STMicroelectronics - STM32L151VET6TR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l151vet6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The ultra-low-power STM32L151xE and STM32L152xE devices incorporate the connectivity power of the universal serial bus (USB) with the high-performance ARM[®] Cortex[®]-M3 32-bit RISC core operating at a frequency of 32 MHz (33.3 DMIPS), a memory protection unit (MPU), high-speed embedded memories (Flash memory up to 512 Kbytes and RAM up to 80 Kbytes), and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

The STM32L151xE and STM32L152xE devices offer two operational amplifiers, one 12-bit ADC, two DACs, two ultra-low-power comparators, one general-purpose 32-bit timer, six general-purpose 16-bit timers and two basic timers, which can be used as time bases.

Moreover, the STM32L151xE and STM32L152xE devices contain standard and advanced communication interfaces: up to two I2Cs, three SPIs, two I2S, three USARTs, two UARTs and an USB. The STM32L151xE and STM32L152xE devices offer up to 34 capacitive sensing channels to simply add a touch sensing functionality to any application.

They also include a real-time clock and a set of backup registers that remain powered in Standby mode.

Finally, the integrated LCD controller (except STM32L151xE devices) has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with the contrast independent of the supply voltage.

The ultra-low-power STM32L151xE and STM32L152xE devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +85 °C and -40 to +105 °C temperature ranges. A comprehensive set of power-saving modes allows the design of low-power applications.

	Functionaliti	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation USB		Dynamic voltage scaling range	I/O operation				
$V_{DD}=V_{DDA}=2.0$ to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation				
$V_{DD}=V_{DDA}=2.4$ to 3.6 V	Conversion time up to 1 Msps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation				

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum $\rm V_{DD}$ is 3.0 V.

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3

Table 4. CPU frequency range depending on dynamic voltage scaling

power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.3.3 Voltage regulator

The regulator has three operation modes: main (MR), low-power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).

3.3.4 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot from Flash usually boots at the beginning of the Flash (bank 1). An additional boot mechanism is available through user option byte, to allow booting from bank 2 when bank 2 contains valid code. This dual boot capability can be used to easily implement a secure field software update mechanism.

The boot loader is located in System memory. It is used to reprogram the Flash memory by using USART1, USART2 or USB. See Application note "STM32 microcontroller system memory boot mode" (AN2606) for details.

3.9 LCD (liquid crystal display)

The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320 pixels.

- Internal step-up converter to guarantee functionality and contrast control irrespective of V_{DD}. This converter can be deactivated, in which case the V_{LCD} pin is used to provide the voltage to the LCD
- Supports static, 1/2, 1/3, 1/4 and 1/8 duty
- Supports static, 1/2, 1/3 and 1/4 bias
- Phase inversion to reduce power consumption and EMI
- Up to 8 pixels can be programmed to blink
- Unneeded segments and common pins can be used as general I/O pins
- LCD RAM can be updated at any time owing to a double-buffer
- The LCD controller can operate in Stop mode

3.10 ADC (analog-to-digital converter)

A 12-bit analog-to-digital converters is embedded into STM32L151xE and STM32L152xE devices with up to 40 external channels, performing conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs with up to 28 external channels in a group.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. An injection mode allows high priority conversions to be done by interrupting a scan mode which runs in as a background task.

The ADC includes a specific low-power mode. The converter is able to operate at maximum speed even if the CPU is operating at a very low frequency and has an auto-shutdown function. The ADC's runtime and analog front-end current consumption are thus minimized whatever the MCU operating mode.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are

3.16 Timers and watchdogs

The ultra-low-power STM32L151xE and STM32L152xE devices include seven generalpurpose timers, two basic timers, and two watchdog timers.

Table 6 compares the features of the general-purpose and basic timers.

Timer	Counter resolution Counter type Prescaler factor		DMA request generation	Capture/compare channels	Complementary outputs		
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No	
TIM5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes 4		No	
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No	
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No	
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No	

Table 6. Timer feature comparison

3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xE and STM32L152xE devices (see *Table 6* for differences).

TIM2, TIM3, TIM4, TIM5

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

DocID025433 Rev 8

	I	Pins							Pin functio	-
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP104	Pin name	Pin Type ⁽¹⁾	I / O structure	Main function ⁽²⁾ (after reset)	Alternate functions	Additional functions
79	J12	57	-	K1	PD10	I/O	FT	PD10	USART3_CK/ LCD_SEG30	-
80	J11	58	-	G4	PD11	I/O	FT	PD11	USART3_CTS/ LCD_SEG31	-
81	J10	59	-	H3	PD12	I/O	FT	PD12	TIM4_CH1/ USART3_RTS/ LCD_SEG32	-
82	H12	60	-	H2	PD13	I/O	FT	PD13	TIM4_CH2/LCD_SEG33	-
83	-	-	-	-	V _{SS_8}	S	-	V _{SS_8}	-	-
84	-	-	-	-	V _{DD_8}	S	-	V _{DD_8}	-	-
85	H11	61	-	J1	PD14	I/O	FT	PD14	TIM4_CH3/LCD_SEG34	-
86	H10	62	-	G3	PD15	I/O	FT	PD15	TIM4_CH4/LCD_SEG35	-
87	G10	-	-	-	PG2	I/O	FT	PG2	-	ADC_IN10b
88	F9	-	-	-	PG3	I/O	FT	PG3	-	ADC_IN11b
89	F10	-	-	-	PG4	I/O	FT	PG4	-	ADC_IN12b
90	E9	-	-	-	PG5	I/O	FT	PG5	-	-
91	-	-	-	-	PG6	I/O	FT	PG6	-	-
92	-	-	-	-	PG7	I/O	FT	PG7	-	-
93	-	-	-	-	PG8	I/O	FT	PG8	-	-
94	F6	-	-	-	V _{SS_9}	S	-	V _{SS_9}	-	-
95	G6	I	-	-	V_{DD_9}	S	I	V _{DD_9}	-	-
96	E12	63	37	H1	PC6	I/O	FT	PC6	TIM3_CH1/I2S2_MCK/ LCD_SEG24	-
97	E11	64	38	G1	PC7	I/O	FT	PC7	TIM3_CH2/I2S3_MCK/ LCD_SEG25	-
98	E10	65	39	G2	PC8	I/O	FT	PC8	TIM3_CH3/LCD_SEG26	-
99	D12	66	40	F4	PC9	I/O	FT	PC9	TIM3_CH4/LCD_SEG27	-
100	D11	67	41	F3	PA8	I/O	FT	PA8	USART1_CK/MCO/ LCD_COM0	-
101	D10	68	42	F1	PA9	I/O	FT	PA9	USART1_TX / LCD_COM1	-

Table 8.	STM32L151xE	and STM32L	.152xE pin	definitions	(continued)
----------	-------------	------------	------------	-------------	-------------

6.1.6 Power supply scheme

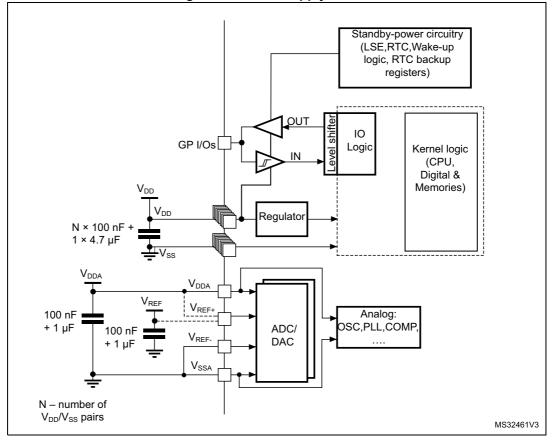


Figure 11. Power supply scheme

Symbol	Parameter	Conditions	Min	Max	Unit
т.		6 suffix version	-40	105	°C
TJ	Junction temperature range	7 suffix version	-40	110	C

Table 13. General operating conditions (continued)

1. When the ADC is used, refer to Table 55: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up .

3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 71: Thermal characteristics on page 129).

In low-power dissipation state, T_A can be extended to -40°C to 105°C temperature range as long as T_J does not exceed T_J max (see *Table 71: Thermal characteristics on page 129*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
t _{VDD} ⁽¹⁾ T _{RSTTEMPO} ⁽¹⁾ V _{POR/PDR}	V _{DD} rise time rate	BOR detector enabled	0	-	∞		
		BOR detector disabled	0	-	1000	μs/V	
	V _{DD} fall time rate	BOR detector enabled	20	-	∞	μ3/ ν	
		BOR detector disabled	0	-	1000		
T _{RSTTEMPO} ⁽¹⁾	Reset temporization	V _{DD} rising, BOR enabled	-	2	3.3	me	
		V_{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	- ms	
N .	Power on/power down reset	Falling edge	1	1.5	1.65		
V POR/PDR	threshold	Rising edge	1.3	1.5	1.65		
V	Brown-out reset threshold 0	Falling edge	1.67	1.7	1.74		
V _{BOR0}		Rising edge	1.69	1.76	1.8	v	
N/ -	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97	v	
V _{BOR1}		Rising edge	1.96	2.03	2.07		
N .	Brown-out reset threshold 2	Falling edge	2.22	2.30	2.35	1	
V _{BOR2}		Rising edge	2.31	2.41	2.44		

Table 14. Embedded reset and power control block characteristics

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit	
				1 MHz	225	500		
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	420	750	μA	
				4 MHz	780	1200		
Supply I _{DD} current in		f _{HSE} = f _{HCLK} up to 16 MHz included,		4 MHz	0.98	1.6		
		$f_{HSE} = f_{HCLK}/2$	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.85	2.9		
		above 16 MHz (PLL ON) ⁽²⁾		16 MHz	3.6	5.2		
			Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	8 MHz	2.2	3.5		
(Run from				16 MHz	4.4	6.5	mA	
Flash)	executed			32 MHz	8.6	12		
	from Flash	from Flash	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.6	5.2	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.7	12.3		
		MSI clock, 65 kHz		65 kHz	42	145		
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	135	250	μA	
		MSI clock, 4.2 MHz		4.2 MHz	820	1200		

Table 17. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Condit	Тур	Max ⁽¹⁾	Unit	
			$T_A = -40 \degree C$ to 25 $\degree C$ $V_{DD} = 1.8 V$	0.865	-	
		RTC clocked by LSI (no	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.11	1.9	
		independent watchdog)	T _A = 55 °C	1.72	2.2	
			T _A = 85 °C	2.12	4	
I _{DD}	Supply current in		T _A = 105 °C	2.54	8.3 ⁽²⁾	
(Standby with RTC)	Standby mode with RTC enabled		T _A = -40 °C to 25 °C V _{DD} = 1.8 V	0.97	-	
		RTC clocked by LSE external quartz (no independent watchdog) ⁽³⁾	$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	1.28	-	μA
			T _A = 55 °C	2.01	-	
			T _A = 85 °C	2.5	-	
			T _A = 105 °C	2.98	-	
		Independent watchdog and LSI enabled	$T_A = -40 \ ^\circ C \text{ to } 25 \ ^\circ C$	1	1.7	
I _{DD}	Supply current in		$T_A = -40 \ ^\circ C$ to 25 $^\circ C$	0.29	1	
(Standby)	Standby mode (RTC disabled)	Independent watchdog	T _A = 55 °C	0.96	1.3	-
		and LSI OFF	T _A = 85 °C	1.38	3	
			T _A = 105 °C	1.98	7 ⁽²⁾	
I _{DD} (WU from Standby)	Supply current during wakeup time from Standby mode	-	$T_A = -40 \ ^\circ C \text{ to } 25 \ ^\circ C$	1	-	mA

Table 23. Typical and maximum current consumptions in Standby	mode
---	------

1. Guaranteed by characterization results, unless otherwise specified.

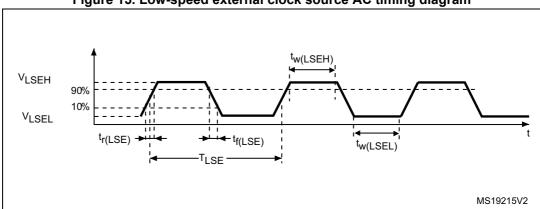
2. Guaranteed by test in production.

3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF loading capacitors.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in the following table. The MCU is placed under the following conditions:

- all I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on


Low-speed external user clock generated from an external source

The characteristics given in the following table result from tests performed using a low-speed external clock source, and under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time		465	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF

 Table 27. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design.

Figure 15. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 28*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

6.3.7 Internal clock source characteristics

The parameters given in *Table 30* are derived from tests performed under the conditions summarized in *Table 13*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	V _{DD} = 3.0 V	-	16	-	MHz
TRIM ⁽¹⁾⁽²⁾	HSI user-trimmed	Trimming code is not a multiple of 16	-	±0.4	0.7	%
TRIM	resolution	Trimming code is a multiple of 16	-	-	±1.5	%
		V _{DDA} = 3.0 V, T _A = 25 °C	-1 ⁽³⁾	-	1 ⁽³⁾	%
	Accuracy of the factory-calibrated HSI oscillator	V _{DDA} = 3.0 V, T _A = 0 to 55 °C		-	1.5	%
		V_{DDA} = 3.0 V, T_A = -10 to 70 °C		-	2	%
ACC _{HSI} ⁽²⁾		V_{DDA} = 3.0 V, T_A = -10 to 85 °C	-2.5	-	2	%
		V _{DDA} = 3.0 V, T _A = -10 to 105 °C	-4	-	2	%
		V _{DDA} = 1.65 V to 3.6 V T _A = -40 to 105 °C	-4	-	3	%
t _{SU(HSI)} ⁽²⁾	HSI oscillator startup time	-		3.7	6	μs
I _{DD(HSI)} ⁽²⁾	HSI oscillator power consumption	-	-	100	140	μΑ

Table 30. HSI oscillator c	haracteristics
----------------------------	----------------

1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).

2. Guaranteed by characterization results.

3. Guaranteed by test in production.

Low-speed internal (LSI) RC oscillator

Table 31. LSI oscillator characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
D _{LSI} ⁽²⁾	LSI oscillator frequency drift $0^{\circ}C \leq T_{A} \leq 105^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

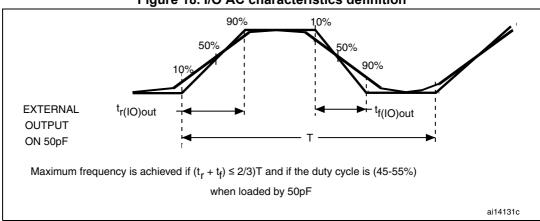
3. Guaranteed by design.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 18* and *Table 44*, respectively.

Unless otherwise specified, the parameters given in *Table 44* are derived from tests performed under the conditions summarized in *Table 13*.

OSPEEDRx [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit	
	f	Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	400	kHz	
00	f _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	400	KI IZ	
00	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	625	ns	
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	625	115	
	f	Maximum fraguanov ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	MHz	
01	f _{max(IO)out}	IO)out Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	1		
01	t _f (IO)out	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ns	
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V		250	115	
	-	t Maximum frequency ⁽³⁾	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	– MHz	
10	F _{max(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2		
10	t _{f(IO)out}		C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	25		
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	125	ns	
	-	Maximum frequency ⁽³⁾	C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	50	MHz	
44	F _{max(IO)out}	Maximum nequency (*)	$C_L = 50 \text{ pF}, V_{DD} = 1.65 \text{ V to } 2.7 \text{ V}$	-	8		
11	t _{f(IO)out}		C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5		
	t _{r(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	30		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns	


Table	44.	I/O	AC	characteristics ⁽¹⁾
-------	-----	-----	----	--------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L151xx, STM32L152xx and STM32L162xx reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 18*.

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 45*)

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.39V _{DD} +0.59	-	-	V
V	NRST output low	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	v
V _{OL(NRST)} ⁽¹⁾	level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽³⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 45. NRST pin characteristics

1. Guaranteed by design.

2. With a minimum of 200 mV.

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

6.3.16 Communications interfaces

I²C interface characteristics

The device I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: SDA and SCL are not "true" open-drain I/O pins. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 47*. Refer also to *Section 6.3.13: I/O port characteristics* for more details on the input/output ction characteristics (SDA and SCL).

Symbol	Parameter	Standard mode I ² C ⁽¹⁾⁽²⁾		Fast mod	Unit	
		Min	Max	Min	Max	
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	-	3450 ⁽³⁾	-	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time	-	1000	-	300 ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time	-	300	-	300	
t _{h(STA)}	Start condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated Start condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	Stop condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7	-	1.3	-	μs
C _b	Capacitive load for each bus line	-	400	-	400	pF
t _{SP}	Pulse width of spikes that are suppressed by the analog filter	0	50 ⁽⁴⁾	0	50 ⁽⁴⁾	ns

Table 47. I²C characteristics

1. Guaranteed by design.

 f_{PCLK1} must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast mode clock.

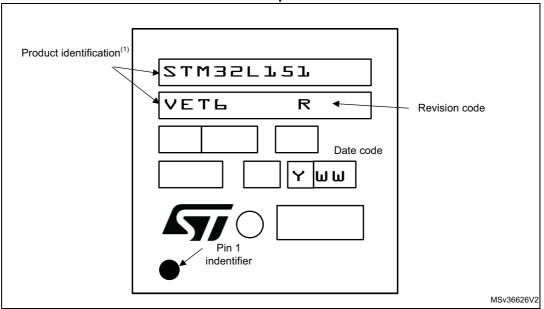
3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

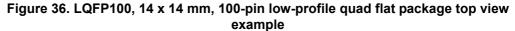
4. The minimum width of the spikes filtered by the analog filter is above t_{SP(max)}.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
dOffset/dT ⁽¹⁾	Offset error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 \circ C$ DAC output buffer OFF	-20	-10	0	μV/°C	
uonseitu i V	coefficient (code 0x800)	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 ^{\circ}\text{C}$ DAC output buffer ON	0	20	50	μν/ C	
Gain ⁽¹⁾	Gain error ⁽⁷⁾	$C_L \le 50 \text{ pF}, R_L \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	+0.1 / -0.2%	+0.2 / -0.5%	%	
Gain	Gamenor	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	+0 / -0.2%	+0 / -0.4%	70	
dGain/dT ⁽¹⁾	Gain error temperature	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_A = 0 \text{ to } 50 \circ C$ DAC output buffer OFF	-10	-2	0		
dGain/d1(')	coefficient	$V_{DDA} = 3.3V$ $V_{REF+} = 3.0V$ $T_{A} = 0 \text{ to } 50 \circ C$ DAC output buffer ON	-40	-8	0	- μV/°C	
(1)	Total upadiusted error	$C_{L} \le 50 \text{ pF}, R_{L} \ge 5 \text{ k}\Omega$ DAC output buffer ON	-	12	30		
TUE ⁽¹⁾	Total unadjusted error	No R_L , $C_L \le 50 \text{ pF}$ DAC output buffer OFF	-	8	12	LSB	
t _{SETTLING}	Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes till DAC_OUT reaches final value ±1LSB	C_L ≤ 50 pF, R_L ≥ 5 kΩ	-	7	12	μs	
Update rate	Max frequency for a correct DAC_OUT change (95% of final value) with 1 LSB variation in the input code	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	-	1	Msps	
t _{WAKEUP}	Wakeup time from off state (setting the ENx bit in the DAC Control register) ⁽⁸⁾	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	9	15	μs	
PSRR+	V _{DDA} supply rejection ratio (static DC measurement)	$C_L \le 50 \text{ pF, } R_L \ge 5 \text{ k}\Omega$	-	-60	-35	dB	

Table 58.	DAC	characteristics	(continued)
-----------	-----	-----------------	-------------

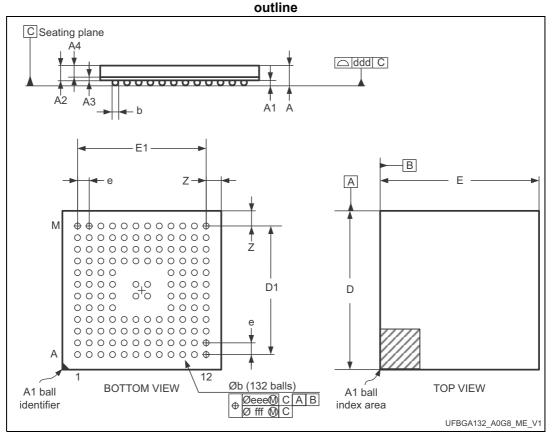
1. Data based on characterization results.


2. Connected between DAC_OUT and $\mathsf{V}_{\mathsf{SSA}}.$


3. Difference between two consecutive codes - 1 LSB.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.



 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity

7.4 UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package information

Figure 40. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array package

1. Drawing is not to scale.

Table 68. UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid arraypackage mechanical data

	1	•				
Symbol	millimeters inches ⁽¹⁾					
Symbol	Min	Тур	Мах	Min	Тур	Max
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	0.270	0.320	0.370	0.0106	0.0126	0.0146
b	0.170	0.280	0.330	0.0067	0.0110	0.0130
D	6.950	7.000	7.050	0.2736	0.2756	0.2776
Е	6.950	7.000	7.050	0.2736	0.2756	0.2776
е	-	0.500	-	-	0.0197	-
F	0.700	0.750	0.800	0.0276	0.0295	0.0315

DocID025433 Rev 8

Date	Revision	Changes
10-Feb-2015	6	Updated Section : In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. with new package device marking. Updated Figure 8: Memory map.
27-Apr-2015	7	Updated Section 7: Package information structure: Paragraph titles and paragraph heading level. Updated Section 7.1: LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package information removing gate mark in Figure 33 and adding text for device orientation versus pin1 identifier. Updated Section 7.2: LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package information removing gate mark in Figure 36 and adding note for device orientation versus pin 1 identifier. Updated Section 7: Package information for all other package device marking adding text in for device orientation versus pin 1 or ball A1 identifier. Added Figure 44: WLCSP104, 0.4 mm pitch wafer level chip scale package recommended footprint and Table 70: WLCSP104, 0.4 mm pitch recommended PCB design rules. Updated Table 8: STM32L151xE and STM32L152xE pin definitions ADC inputs. Updated Table 16: Embedded internal reference voltage temperature coefficient at 100ppm/°C. and table footnote 3: "guaranteed by design" changed by "guaranteed by characterization results". Updated Table 63: Comparator 2 characteristics new maximum threshold voltage temperature coefficient at 100ppm/°C.
09-Feb-2016	8	Updated cover page putting eight SPIs in the peripheral communication interface list. Updated <i>Table 2: Ultra-low-power STM32L151xE and STM32L152xE</i> <i>device features and peripheral counts</i> SPI and I2S lines. Updated <i>Table 39: ESD absolute maximum ratings</i> CDM class II by class C3 and C4 depending of the package. Updated all the notes, removing 'not tested in production'. Updated <i>Table 10: Voltage characteristics</i> adding note about V _{REF} - pin. Updated <i>Table 5: Functionalities depending on the working mode (from</i> <i>Run/active down to standby)</i> LSI and LSE functionalities putting "Y" in Standby mode.

Table 73. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID025433 Rev 8

