

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Obsolete
PowerPC e300
1 Core, 32-Bit
533MHz
-
DDR
No
-
10/100/1000Mbps (2)
-
USB 2.0 + PHY (2)
2.5V, 3.3V
0°C ~ 105°C (TA)
-
672-LBGA
672-LBGA (35x35)
https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8347zuajdb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 6. DDR AC Test Load

Table 15 shows the DDR SDRAM measurement conditions.

Table 15. DDR SDRAM Measurement Conditions

Symbol	DDR	Unit	Notes
V _{TH}	MV _{REF} ± 0.31 V	V	1
V _{OUT}	$0.5 imes GV_{DD}$	V	2

Notes:

1. Data input threshold measurement point.

2. Data output measurement point.

Figure 7 shows the DDR SDRAM output timing diagram for source synchronous mode.

Figure 7. DDR SDRAM Output Timing Diagram for Source Synchronous Mode

Table 16 provides approximate delay information that can be expected for the address and command signals of the DDR controller for various loadings, which can be useful for a system utilizing the DLL. These numbers are the result of simulations for one topology. The delay numbers will strongly depend on the topology used. These delay numbers show the total delay for the address and command to arrive at the DRAM devices. The actual delay could be different than the delays seen in simulation, depending on the system topology. If a heavily loaded system is used, the DLL loop may need to be adjusted to meet setup requirements at the DRAM.

Ethernet: Three-Speed Ethernet, MII Management

Figure 8 shows the GMII transmit AC timing diagram.

Figure 8. GMII Transmit AC Timing Diagram

8.2.1.2 GMII Receive AC Timing Specifications

Table 22 provides the GMII receive AC timing specifications.

Table 22. GMII Receive AC Timing Specifications

At recommended operating conditions with LV_{DD}/OV_{DD} of 3.3 V ± 10%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit
RX_CLK clock period	t _{GRX}	_	8.0	—	ns
RX_CLK duty cycle	t _{GRXH} /t _{GRX}	40	—	60	%
RXD[7:0], RX_DV, RX_ER setup time to RX_CLK	t _{GRDVKH}	2.0	—	—	ns
RXD[7:0], RX_DV, RX_ER hold time to RX_CLK	t _{GRDXKH}	0.5	—	—	ns
RX_CLK clock rise, V _{IL} (min) to V _{IH} (max)	t _{GRXR}	-	—	1.0	ns
RX_CLK clock fall time, $V_{IH}(max)$ to $V_{IL}(min)$	t _{GRXF}			1.0	ns

Note:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{GRDVKH} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{RX} clock reference (K) going to the high state (H) or setup time. Also, t_{GRDXKL} symbolizes GMII receive timing (GR) with respect to the time data input signals (D) went invalid (X) relative to the t_{GRX} clock reference (K) going to the low (L) state or hold time. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For example, the subscript of t_{GRX} represents the GMII (G) receive (RX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}

8.3.2 MII Management AC Electrical Specifications

Table 30 provides the MII management AC timing specifications.

Table 30. MII Management AC Timing Specifications

At recommended operating conditions with LV_{DD} is 3.3 V ± 10% or 2.5 V ± 5%.

Parameter/Condition	Symbol ¹	Min	Тур	Мах	Unit	Notes
MDC frequency	f _{MDC}	—	2.5	_	MHz	2
MDC period	t _{MDC}	—	400	—	ns	
MDC clock pulse width high	t _{MDCH}	32	—	—	ns	
MDC to MDIO delay	t _{MDKHDX}	10	—	170	ns	3
MDIO to MDC setup time	t _{MDDVKH}	5	—	—	ns	
MDIO to MDC hold time	t _{MDDXKH}	0	—	—	ns	
MDC rise time	t _{MDCR}	—	—	10	ns	
MDC fall time	t _{MDHF}	_	_	10	ns	

Notes:

1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{MDKHDX} symbolizes management data timing (MD) for the time t_{MDC} from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time. Also, t_{MDDVKH} symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{MDC} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}

- 2. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the maximum frequency is 8.3 MHz and the minimum frequency is 1.2 MHz; for a csb_clk of 375 MHz, the maximum frequency is 11.7 MHz and the minimum frequency is 1.7 MHz).
- 3. This parameter is dependent on the csb_clk speed (that is, for a csb_clk of 267 MHz, the delay is 70 ns and for a csb_clk of 333 MHz, the delay is 58 ns).

Figure 16 shows the MII management AC timing diagram.

Figure 16. MII Management Interface Timing Diagram

Figure 17 and Figure 18 provide the AC test load and signals for the USB, respectively.

Table 37. JTAG AC Timing Specifications (Independent of CLKIN)¹ (continued)

At recommended operating conditions (see Table 2).

Parameter	Symbol ²	Min	Max	Unit	Notes
Output hold times: Boundary-scan data TDO	^t jtkldx ^t jtklox	2 2		ns	5
JTAG external clock to output high impedance: Boundary-scan data TDO	^t jtkldz ^t jtkloz	2 2	19 9	ns	5, 6

Notes:

- 1. All outputs are measured from the midpoint voltage of the falling/rising edge of t_{TCLK} to the midpoint of the signal in question. The output timings are measured at the pins. All output timings assume a purely resistive 50 Ω load (see Figure 26). Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.
- 2. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{JTDVKH} symbolizes JTAG device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the t_{JTG} clock reference (K) going to the high (H) state or setup time. Also, t_{JTDXKH} symbolizes JTAG timing (JT) with respect to the time data input signals (D) went invalid (X) relative to the t_{JTG} clock reference (K) going to the high (H) state. In general, the clock reference symbol is based on three letters representing the clock of a particular function. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}
- 3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
- 4. Non-JTAG signal input timing with respect to t_{TCLK}.
- 5. Non-JTAG signal output timing with respect to t_{TCLK} .
- 6. Guaranteed by design and characterization.

Figure 26 provides the AC test load for TDO and the boundary-scan outputs of the MPC8347E.

Figure 26. AC Test Load for the JTAG Interface

Figure 27 provides the JTAG clock input timing diagram.

Figure 27. JTAG Clock Input Timing Diagram

Parameter	Symbol ¹	Min	Мах	Unit
Fall time of both SDA and SCL signals ⁵	t _{I2CF}	—	300	ns
Setup time for STOP condition	t _{I2PVKH}	0.6	—	μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	—	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	—	V
Noise margin at the HIGH level for each connected device (including hysteresis)	V _{NH}	$0.2 \times \text{OV}_{\text{DD}}$	_	V

Table 39. I²C AC Electrical Specifications (continued)

Notes:

- 1. The symbols for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)(reference)(state) for inputs and t_{(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{12DVKH} symbolizes I²C timing (I2) with respect to the time data input signals (D) reach the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. Also, t_{12SXKL} symbolizes I²C timing (I2) for the time that the data with respect to the start condition (S) goes invalid (X) relative to the t_{12C} clock reference (K) going to the stop condition (P) reaches the valid state (V) relative to the t_{12C} clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).}}
- MPC8347E provides a hold time of at least 300 ns for the SDA signal (referred to the V_{IH}(min) of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 3. The maximum t_{I2DVKH} must be met only if the device does not stretch the LOW period (t_{I2CL}) of the SCL signal.
- 4. C_B = capacitance of one bus line in pF.
- 5.) The MPC8347E does not follow the "I2C-BUS Specifications" version 2.1 regarding the tI2CF AC parameter.

Figure 31 provides the AC test load for the I^2C .

Figure 31. I²C AC Test Load

Figure 32 shows the AC timing diagram for the I^2C bus.

Figure 32. I²C Bus AC Timing Diagram

Timers

14 Timers

This section describes the DC and AC electrical specifications for the timers.

14.1 Timer DC Electrical Characteristics

Table 43 provides the DC electrical characteristics for the MPC8347E timer pins, including TIN, $\overline{\text{TOUT}}$, $\overline{\text{TGATE}}$, and RTC_CLK.

Characteristic	Symbol	Condition	Min	Мах	Unit
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V
Input low voltage	V _{IL}		-0.3	0.8	V
Input current	I _{IN}			±5	μA
Output high voltage	V _{OH}	I _{OH} = -8.0 mA	2.4	—	V
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V

Table 43. Timer DC Electrical Characteristics

14.2 Timer AC Timing Specifications

Table 44 provides the timer input and output AC timing specifications.

Table 44. Timers Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
Timers inputs—minimum pulse width	t _{TIWID}	20	ns

Notes:

1. Input specifications are measured from the 50 percent level of the signal to the 50 percent level of the rising edge of CLKIN. Timings are measured at the pin.

2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

IPIC

16 IPIC

This section describes the DC and AC electrical specifications for the external interrupt pins.

16.1 IPIC DC Electrical Characteristics

Table 47 provides the DC electrical characteristics for the external interrupt pins.

Characteristic	Symbol	Condition	Min	Мах	Unit	Notes
Input high voltage	V _{IH}		2.0	OV _{DD} + 0.3	V	
Input low voltage	V _{IL}		-0.3	0.8	V	
Input current	I _{IN}			±5	μA	
Output low voltage	V _{OL}	I _{OL} = 8.0 mA	—	0.5	V	2
Output low voltage	V _{OL}	I _{OL} = 3.2 mA	—	0.4	V	2

Notes:

1. This table applies for pins IRQ[0:7], IRQ_OUT, and MCP_OUT.

2. $\overline{\text{IRQ}_\text{OUT}}$ and $\overline{\text{MCP}_\text{OUT}}$ are open-drain pins; thus V_OH is not relevant for those pins.

16.2 IPIC AC Timing Specifications

Table 48 provides the IPIC input and output AC timing specifications.

Table 48. IPIC Input AC Timing Specifications¹

Characteristic	Symbol ²	Min	Unit
IPIC inputs—minimum pulse width	t _{PICWID}	20	ns

Notes:

1. Input specifications are measured at the 50 percent level of the IPIC input signals. Timings are measured at the pin.

 IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized before use by external synchronous logic. IPIC inputs must be valid for at least t_{PICWID} ns to ensure proper operation in edge triggered mode.

18 Package and Pin Listings

This section details package parameters, pin assignments, and dimensions. The MPC8347E is available in two packages—a tape ball grid array (TBGA) and a plastic ball grid array (PBGA). See Section 18.1, "Package Parameters for the MPC8347E TBGA," Section 18.2, "Mechanical Dimensions for the MPC8347E TBGA, Section 18.3, "Package Parameters for the MPC8347E PBGA," and Section 18.4, "Mechanical Dimensions for the MPC8347E PBGA."

18.1 Package Parameters for the MPC8347E TBGA

The package parameters are provided in the following list. The package type is $35 \text{ mm} \times 35 \text{ mm}$, 672 tape ball grid array (TBGA).

Package outline	$35 \text{ mm} \times 35 \text{ mm}$
Interconnects	672
Pitch	1.00 mm
Module height (typical)	1.46 mm
Solder balls	62 Sn/36 Pb/2 Ag (ZU package) 95.5 Sn/0.5 Cu/4Ag (VV package)
Ball diameter (typical)	0.64 mm

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MPH1_NXT/DR_SESS_VLD_NXT	D27	I	OV _{DD}	
MPH1_DIR_DPPULLUP/ DR_XCVR_SEL_DPPULLUP	A28	I/O	OV _{DD}	
MPH1_STP_SUSPEND/ DR_STP_SUSPEND	F26	0	OV _{DD}	
MPH1_PWRFAULT/ DR_RX_ERROR_PWRFAULT	E27	I	OV _{DD}	
MPH1_PCTL0/DR_TX_VALID_PCTL0	A29	0	OV _{DD}	
MPH1_PCTL1/DR_TX_VALIDH_PCTL1	D28	0	OV _{DD}	
MPH1_CLK/DR_CLK	B29	I	OV _{DD}	
	USB Port 0			1
MPH0_D0_ENABLEN/DR_D8_CHGVBUS	C29	I/O	OV _{DD}	
MPH0_D1_SER_TXD/DR_D9_DCHGVBUS	A30	I/O	OV _{DD}	
MPH0_D2_VMO_SE0/DR_D10_DPPD	E28	I/O	OV _{DD}	
MPH0_D3_SPEED/DR_D11_DMMD	B30	I/O	OV _{DD}	
MPH0_D4_DP/DR_D12_VBUS_VLD	C30	I/O	OV _{DD}	
MPH0_D5_DM/DR_D13_SESS_END	A31	I/O	OV _{DD}	
MPH0_D6_SER_RCV/DR_D14	B31	I/O	OV _{DD}	
MPH0_D7_DRVVBUS/DR_D15_IDPULLUP	C31	I/O	OV _{DD}	
MPH0_NXT/DR_RX_ACTIVE_ID	B32	I	OV _{DD}	
MPH0_DIR_DPPULLUP/DR_RESET	A32	I/O	OV _{DD}	
MPH0_STP_SUSPEND/DR_TX_READY	A33	I/O	OV _{DD}	
MPH0_PWRFAULT/DR_RX_VALIDH	C32	I	OV _{DD}	
MPH0_PCTL0/DR_LINE_STATE0	D31	I/O	OV _{DD}	
MPH0_PCTL1/DR_LINE_STATE1	E30	I/O	OV _{DD}	
MPH0_CLK/DR_RX_VALID	B33	I	OV _{DD}	
P	rogrammable Interrupt Controller			
MCP_OUT	AN33	0	OV _{DD}	2
IRQ0/MCP_IN/GPIO2[12]	C19	I/O	OV _{DD}	
IRQ[1:5]/GPIO2[13:17]	C22, A22, D21, C21, B21	I/O	OV _{DD}	
IRQ[6]/GPIO2[18]/CKSTOP_OUT	A21	I/O	OV _{DD}	
IRQ[7]/GPIO2[19]/CKSTOP_IN	C20	I/O	OV _{DD}	
	Ethernet Management Interface	1	1	1
EC_MDC	A7	0	LV _{DD1}	
EC_MDIO	E9	I/O	LV _{DD1}	2

Table 51. MPC8347E (TBGA) Pinout Listing (continued)

Table 51. MPC8347	E (TBGA) Pino	ut Listing (continued)
-------------------	---------------	------------------------

Signal	Package Pin Number	Pin Type	Power Supply	Notes
	System Control			
PORESET	C18	I	OV_{DD}	
HRESET	B18	I/O	OV_{DD}	1
SRESET	D18	I/O	OV_{DD}	2
	Thermal Management			
THERM0	K32	I	_	9
	Power and Ground Signals			
AV _{DD} 1	L31	Power for e300 PLL (1.2 V)	AV _{DD} 1	
AV _{DD} 2 AP12		Power for system PLL (1.2 V)	AV _{DD} 2	
AV _{DD} 3	AE1	Power for DDR DLL (1.2 V)	AV _{DD} 3	
AV _{DD} 4	AJ13	Power for LBIU DLL (1.2 V)	AV _{DD} 4	
GND	ID A1, A34, C1, C7, C10, C11, C15, C23, C25, C28, D1, D8, D20, D30, E7, E13, E15, E17, E18, E21, E23, E25, E32, F6, F19, F27, F30, F34, G31, H5, J4, J34, K30, L5, M2, M5, M30, M33, N3, N5, P30, R5, R32, T5, T30, U6, U29, U33, V2, V5, V30, W6, W30, Y30, A42, AA30, AB2, AB6, AB30, AC3, AC6, AD31, AE5, AF2, AF5, AF31, AG30, AG31, AH4, AJ3, AJ19, AJ22, AK7, AK13, AK14, AK16, AK18, AK20, AK25, AK28, AL3, AL5, AL10, AL12, AL22, AL27, AM1, AM6, AM7, AN12, AN17, AN34, AP1, AP8, AP34		_	
GV _{DD}	A2, E2, G5, G6, J5, K4, K5, L4, N4, P5, R6, T6, U5, V1, W5, Y5, AA4, AB3, AC4, AD5, AF3, AG5, AH2, AH5, AH6, AJ6, AK6, AK8, AK9, AL6	Power for DDR DRAM I/O voltage (2.5 V)	GV _{DD}	
LV _{DD} 1	C9, D11	Power for three-speed Ethernet #1 and for Ethernet management interface I/O (2.5 V, 3.3 V)	LV _{DD} 1	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes
MCAS	AG6	0	GV _{DD}	
MCS[0:3]	AE7, AH7, AH4, AF2	0	GV _{DD}	
MCKE[0:1]	AG23, AH23	0	GV _{DD}	3
MCK[0:5]	AH15, AE24, AE2, AF14, AE23, AD3	0	GV _{DD}	
MCK[0:5]	AG15, AD23, AE3, AG14, AF24, AD2	0	GV _{DD}	
(They sh	Pins Reserved for Future DDR2 hould be left unconnected for MPC834	7)		
MODT[0:3]	AG5, AD4, AH6, AF4	—	—	
MBA[2]	AD22			
SPARE1	AF12	_	_	7
SPARE2	AG11	_	_	6
	Local Bus Controller Interface		l	
LAD[0:31]	T4, T5, T1, R2, R3, T2, R1, R4, P1, P2, P3, P4, N1, N4, N2, N3, M1, M2, M3, N5, M4, L1, L2, L3, K1, M5, K2, K3, J1, J2, L5, J3	I/O	OV _{DD}	
LDP[0]/CKSTOP_OUT	H1	I/O	OV _{DD}	
LDP[1]/CKSTOP_IN	К5	I/O	OV _{DD}	
LDP[2]	H2	I/O	OV _{DD}	
LDP[3]	G1	I/O	OV _{DD}	
LA[27:31]	J4, H3, G2, F1, G3	0	OV _{DD}	
LCS[0:3]	J5, H4, F2, E1	0	OV _{DD}	
LWE[0:3]/LSDDQM[0:3]/LBS[0:3]	F3, G4, D1, E2	0	OV _{DD}	
LBCTL	H5	0	OV _{DD}	
LALE	E3	0	OV _{DD}	
LGPL0/LSDA10/cfg_reset_source0	F4	I/O	OV _{DD}	
LGPL1/LSDWE/cfg_reset_source1	D2	I/O	OV _{DD}	
LGPL2/LSDRAS/LOE	C1	0	OV _{DD}	
LGPL3/LSDCAS/cfg_reset_source2	C2	I/O	OV _{DD}	
LGPL4/LGTA/LUPWAIT/LPBSE	C3	I/O	OV _{DD}	
LGPL5/cfg_clkin_div	В3	I/O	OV _{DD}	
LCKE	E4	0	OV _{DD}	
LCLK[0:2]	D4, A3, C4	0	OV _{DD}	
LSYNC_OUT	U3	0	OV _{DD}	
LSYNC_IN	Y2	I	OV _{DD}	

Table 52. MPC8347E (PBGA) Pinout Listing (continued)

Signal	Package Pin Number	Pin Type	Power Supply	Notes		
MVREF1	AF19	I	DDR reference voltage			
MVREF2	AE10	I	DDR reference voltage			
No Connection						
NC	V1, V2, V5					

Notes:

- 1. This pin is an open-drain signal. A weak pull-up resistor (1 k Ω) should be placed on this pin to OV_{DD}.
- 2. This pin is an open-drain signal. A weak pull-up resistor (2–10 k Ω) should be placed on this pin to OV_{DD}.
- 3. During reset, this output is actively driven rather than three-stated.
- 4. These JTAG pins have weak internal pull-up P-FETs that are always enabled.
- 5. This pin should have a weak pull-up if the chip is in PCI host mode. Follow the PCI specifications.
- 6. This pin must always be tied to GND.
- 7. This pin must always be left not connected.
- 8. Thermal sensitive resistor.
- 9. It is recommended that MDIC0 be tied to GRD using an 18 Ω resistor and MDIC1 be tied to DDR power using an 18 Ω resistor.
- 10.TSEC1_TXD[3] is required an external pull-up resistor. For proper functionality of the device, this pin must be pulled up or actively driven high during a hard reset. No external pull-down resistors are allowed to be attached to this net.

Clocking

19 Clocking

Figure 41 shows the internal distribution of the clocks.

Figure 41. MPC8347E Clock Subsystem

The primary clock source can be one of two inputs, CLKIN or PCI_CLK, depending on whether the device is configured in PCI host or PCI agent mode. When the MPC8347E is configured as a PCI host device, CLKIN is its primary input clock. CLKIN feeds the PCI clock divider (÷2) and the multiplexors for PCI_SYNC_OUT and PCI_CLK_OUT. The CFG_CLKIN_DIV configuration input selects whether CLKIN or CLKIN/2 is driven out on the PCI_SYNC_OUT signal. The OCCR[PCICD*n*] parameters select whether CLKIN or CLKIN/2 is driven out on the PCI_CLK_OUT n signals.

PCI_SYNC_OUT is connected externally to PCI_SYNC_IN to allow the internal clock subsystem to synchronize to the system PCI clocks. PCI_SYNC_OUT must be connected properly to PCI_SYNC_IN, with equal delay to all PCI agent devices in the system, to allow the MPC8347E to function. When the MPC8347E is configured as a PCI agent device, PCI_CLK is the primary input clock and the CLKIN signal should be tied to GND.

As shown in Figure 41, the primary clock input (frequency) is multiplied up by the system phase-locked loop (PLL) and the clock unit to create the coherent system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the internal clock for the local bus interface unit ($lbiu_clk$).

The *csb_clk* frequency is derived from a complex set of factors that can be simplified into the following equation:

 $csb_clk = \{PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV)\} \times SPMF$

In PCI host mode, PCI_SYNC_IN \times (1 + CFG_CLKIN_DIV) is the CLKIN frequency.

The *csb_clk* serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the *csb_clk* frequency to create the internal clock for the e300 core (*core_clk*). The system and core PLL multipliers are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is loaded at power-on reset or by one of the hard-coded reset options. See the chapter on reset, clocking, and initialization in the *MPC8349E Reference Manual* for more information on the clock subsystem.

The internal *ddr_clk* frequency is determined by the following equation:

 $ddr_clk = csb_clk \times (1 + RCWL[DDRCM])$

 ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR clock divider (÷2) to create the differential DDR memory bus clock outputs (MCK and MCK). However, the data rate is the same frequency as ddr_clk .

The internal *lbiu_clk* frequency is determined by the following equation:

 $lbiu_clk = csb_clk \times (1 + RCWL[LBIUCM])$

lbiu_clk is not the external local bus frequency; *lbiu_clk* passes through the LBIU clock divider to create the external local bus clock outputs (LSYNC_OUT and LCLK[0:2]). The LBIU clock divider ratio is controlled by LCCR[CLKDIV].

In addition, some of the internal units may have to be shut off or operate at lower frequency than the csb_clk frequency. Those units have a default clock ratio that can be configured by a memory-mapped register after the device exits reset. Table 53 specifies which units have a configurable clock frequency.

Unit	Default Frequency	Options
TSEC1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
TSEC2, I ² C1	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
Security core	csb_clk/3	Off, csb_clk, csb_clk/2, csb_clk/3
USB DR, USB MPH	csb_clk/3	Off, csb_clk, csb_clk/2, <i>csb_clk/3</i>
PCI and DMA complex	csb_clk	Off, <i>csb_clk</i>

Table 53. Configurable Clock Units

		ach alk:	Input Clock Frequency (MHz) ²			
CFG_CLKIN_DIV at Reset ¹	FG_CLKIN_DIV at Reset ¹ SPMF Input Clock		16.67	25	33.33	66.67
		Natio	C	s <i>b_clk</i> Freq	uency (MH	z)
Low	0010	2 : 1				133
Low	0011	3 : 1			100	200
Low	0100	4 : 1		100	133	266
Low	0101	5 : 1		125	166	333
Low	0110	6 : 1	100	150	200	
Low	0111	7:1	116	175	233	
Low	1000	8:1	133	200	266	
Low	1001	9:1	150	225	300	
Low	1010	10 : 1	166 250		333	
Low	1011	11 : 1	183	275		
Low	1100	12 : 1	200	300		
Low	1101	13 : 1	216	325		
Low	1110	14 : 1	233		1	
Low	1111	15 : 1	250			
Low	0000	16 : 1	266			
High	0010	4 : 1		100	133	266
High	0011	6 : 1	100	150	200	
High	0100	8 : 1	133	200	266	
High	0101	10 : 1	166 250		333	
High	0110	12 : 1	200	300		
High	0111	14 : 1	233			
High	1000	16 : 1	266			

Table 58. CSB Frequency Options for Agent Mode

¹ CFG_CLKIN_DIV doubles csb_clk if set high.

² CLKIN is the input clock in host mode; PCI_CLK is the input clock in agent mode. DDR2 memory may be used at 133 MHz provided that the memory components are specified for operation at this frequency.

19.2 Core PLL Configuration

RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (*csb_clk*) and the e300 core clock (*core_clk*). Table 59 shows the encodings for RCWL[COREPLL]. COREPLL values that are not listed in Table 59 should be considered as reserved.

NOTE

Core VCO frequency = core frequency \times VCO divider

VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

RCWL[COREPLL]		PLL]	coro alk: ash alk Patio			
0–1	2–5	6		VCO Dividei		
nn	0000	n	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)	PLL bypassed (PLL off, <i>csb_clk</i> clocks core directly)		
00	0001	0	1:1	2		
01	0001	0	1:1	4		
10	0001	0	1:1	8		
11	0001	0	1:1	8		
00	0001	1	1.5:1	2		
01	0001	1	1.5:1	4		
10	0001	1	1.5:1	8		
11	0001	1	1.5:1	8		
00	0010	0	2:1	2		
01	0010	0	2:1	4		
10	0010	0	2:1	8		
11	0010	0	2:1	8		
00	0010	1	2.5:1	2		
01	0010	1	2.5:1	4		
10	0010	1	2.5:1	8		
11	0010	1	2.5:1	8		
00	0011	0	3:1	2		
01	0011	0	3:1	4		
10	0011	0	3:1	8		
11	0011	0	3:1	8		

Table 59. e300 Core PLL Configuration

¹ Core VCO frequency = core frequency × VCO divider. The VCO divider must be set properly so that the core VCO frequency is in the range of 800–1800 MHz.

19.3 Suggested PLL Configurations

Table 60 shows suggested PLL configurations for 33 and 66 MHz input clocks.

Table 60.	Suggested	PLL	Configurations
-----------	-----------	-----	----------------

Ref No. ¹	RC	RCWL 400 MHz Dev		400 MHz Device		533 MHz Device			667 MHz Device		
	SPMF	CORE PLL	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)	Input Clock Freq (MHz) ²	CSB Freq (MHz)	Core Freq (MHz)
				33 M	Hz CLKIN	PCI_CLK	Options				
922	1001	0100010	_	—		—	—	f300	33	300	300
723	0111	0100011	33	233	350	33	233	350	33	233	350
604	0110	0000100	33	200	400	33	200	400	33	200	400
624	0110	0100100	33	200	400	33	200	400	33	200	400
803	1000	0000011	33	266	400	33	266	400	33	266	400
823	1000	0100011	33	266	400	33	266	400	33	266	400
903	1001	0000011	i			33	300	450	33	300	450
923	1001	0100011	_			33	300	450	33	300	450
704	0111	0000011	_			33	233	466	33	233	466
724	0111	0100011	_			33	233	466	33	233	466
A03	1010	0000011		_		33	333	500	33	333	500
804	1000	0000100	_			33	266	533	33	266	533
705	0111	0000101		_					33	233	583
606	0110	0000110					—		33	200	600
904	1001	0000100		_			_		33	300	600
805	1000	0000101		_			_		33	266	667
A04	1010	0000100		_			_		33	333	667
				66 M	Hz CLKIN	PCI_CLK	Options				
304	0011	0000100	66	200	400	66	200	400	66	200	400
324	0011	0100100	66	200	400	66	200	400	66	200	400
403	0100	0000011	66	266	400	66	266	400	66	266	400
423	0100	0100011	66	266	400	66	266	400	66	266	400
305	0011	0000101				66	200	500	66	200	500
503	0101	0000011		_		66	333	500	66	333	500
404	0100	0000100	—			66	266	533	66	266	533
306	0011	0000110					_		66	200	600
405	0100	0000101		—			_		66	266	667
504	0101	0000100							66	333	667

¹ The PLL configuration reference number is the hexadecimal representation of RCWL, bits 4–15 associated with the SPMF and COREPLL settings given in the table.

² The input clock is CLKIN for PCI host mode or PCI_CLK for PCI agent mode.

23 Ordering Information

This section presents ordering information for the device discussed in this document, and it shows an example of how the parts are marked.

NOTE

The information in this document is accurate for revision 1.1 silicon and earlier. For information on revision 3.0 silicon and later versions (orderable part numbers ending with A or B), see the *MPC8347EA PowerQUICCTM II Pro Integrated Host Processor Hardware Specifications* (Document Order No. MPC8347EAEC).

23.1 Part Numbers Fully Addressed by This Document

Table 67 shows an analysis of the Freescale part numbering nomenclature for the MPC8347E. The individual part numbers correspond to a maximum processor core frequency. Each part number also contains a revision code that refers to the die mask revision number. For available frequency configuration parts including extended temperatures, refer to the MPC8347E product summary page on our website listed on the back cover of this document or, contact your local Freescale sales office.

MPC	nnnn	е	t	рр	аа	а	r
Product Code	Part Identifier	Encryption Acceleration	Temperature ¹ Range	Package ²	Processor Frequency ³	Platform Frequency	Revision Level
MPC	8347	Blank = Not included E = included	Blank = 0 to 105°C C = −40 to 105°C	ZU =TBGA VV = PB free TBGA ZQ = PBGA VR = PB Free PBGA	e300 core speed AD = 266 AG = 400 AJ = 533 AL = 667	D = 266 F = 333 ⁴	Blank = 1.1 or 1.0

Table 67. Part Numbering Nomenclature

Notes:

1. For temperature range = C, processor frequency is limited to 400 (PBGA) with a platform frequency of 266 and up to 667(TBGA) with a platform frequency of 333

- 2. See Section 18, "Package and Pin Listings," for more information on available package types.
- Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other maximum core frequencies.
- 4. ALF marked parts support DDR1 up to 333 MHz (at 333 MHz CSB as the 'F' marking implies) and DDR2 up to 400 MHz (at 200 MHz CSB). AJF marked parts support DDR1 and DDR2 up to 333 MHz (at a CSB of 333 MHz), but DDR2 at 400 MHz (CSB at 200 MHz) is NOT guaranteed.

Table 68 shows the SVR settings by device and package type.

Table	68.	SVR	Settings
-------	-----	-----	----------

Device	Package	SVR (Rev. 1.0)
MPC8347E	TBGA	8052_0010
MPC8347	TBGA	8053_0010

Ordering Information

THIS PAGE INTENTIONALLY LEFT BLANK