

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16К х 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151vet6dtr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.4	Supply current characteristics	64
		6.3.5	Wakeup time from low-power mode	75
		6.3.6	External clock source characteristics	76
		6.3.7	Internal clock source characteristics	81
		6.3.8	PLL characteristics	84
		6.3.9	Memory characteristics	84
		6.3.10	EMC characteristics	86
		6.3.11	Electrical sensitivity characteristics	87
		6.3.12	I/O current injection characteristics	88
		6.3.13	I/O port characteristics	89
		6.3.14	NRST pin characteristics	92
		6.3.15	TIM timer characteristics	93
		6.3.16	Communications interfaces	94
		6.3.17	12-bit ADC characteristics	102
		6.3.18	DAC electrical specifications	107
		6.3.19	Operational amplifier characteristics	109
		6.3.20	Temperature sensor characteristics	111
		6.3.21	Comparator	111
		6.3.22	LCD controller	113
7	Pack	age info	ormation	114
	7.1	LQFP1 informa	44, 20 x 20 mm, 144-pin low-profile quad flat package	114
	7.2	LQFP1 informa	00, 14 x 14 mm, 100-pin low-profile quad flat package	
	7.3	LQFP6 informa	4, 10 x 10 mm, 64-pin low-profile quad flat package	120
	7.4	UFBGA array p	A132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid ackage information	123
	7.5	WLCSI informa	P104, 0.4 mm pitch wafer level chip scale package ation	126
	7.6	Therma	al characteristics	129
		7.6.1	Reference document	130
8	Part	number	ing	131
9	Revi	sion His	story	132

Table 5. Functionalities depending on the working mode (from Run/active down	to
standby)	

			Low-	Low-		Stop	Standby		
lps	Run/Active	Sleep	power Run	power Sleep		Wakeup capability		Wakeup capability	
CPU	Y		Y						
Flash	Y	Y	Y	Y					
RAM	Y	Y	Y	Y	Y		-		
Backup Registers	Y	Y	Y	Y	Y		Y		
EEPROM	Y	Y	Y	Y	Y				
Brown-out rest (BOR)	Y	Y	Y	Y	Y	Y	Y		
DMA	Y	Y	Y	Y					
Programmable Voltage Detector (PVD)	Y	Y	Y	Y	Y	Y	Y		
Power On Reset (POR)	Y	Y	Y	Y	Y	Y	Y		
Power Down Rest (PDR)	Y	Y	Y	Y	Y		Y		
High Speed Internal (HSI)	Y	Y							
High Speed External (HSE)	Y	Y							
Low Speed Internal (LSI)	Y	Y	Y	Y	Y		Y		
Low Speed External (LSE)	Y	Y	Y	Y	Y		Y		
Multi-Speed Internal (MSI)	Y	Y	Y	Y					
Inter-Connect Controller	Y	Y	Y	Y					
RTC	Y	Y	Y	Y	Y	Y	Y		
RTC Tamper	Y	Y	Y	Y	Y	Y	Y	Y	
Auto WakeUp (AWU)	Y	Y	Y	Y	Y	Y	Y	Y	
LCD	Y	Y	Y	Y	Y				
USB	Y	Y				Y			
USART	Y	Y	Y	Y	Y	(1)			
SPI	Y	Y	Y	Y					
12C	Y	Y	Y	Y		(1)			

DocID025433 Rev 8

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock source: three different clock sources can be used to drive the master clock SYSCLK:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).
 When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.5 Low-power real-time clock and backup registers

The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the sub-second, second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made automatically. The RTC provides two programmable alarms and programmable periodic interrupts with wakeup from Stop and Standby modes.

The programmable wakeup time ranges from 120 µs to 36 hours.

The RTC can be calibrated with an external 512 Hz output, and a digital compensation circuit helps reduce drift due to crystal deviation.

The RTC can also be automatically corrected with a 50/60Hz stable powerline.

The RTC calendar can be updated on the fly down to sub second precision, which enables network system synchronization.

A time stamp can record an external event occurrence, and generates an interrupt.

There are thirty-two 32-bit backup registers provided to store 128 bytes of user application data. They are cleared in case of tamper detection.

Three pins can be used to detect tamper events. A change on one of these pins can reset backup register and generate an interrupt. To prevent false tamper event, like ESD event, these three tamper inputs can be digitally filtered.

3.6 GPIOs (general-purpose inputs/outputs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated AFIO registers. All GPIOs are high current capable. The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to the AHB with a toggling speed of up to 16 MHz.

External interrupt/event controller (EXTI)

The external interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 115 GPIOs can be connected to the 16 external interrupt lines. The 8 other lines are connected to RTC, PVD, USB, comparator events or capacitive sensing acquisition.

stored by ST in the system memory area, accessible in read-only mode. See *Table 60: Temperature sensor calibration values*.

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, VREF+, is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. See *Table 15: Embedded internal reference voltage calibration values*.

3.11 DAC (digital-to-analog converter)

The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This dual digital Interface supports the following features:

- Two DAC converters: one for each output channel
- 8-bit or 12-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channels, independent or simultaneous conversions
- DMA capability for each channel (including the underrun interrupt)
- External triggers for conversion
- Input reference voltage V_{REF+}

Eight DAC trigger inputs are used in the STM32L151xE and STM32L152xE devices. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels.

3.12 Operational amplifier

The STM32L151xE and STM32L152xE devices embed two operational amplifiers with external or internal follower routing capability (or even amplifier and filter capability with external components). When one operational amplifier is selected, one external ADC channel is used to enable output measurement.

The operational amplifiers feature:

- Low input bias current
- Low offset voltage
- Low-power mode
- Rail-to-rail input

	I	Pins							Pin functio	ons
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP104	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
-	M4	-	-	-	OPAMP2_VINM	Ι	тс	OPAMP2_ VINM	-	-
44	K5	33	24	L7	PC4	I/O	FT	PC4	LCD_SEG22	ADC_IN14/ COMP1_INP
45	L5	34	25	M7	PC5	I/O	FT	PC5	LCD_SEG23	ADC_IN15/ COMP1_INP
46	M5	35	26	J6	PB0	I/O	TC	PB0	TIM3_CH3/LCD_SEG5	ADC_IN8/ COMP1_INP/ OPAMP2_VOUT/ VREF_OUT
47	M6	36	27	K6	PB1	I/O	FT	PB1	TIM3_CH4/LCD_SEG6	ADC_IN9/ COMP1_INP/ VREF_OUT
48	L6	37	28	M6	PB2	I/O	FT	PB2/ BOOT1	BOOT1	ADC_IN0b
49	K6	-	-	-	PF11	I/O	FT	PF11	-	ADC_IN1b
50	J7	-	-	-	PF12	I/O	FT	PF12	-	ADC_IN2b
51	E3	-	-	-	V _{SS_6}	S		V _{SS_6}	-	-
52	H3	-	-	-	V _{DD_6}	S		V _{DD_6}	-	-
53	K7	-	-	-	PF13	I/O	FT	PF13	-	ADC_IN3b
54	J8	-	-	1	PF14	I/O	FT	PF14	-	ADC_IN6b
55	J9	-	-	-	PF15	I/O	FT	PF15	-	ADC_IN7b
56	H9	-	-	-	PG0	I/O	FT	PG0	-	ADC_IN8b
57	G9	-	-	-	PG1	I/O	FT	PG1	-	ADC_IN9b
58	M7	38	-	L6	PE7	I/O	тс	PE7	-	ADC_IN22/ COMP1_INP
59	L7	39	-	M5	PE8	I/O	тс	PE8	-	ADC_IN23/ COMP1_INP
60	M8	40	-	M4	PE9	I/O	тс	PE9	TIM2_CH1_ETR	ADC_IN24/ COMP1_INP
61	-	-	-	-	V _{SS_7}	S	-	V _{SS_7}	-	-
62	-	-	-	-	V _{DD_7}	S	-	V _{DD_7}	-	-

Table 8. STM32L151xE and STM32L152xE pin definitions (continued)

Pin
de
Ö
Ĭ.
eti
2
ō

			Tab	ole 9. Alte	rnate fur	nction inp	out/outpu	t (continued	I)					
					Digit	al alternat	e functior	number						
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8	•	AFIO11	•	AFIO14	AFIO15
Port name			<u> </u>			Alterna	te functio	n						
	SYSTEM	TIM2	TIM3/4/ 5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/ 3	UART4/ 5	-	LCD	-	CPRI	SYSTEM
PF0	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF1	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF2	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF3	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF4	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF5	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF6	-	-	TIM5_ETR	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF7	-	-	TIM5_CH2	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF8	-	-	TIM5_CH3	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF9	-	-	TIM5_CH4	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF10	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF11	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF12	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT
PF13	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENT OUT

DocID025433 Rev 8

52/134

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.6 V (for the 1.65 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 9*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 10*.

Symbol	Parameter	Conditions	Min	Max	Unit
TJ	lunction tomporature range	6 suffix version	-40	105	°C
		7 suffix version	-40	110	

Table 13. General operating conditions (continued)

1. When the ADC is used, refer to Table 55: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up .

3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 71: Thermal characteristics on page 129).

In low-power dissipation state, T_A can be extended to -40°C to 105°C temperature range as long as T_J does not exceed T_J max (see *Table 71: Thermal characteristics on page 129*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	V rise time rate	BOR detector enabled	0	-	∞		
t. (1)		BOR detector disabled	0	-	1000		
۲OD	V fall time rate	BOR detector enabled	20	-	∞	μ3/ ν	
		BOR detector disabled	0	-	1000		
T _{RSTTEMPO} ⁽¹⁾	Reset temporization	V _{DD} rising, BOR enabled	-	2	3.3	me	
		V_{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	1115	
N	Power on/power down reset	Falling edge	1	1.5	1.65		
♥ POR/PDR	threshold	Rising edge	1.3	1.5	1.65	_	
N .	Brown out reset threshold 0	Falling edge	1.67	1.7	1.74		
V BOR0	brown-out reset threshold o	Rising edge	1.69	1.76	1.8	V	
V	Brown out reset threshold 1	Falling edge	1.87	1.93	1.97	v	
VBOR1		Rising edge	1.96	2.03	2.07		
N	Brown out reset threshold 2	Falling edge	2.22	2.30	2.35		
VBOR2		Rising edge	2.31	2.41	2.44		

Table 14. Embedded reset and power control block characteristics

Symbol	Parameter		Conditions		Тур	Max ⁽¹⁾	Unit
			MSI clock, 65 kHz f _{HCLK} = 32 kHz Flash OFF	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	5.5	-	
			MSI clock, 65 kHz	T_A = -40 °C to 25 °C	18.5	21	
			$f_{HCLK} = 32 \text{ kHz}$	T _A = 85 °C	26.8	29	
			Flash ON	T _A = 105 °C	37	47	
		All peripherals OFF. Vod from	MSI clock. 65 kHz	T_A = -40 °C to 25 °C	18.5	21	
I _{DD} (LP Sleep)		1.65 V to 3.6 V	f _{HCLK} = 65 kHz,	T _A = 85 °C	27.2	29	
			Flash ON	T _A = 105 °C	37.3	47	
				T_A = -40 °C to 25 °C	21.5	25	
	Supply current in Low-power sleep mode		MSI clock, 131 kHz f _{HCLK} = 131 kHz, Flash ON	T _A = 55 °C	23.7	26	μA
				T _A = 85 °C	29.8	32	
				T _A = 105 °C	39.7	50	
			MSI clock, 65 kHz f _{HCLK} = 32 kHz	T_A = -40 °C to 25 °C	18.5	21	
				T _A = 85 °C	26.8	29	
				T _A = 105 °C	38.3	47	
		TIM9 and	MSI clock, 65 kHz	T_A = -40 °C to 25 °C	18.5	21	
		USART1 enabled Flash		T _A = 85 °C	27.2	29	
		ON, V _{DD} from	HOLK	T _A = 105 °C	38.5	47	
		1.65 V to 3.6 V		T_A = -40 °C to 25 °C	21.5	25	
			MSI clock, 131 kHz	T _A = 55 °C	23.7	26	
			f _{HCLK} = 131 kHz	T _A = 85 °C	29.8	32	
				T _A = 105 °C	41.2	50	
I _{DD} max (LP Sleep)	Max allowed current in Low-power sleep mode	V _{DD} from 1.65 V to 3.6 V	-	-	-	200	

Table 21.	Current consum	ption in	Low-power	sleep	mode
	ourrent consum		Low-power	Siccp	mouc

1. Guaranteed by characterization results, unless otherwise specified.

Symbol	Parameter	Condit	tions	Тур	Max ⁽¹⁾	Unit	
			T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.865	-		
	Supply current in Standby mode with RTC enabled	RTC clocked by LSI (no independent watchdog)	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.11	1.9		
			T _A = 55 °C	1.72	2.2		
			T _A = 85 °C	2.12	4		
l _{DD} (Standby)			T _A = 105 °C	2.54	8.3 ⁽²⁾		
with RTC)		RTC clocked by LSE external quartz (no independent watchdog) ⁽³⁾	T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.97	-		
			T_A = -40 °C to 25 °C	1.28	-		
			T _A = 55 °C	2.01	-	μA	
			T _A = 85 °C	2.5	-		
			T _A = 105 °C	2.98	-		
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1	1.7		
סס	Supply current in		T_A = -40 °C to 25 °C	0.29	1		
(Standby)	Standby mode (RTC disabled)	Independent watchdog	T _A = 55 °C	0.96	1.3		
	,	and LSI OFF	T _A = 85 °C	1.38	3		
			T _A = 105 °C	1.98	7 ⁽²⁾		
I _{DD} (WU from Standby)	Supply current during wakeup time from Standby mode	-	T _A = -40 °C to 25 °C	1	-	mA	

1. Guaranteed by characterization results, unless otherwise specified.

2. Guaranteed by test in production.

3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on

6.3.16 Communications interfaces

I²C interface characteristics

The device I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 47*. Refer also to *Section 6.3.13: I/O port characteristics* for more details on the input/output ction characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mode	Unit		
		Min	Max	Min	Мах		
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-		
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μο	
t _{su(SDA)}	SDA setup time	250	-	100	-		
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾		
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300	ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300		
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-		
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs	
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs	
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs	
Cb	Capacitive load for each bus line	-	400	-	400	pF	
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	ns	

Table 47. I²C characteristics

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The minimum width of the spikes filtered by the analog filter is above t_{SP(max)}.

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under the conditions summarized in *Table 13*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit
_		Master mode	-	16	
f _{SCK}	SPI clock frequency	Slave mode	-	16	MHz
		Slave transmitter	-	12 ⁽³⁾	
$t_{r(SCK)}^{(2)}$ $t_{f(SCK)}^{(2)}$	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-	
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-	
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2-5	t _{SCK} /2+3	
t _{su(MI)} ⁽²⁾	Data input actus timo	Master mode	5	-	
t _{su(SI)} ⁽²⁾		Slave mode	6	-	
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns
t _{h(SI)} ⁽²⁾		Slave mode	5	-	
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}	
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33	
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5	
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-	
t _{h(MO)} ⁽²⁾		Master mode	0.5	-	

Table 49. SPI characteristics⁽¹⁾

1. The characteristics above are given for voltage range 1.

2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

Electrical characteristics

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2.5	4	
EO	Offset error	$2.4 \text{ V} \leq V_{\text{DDA}} \leq 3.6 \text{ V}$	-	1	2	
EG	Gain error	$2.4 \text{ V} \le \text{V}_{\text{REF+}} \le 3.6 \text{ V}$ $f_{\text{ADC}} = 8 \text{ MHz}$. Rain = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	2.2	3	
ENOB	Effective number of bits		9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	$V_{DDA} = V_{REF+}$ f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	57.5	62	-	dB
SNR	Signal-to-noise ratio	$T_A = -40$ to 105 ° C	57.5	62	-	
THD	Total harmonic distortion	Finput - TOKI IZ	-	-70	-65	
ENOB	Effective number of bits	1.8 V ≤V _{DDA} ≤ 2.4 V $V_{DDA} = V_{REF+}$ $f_{ADC} = 8$ MHz or 4 MHz, R _{AIN} = 50 Ω $T_A = -40$ to 105 °C	9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio		57.5	62	-	
SNR	Signal-to-noise ratio		57.5	62	-	dB
THD	Total harmonic distortion	Finput-IOKI IZ	-	-70	-65	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	$2.4 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	-	1.5	4	
EG	Gain error	1.8 V \leq V _{REF+} \leq 2.4 V fade = 4 MHz, Rain = 50 Ω	-	3.5	6	LSB
ED	Differential linearity error	$T_{A} = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	2.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	$1.8 \text{ V} \leq \text{V}_{\text{DDA}} \leq 2.4 \text{ V}$	-	1	1.5	
EG	Gain error	1.8 V \leq V _{REF+} \leq 2.4 V fade = 4 MHz, Rain = 50 Ω	-	1.5	2	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	2.2	3	

Table	56.	ADC	accuracy ⁽¹⁾⁽²⁾	
-------	-----	-----	----------------------------	--

1. ADC DC accuracy values are measured after internal calibration.

 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

3. Guaranteed by characterization results.

- 1. Guaranteed by characterization results.
- 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.
- 3. Comparator consumption only. Internal reference voltage not included.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit		
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V		
V _{IN}	Comparator 2 input voltage range	-	0	-	V_{DDA}	V		
+.	Comparator startup time	Fast mode	-	15	20)		
START		Slow mode	-	20	25			
t _{d slow}	Propagation dalay (2) in alow mode	1.65 V ≤V _{DDA} ≤2.7 V	-	1.8	3.5			
	Fropagation delay 7 in slow mode	2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs		
	Dropogation data (2) in fact mode	1.65 V ⊴V _{DDA} ⊴2.7 V	-	0.8	2			
^L d fast	Propagation delay / in fast mode	2.7 V ≤V _{DDA} ≤3.6 V	-	1.2	4			
V _{offset}	Comparator offset error		-	±4	±20	mV		
dThreshold/ dt	Threshold voltage temperature coefficient	$V_{DDA} = 3.3V$ $T_{A} = 0 \text{ to } 50 \circ C$ $V = V_{REFINT},$ $3/4 V_{REFINT},$ $1/2 V_{REFINT},$ $1/4 V_{REFINT}.$	-	15	100	ppm /°C		
1	Current concurrention ⁽³⁾	Fast mode	- 3.5		5			
COMP2		Slow mode	-	0.5	2	μΑ		

Tabla	60	^		2		_
lable	63.	Com	parator	2	cnaracteristi	CS

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

6.3.22 LCD controller

The device embeds a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the V_{LCD} pin to decouple this converter.

Symbol	Parameter	Min	Тур	Max	Unit	
V_{LCD}	LCD external voltage	-	-	3.6		
V_{LCD0}	LCD internal reference voltage 0	-	2.6	-		
V _{LCD1}	LCD internal reference voltage 1	-	2.73	-		
V _{LCD2}	LCD internal reference voltage 2	-	2.86	-		
V_{LCD3}	LCD internal reference voltage 3	-	2.98	-	V	
V_{LCD4}	LCD internal reference voltage 4	-	3.12	-		
V_{LCD5}	LCD internal reference voltage 5	-	3.26	-		
V _{LCD6}	LCD internal reference voltage 6	-	3.4	-		
V _{LCD7}	LCD internal reference voltage 7	-	3.55	-		
C _{ext}	V _{LCD} external capacitance	0.1	-	2	μF	
ı (1)	Supply current at V _{DD} = 2.2 V	-	3.3			
LCD,	Supply current at V _{DD} = 3.0 V	-	3.1	-	μΑ	
R _{Htot} ⁽²⁾	Low drive resistive network overall value	5.28	6.6	7.92	MΩ	
$R_L^{(2)}$	High drive resistive network total value	192	240	288	kΩ	
V ₄₄	Segment/Common highest level voltage	-	-	V _{LCD}	V	
V ₃₄	Segment/Common 3/4 level voltage	-	3/4 V _{LCD}	-		
V ₂₃	Segment/Common 2/3 level voltage	-	2/3 V _{LCD}	-		
V ₁₂	Segment/Common 1/2 level voltage	-	$1/2 V_{LCD}$	-	V	
V ₁₃	Segment/Common 1/3 level voltage	-	$1/3 V_{LCD}$	-	v	
V ₁₄	Segment/Common 1/4 level voltage	-	1/4 V _{LCD}	-		
V ₀	Segment/Common lowest level voltage	0	-	-		
$\Delta Vxx^{(3)}$	Segment/Common level voltage error T _A = -40 to 105 $^{\circ}$ C	-	-	±50	mV	

Table 64. LCD controller characteristics

1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected.

2. Guaranteed by design.

3. Guaranteed by characterization results.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package information

Figure 31. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline

1. Drawing is not to scale.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

7.5 WLCSP104, 0.4 mm pitch wafer level chip scale package information

1. Drawing is not to scale.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID025433 Rev 8

