times 25$ mm pin fin	2 m/s	6.5	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	Natural convection	10.1	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	1 m/s	7.7	
MEI, $75 \times 85 \times 12$ no adjacent board, extrusion	2 m/s	6.6	
MEI, $75 \times 85 \times 12$ mm, adjacent board, 40 mm side bypass	1 m/s	6.9	

Table 64. Heat Sink and Thermal Resistance of MPC8347E (PBGA) (continued)

Accurate thermal design requires thermal modeling of the application environment using computational fluid dynamics software which can model both the conduction cooling and the convection cooling of the air moving through the application. Simplified thermal models of the packages can be assembled using the junction-to-case and junction-to-board thermal resistances listed in the thermal resistance table. More detailed thermal models can be made available on request.

Heat sink vendors include the following list:

Aavid Thermalloy 80 Commercial St. Concord, NH 03301	603-224-9988
Internet: www.aavidthermalloy.com	
Alpha Novatech 473 Sapena Ct. #12 Santa Clara, CA 95054 Internet: www.alphanovatech.com	408-567-8082
International Electronic Research Corporation (IERC) 413 North Moss St. Burbank, CA 91502 Internet: www.ctscorp.com	818-842-7277
Millennium Electronics (MEI) Loroco Sites 671 East Brokaw Road San Jose, CA 95112 Internet: www.mei-thermal.com	408-436-8770

Thermal

required in the heat sink. Minimize the size of the clearance to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

$$T_J = T_C + (R_{\theta JC} \times P_D)$$

where:

 T_J = junction temperature (°C) T_C = case temperature of the package (°C) $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W) P_D = power dissipation (W)

System Design Information

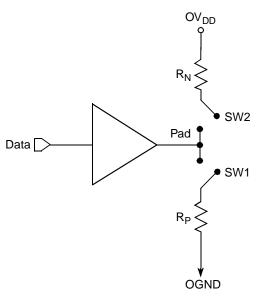


Figure 43. Driver Impedance Measurement

Two measurements give the value of this resistance and the strength of the driver current source. First, the output voltage is measured while driving logic 1 without an external differential termination resistor. The measured voltage is $V_1 = R_{source} \times I_{source}$. Second, the output voltage is measured while driving logic 1 with an external precision differential termination resistor of value R_{term} . The measured voltage is $V_2 = (1/(1/R_1 + 1/R_2)) \times I_{source}$. Solving for the output impedance gives $R_{source} = R_{term} \times (V_1/V_2 - 1)$. The drive current is then $I_{source} = V_1/R_{source}$.

Table 65 summarizes the signal impedance targets. The driver impedance are targeted at minimum V_{DD} , nominal OV_{DD} , 105°C.

Impedance	Local Bus, Ethernet, DUART, Control, Configuration, Power Management	PCI Signals (Not Including PCI Output Clocks)	PCI Output Clocks (Including PCI_SYNC_OUT)	DDR DRAM	Symbol	Unit
R _N	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
R _P	42 Target	25 Target	42 Target	20 Target	Z ₀	Ω
Differential	NA	NA	NA	NA	Z _{DIFF}	Ω

Table 65. Impedance Characteristics

Note: Nominal supply voltages. See Table 1, $T_i = 105^{\circ}C$.

21.6 Configuration Pin Multiplexing

The MPC8347E power-on configuration options can be set through external pull-up or pull-down resistors of 4.7 k Ω on certain output pins (see the customer-visible configuration pins). These pins are used as output only pins in normal operation.

However, while HRESET is asserted, these pins are treated as inputs, and the value on these pins is latched when PORESET deasserts. Then the input receiver is disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections to these pull-up/pull-down resistors coupled with

Revision	Date	Substantive Change(s)			
1	4/2005	Table 1: Addition of note 1 Table 48: Addition of Therm0 (K32) Table 49: Addition of Therm0 (B15)			
0	4/2005	Initial release.			

Table 66. Document Revision History (continued)