E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 21x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152ret6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.16	Timers	and watchdogs	28
		3.16.1	General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)	. 28
		3.16.2	Basic timers (TIM6 and TIM7)	. 29
		3.16.3	SysTick timer	. 29
		3.16.4	Independent watchdog (IWDG)	. 29
		3.16.5	Window watchdog (WWDG)	. 29
	3.17	Commu	inication interfaces	29
		3.17.1	I ² C bus	. 29
		3.17.2	Universal synchronous/asynchronous receiver transmitter (USART) .	. 29
		3.17.3	Serial peripheral interface (SPI)	. 30
		3.17.4	Inter-integrated sound (I2S)	. 30
		3.17.5	Universal serial bus (USB)	. 30
	3.18	CRC (c	yclic redundancy check) calculation unit	30
	3.19	Develo	oment support	31
		3.19.1	Serial wire JTAG debug port (SWJ-DP)	. 31
		3.19.2	Embedded Trace Macrocell™	. 31
4	Din d	occrinti	ons	32
4	F III U	escripti	0115	02
4 5			oping	
5	Mem	ory map	oping	55
	Mem Elect	ory map rical ch	oping	55 56
5	Mem	ory map rical ch Parame	aracteristics	55 56 56
5	Mem Elect	ory map rical ch Parame 6.1.1	oping aracteristics eter conditions Minimum and maximum values	55 56 . 56
5	Mem Elect	ory map rical ch Parame 6.1.1 6.1.2	aracteristics eter conditions Minimum and maximum values Typical values	55 56 56 . 56 . 56
5	Mem Elect	ory map rical ch Parame 6.1.1 6.1.2 6.1.3	aracteristics eter conditions Minimum and maximum values Typical values Typical curves	55 56 . 56 . 56 . 56
5	Mem Elect	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor	55 56 56 56 56 56 56 56
5	Mem Elect	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage	55 56 . 56 . 56 . 56 . 56 . 56
5	Mem Elect	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme	55 56 56 56 56 56 56 56 56 56
5	Mem Elect	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme	55 56 56 56 56 56 56 56 56 56 57 58
5	Memo Elect 6.1	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme	55 56 56 56 56 56 56 56 56 56 57 58
5	Mem Elect	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme	55 56 56 56 56 56 56 56 56 56 57 58 58
5	Memo Elect 6.1	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut	aracteristics eter conditions Minimum and maximum values Typical values Typical values Dading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement	55 56 56 56 56 56 56 56 57 58 58 59
5	Memo Elect 6.1	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut	aracteristics eter conditions Minimum and maximum values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement e maximum ratings	55 56 56 56 56 56 56 56 57 58 58 59 60
5	Memo Elect 6.1	ory map rical ch Parame 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.1.8 Absolut Operati	aracteristics eter conditions Minimum and maximum values Typical values Typical values Typical curves Loading capacitor Pin input voltage Power supply scheme Optional LCD power supply scheme Current consumption measurement e maximum ratings ng conditions	55 56 56 56 56 56 56 57 58 59 60 60 60 . 61

Table 47.	I ² C characteristics
Table 48.	SCL frequency (f _{PCI K1} = 32 MHz, V _{DD} = VDD_I2C = 3.3 V)
Table 49.	SPI characteristics
Table 50.	USB startup time
Table 51.	USB DC electrical characteristics
Table 52.	USB: full speed electrical characteristics
Table 53.	I2S characteristics
Table 54.	ADC clock frequency
Table 55.	ADC characteristics
Table 56.	ADC accuracy
Table 57.	Maximum source impedance R _{AIN} max 106
Table 58.	DAC characteristics
Table 59.	Operational amplifier characteristics
Table 60.	Temperature sensor calibration values
Table 61.	Temperature sensor characteristics
Table 62.	Comparator 1 characteristics
Table 63.	Comparator 2 characteristics
Table 64.	LCD controller characteristics
Table 65.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data 115
Table 66.	LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data 117
Table 67.	LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data 120
Table 68.	UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array
	package mechanical data
Table 69.	WLCSP104, 0.4 mm pitch wafer level chip scale package mechanical data 127
Table 70.	WLCSP104, 0.4 mm pitch recommended PCB design rules
Table 71.	Thermal characteristics
Table 72.	STM32L151xE and STM32L152xE Ordering information scheme
Table 73.	Document revision history

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151xE and STM32L152xE ultra-low-power ARM[®] Cortex[®]-M3 based microcontroller product line. STM32L151xE and STM32L152xE devices are microcontrollers with a Flash memory density of 512 Kbytes.

The ultra-low-power STM32L151xE and STM32L152xE family includes devices in 5 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151xE and STM32L152xE microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, wired and wireless sensors, video intercom
- Utility metering

This STM32L151xE and STM32L152xE datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The application note "Getting started with STM32L1xxxx hardware development" (AN3216) gives a hardware implementation overview. Both documents are available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M3 core please refer to the ARM[®] Cortex[®]-M3 technical reference manual, available from the www.arm.com website. *Figure 1* shows the general block diagram of the device family.

3.4 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

- Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching**: clock sources can be changed safely on the fly in run mode through a configuration register.
- **Clock management**: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- System clock source: three different clock sources can be used to drive the master clock SYSCLK:
 - 1-24 MHz high-speed external crystal (HSE), that can supply a PLL
 - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLL
 - Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz).
 When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.
- **Auxiliary clock source**: two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock:
 - 32.768 kHz low-speed external crystal (LSE)
 - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.
- **RTC and LCD clock sources:** the LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock.
- **USB clock source:** the embedded PLL has a dedicated 48 MHz clock output to supply the USB interface.
- **Startup clock:** after reset, the microcontroller restarts by default with an internal 2 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): this feature can be enabled by software. If a HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.
- Clock-out capability (MCO: microcontroller clock output): it outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.13 Ultra-low-power comparators and reference voltage

The STM32L151xE and STM32L152xE devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with fixed threshold
- One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage (V_{REFINT}) or a sub-multiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical).

3.14 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports.

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage V_{REFINT} .

3.15 Touch sensing

The STM32L151xE and STM32L152xE devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 34 capacitive sensing channels distributed over 11 analog I/O groups. Both software and timer capacitive sensing acquisition modes are supported.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see Section 3.14: System configuration controller and routing interface).

Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library.

3.16 Timers and watchdogs

The ultra-low-power STM32L151xE and STM32L152xE devices include seven generalpurpose timers, two basic timers, and two watchdog timers.

Table 6 compares the features of the general-purpose and basic timers.

Timer Counter resolution Counter type		Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs			
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No		
TIM5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No		
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No		
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No	1	No		
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No		

Table 6. Timer feature comparison

3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xE and STM32L152xE devices (see *Table 6* for differences).

TIM2, TIM3, TIM4, TIM5

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

DocID025433 Rev 8

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.16.2 Basic timers (TIM6 and TIM7)

These timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit time bases.

3.16.3 SysTick timer

This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches 0.

3.16.4 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode.

3.16.5 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17 Communication interfaces

3.17.1 I²C bus

Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support standard and fast modes.

They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master mode. A hardware CRC generation/verification is embedded.

They can be served by DMA and they support SM Bus 2.0/PM Bus.

3.17.2 Universal synchronous/asynchronous receiver transmitter (USART)

The three USART and two UART interfaces are able to communicate at speeds of up to 4 Mbit/s. They support IrDA SIR ENDEC and have LIN Master/Slave capability. The three USARTs provide hardware management of the CTS and RTS signals and are ISO 7816 compliant.

All USART/UART interfaces can be served by the DMA controller.

	I	Pins					Din Type (1) Pin Type (1) Bin Type (1) Entre (after reset)		Pin functions				
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP104	Pin name	Pin Type ⁽¹⁾			Alternate functions	Additional functions			
34	L2	23	14	K9	PA0-WKUP1	I/O	FT	PA0	TIM2_CH1_ETR/ TIM5_CH1/ USART2_CTS	WKUP1/RTC_TA MP2/ADC_IN0/ COMP1_INP			
35	M2	24	15	L9	PA1	I/O	FT	PA1	TIM2_CH2/TIM5_CH2/ USART2_RTS/ LCD_SEG0	ADC_IN1/ COMP1_INP/ OPAMP1_VINP			
36	-	25	16	J8	PA2	I/O	_			ADC_IN2/ COMP1_INP/ OPAMP1_VINM			
-	K3	-	-	-	PA2	I/O	FT	PA2	TIM2_CH3/TIM5_CH3/ TIM9_CH1/ USART2_TX/LCD_SEG1	ADC_IN2/ COMP1_INP			
-	M3	-	-		OPAMP1_VINM	I	тс	OPAMP1_ VINM	-	-			
37	L3	26	17	H7	PA3	I/O	TC PA3 TIM9_CH2		TIM2_CH4/TIM5_CH4/ TIM9_CH2/ USART2_RX/LCD_SEG2	ADC_IN3/ COMP1_INP/ OPAMP1_VOUT			
38	-	27	18	K8	V_{SS_4}	S	-	V _{SS_4}	-	-			
39	-	28	19	L8, M9	V_{DD_4}	S	-	V_{DD_4}	-	-			
40	J4	29	20	J7	PA4	I/O	тс	PA4	SPI1_NSS/SPI3_NSS/ I2S3_WS/ USART2_CK	ADC_IN4/ DAC_OUT1/ COMP1_INP			
41	K4	30	21	M8	PA5	I/O	тс	PA5	TIM2_CH1_ETR/ SPI1_SCK	ADC_IN5/ DAC_OUT2/ COMP1_INP			
42	L4	31	22	H6	PA6	I/O	FT	—		ADC_IN6/ COMP1_INP/ OPAMP2_VINP			
43	-	32	23	K7	PA7	I/O	FT	T PA7 SPI1_MOSI/ COMI		ADC_IN7/ COMP1_INP/ OPAMP2_VINM			
-	J5	-	-	-	PA7	I/O	FT	PA7	TIM3_CH2/TIM11_CH1/ SPI1_MOSI/ LCD_SEG4	ADC_IN7/ COMP1_INP			

Table 8. STM32L151xE and STM32L152xE	pin definitions	(continued)
--------------------------------------	-----------------	-------------

Pin
des
crip
tio
S

	1		Tal	ble 9. Alte	rnate fui	nction inp	ut/output	t (continued	l)					
					Digit	al alternat	e function	number						
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8	•	AFIO11	•	AFIO14	AFIO15
Port name		I		I	1	Alterna	te functior	1	I	1		11		I
	SYSTEM	TIM2	TIM3/4/ 5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/ 3	UART4/ 5	-	LCD	-	CPRI	SYSTEM
PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	-	-	-	-	-	COM3	-	-	EVENT OUT
PB10	-	TIM2_CH3	-	-	I2C2_SCL	-	-	USART3_TX	-	-	SEG10	-	-	EVENT OUT
PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	SEG11	-	-	EVENT OUT
PB12	-	-	-	TIM10_CH1	I2C2_SM BA	SPI2_NSS I2S2_WS	-	USART3_CK	-	-	SEG12	-	-	EVENT OUT
PB13	-	-	-	TIM9_CH1	-	SPI2_SCK I2S2_CK	-	USART3_CTS	-	-	SEG13	-	-	EVENT OUT
PB14	-	-	-	TIM9_CH2	-	SPI2_MISO	-	USART3_RTS	-	-	SEG14	-	-	EVENT OUT
PB15	-	-	-	TIM11_CH1	-	SPI2_MOSI I2S2_SD	-	-	-	-	SEG15	-	-	EVENT OUT
PC0	-	-	-	-	-	-	-	-	-	-	SEG18	-	TIMx_IC1	EVENT OUT
PC1	-	-	-	-	-	-	-	-	-	-	SEG19	-	TIMx_IC2	EVENT OUT
PC2	-	-	-	-	-	-	-	-	-	-	SEG20	-	TIMx_IC3	EVENT OUT
PC3	-	-	-	-	-	-	-	-	-	-	SEG21	-	TIMx_IC4	EVENT OUT
PC4	-	-	-	-	-	-	-	-	-	-	SEG22	-	TIMx_IC1	EVENT OUT
PC5	-	-	-	-	-	-	-	-	-	-	SEG23	-	TIMx_IC2	EVENT OUT
PC6	-	-	TIM3_CH1	-	-	I2S2_MCK	-	-	-	-	SEG24	-	TIMx_IC3	EVENT OUT

DocID025433 Rev 8

48/134

STM32L151xE STM32L152xE

Symbol	Parameter	Conditions	Min	Max	Unit
TJ	Junction temperature range	6 suffix version	-40	105	°C
	Sunction temperature range	7 suffix version	-40	110	C

Table 13. General operating conditions (continued)

1. When the ADC is used, refer to Table 55: ADC characteristics.

2. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up .

3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see Table 71: Thermal characteristics on page 129).

In low-power dissipation state, T_A can be extended to -40°C to 105°C temperature range as long as T_J does not exceed T_J max (see *Table 71: Thermal characteristics on page 129*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	V _{DD} rise time rate	BOR detector enabled	0	-	∞		
t _{VDD} ⁽¹⁾		BOR detector disabled	0	-	1000	μs/V	
٩٥٥٧	V _{DD} fall time rate	BOR detector enabled	20	-	∞	μ3/ ν	
		BOR detector disabled	0	-	1000		
T _{RSTTEMPO} ⁽¹⁾	Reset temporization		-	2	3.3	ms	
'RSTTEMPO` '		V_{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	1115	
N .	Power on/power down reset	Falling edge	1	1.5	1.65		
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65		
V	Brown-out reset threshold 0	Falling edge	1.67	1.7	1.74		
V _{BOR0}		Rising edge	1.69	1.76	1.8	v	
N/ -	Brown-out reset threshold 1	Falling edge	1.87	1.93	1.97	v	
V _{BOR1}		Rising edge	1.96	2.03	2.07		
N .	Brown-out reset threshold 2	Falling edge	2.22	2.30	2.35]	
V _{BOR2}		Rising edge	2.31	2.41	2.44		

Table 14. Embedded reset and power control block characteristics

6.3.3 Embedded internal reference voltage

The parameters given in *Table 16* are based on characterization results, unless otherwise specified.

Table 15. Embedde	ed internal reference voltage	calibration values
	B i ti	

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C ±5 °C V _{DDA} = 3 V ±10 mV	0x1FF8 00F8 - 0x1FF8 00F9

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽¹⁾	Internal reference voltage	– 40 °C < T _J < +110 °C	1.202	1.224	1.242	V
I _{REFINT}	Internal reference current consumption	-	-	1.4	2.3	μA
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V _{REF} value ⁽²⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽³⁾	Temperature coefficient	–40 °C < T _J < +110 °C	-	25	100	ppm/° C
A _{Coeff} ⁽³⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽³⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽³⁾	ADC sampling time when reading the internal reference voltage	-	4	-	-	μs
T _{ADC_BUF} ⁽³⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽³⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽³⁾	VREF_OUT output current (4)	-	-	-	1	μA
C _{VREF_OUT} ⁽³⁾	VREF_OUT output load	-	-	-	50	pF
I _{LPBUF} ⁽³⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage	-	24	25	26	%
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	49	50	51	V _{REFIN}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage	-	74	75	76	Т

Table 16. Embedded internal reference voltage

1. Guaranteed by test in production.

2. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

3. Guaranteed by characterization results.

4. To guarantee less than 1% VREF_OUT deviation.

DocID025433 Rev 8

Peripheral		Туріса				
		Range 1, V _{CORE} = 1.8 V VOS[1:0] = 01	Range 2, V _{CORE} = 1.5 V VOS[1:0] = 10	Range 3, V _{CORE} = 1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	TIM2	12.0	10.0	8.0	10.0	
	TIM3	10.5	8.8	7.0	8.8	
	TIM4	10.4	8.8	7.0	8.8	
	TIM5	13.8	11.5	9.1	11.5	
	TIM6	3.9	3.0	2.5	3.0	
	TIM7	3.8	3.3	2.6	3.3	
	LCD	4.2	3.6	2.8	3.6	
	WWDG	2.9	2.5	2.1	2.5	
	SPI2	5.4	4.4	3.5	4.4	
APB1	SPI3	5.5	4.6	3.7	4.6	µA/MHz
AFDI	USART2	7.6	6.2	4.9	6.2	(f _{HCLK})
	USART3	7.6	6.2	5.0	6.2	
	USART4	7.3	6.1	4.8	6.1	
	USART5	7.6	6.3	5.0	6.3	
	I2C1	7.3	6.1	4.8	6.1	
	I2C2	7.2	5.9	4.7	5.9	
	USB	13.0	11.2	8.9	11.2	
	PWR	2.6	2.3	1.9	2.3	
	DAC	5.9	5.0	4.0	5.0	
	COMP	3.9	3.3	2.6	3.3	

Table 24. Peripheral current consumption⁽¹⁾

- 3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC conversion (HSI consumption not included).
- Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC conversion of VDD/2. DAC is in buffered mode, output is left floating.
- 5. Including supply current of internal reference voltage.
- 6 In Low-power sleep and run mode, the Flash memory must always be in power-down mode.

6.3.5 Wakeup time from low-power mode

The wakeup times given in the following table are measured with the MSI RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is the MSI oscillator in the range configured before entering Stop mode
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

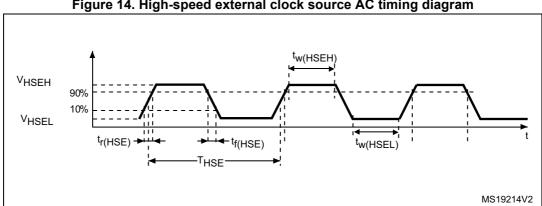
All timings are derived from tests performed under the conditions summarized in Table 13.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	0.4	-		
+	Wakeup from Low-power sleep	f _{HCLK} = 262 kHz Flash enabled	46	3 -		
^t wusleep_lp	mode, f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash switched OFF	46	-		
Wakeup from Stop mode, regulator in Run mode ULP bit = 1 and FWU bit = 1		f _{HCLK} = f _{MSI} = 4.2 MHz	8.2	-		
		$f_{HCLK} = f_{MSI} = 4.2 \text{ MHz}$ Voltage range 1 and 2	7.7 8.9			
	Wakeup from Stop mode, regulator in low-power mode ULP bit = 1 and FWU bit = 1	f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 3	8.2	13.1	μs	
^t WUSTOP		f _{HCLK} = f _{MSI} = 2.1 MHz	10.2	13.4		
		f _{HCLK} = f _{MSI} = 1.05 MHz	16	20		
		f _{HCLK} = f _{MSI} = 524 kHz	31	37		
		f _{HCLK} = f _{MSI} = 262 kHz	57	66		
		f _{HCLK} = f _{MSI} = 131 kHz	112	123		
		f _{HCLK} = MSI = 65 kHz	221	236		
+	Wakeup from Standby mode ULP bit = 1 and FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	58	104		
^t wustdby	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.6	3.25	ms	

Table 25. Low-power mode wakeup timings

1. Guaranteed by characterization, unless otherwise specified

6.3.6 **External clock source characteristics**


High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 14.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f	User external clock source	CSS is on or PLL is used	1	8	32	MHz
f _{HSE_ext} frequency	CSS is off, PLL not used	0	8	32	MHz	
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V _{DD}	v
V _{HSEL}	OSC_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	12	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time		-	-	20	113
C _{in(HSE)}	OSC_IN input capacitance		-	2.6	-	pF

Table 26. High-speed external user clock characteristics ⁽¹⁾	Table 26.	Hiah-speed	external us	ser clock o	characteristics ⁽¹⁾
---	-----------	------------	-------------	-------------	--------------------------------

1. Guaranteed by design.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table* 37. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	4B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP144, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 37. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

SPI characteristics

Unless otherwise specified, the parameters given in the following table are derived from tests performed under the conditions summarized in *Table 13*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Parameter Conditions		Max ⁽²⁾	Unit	
_		Master mode	-	16		
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	16	MHz	
		Slave transmitter	-	12 ⁽³⁾		
$t_{r(SCK)}^{(2)} t_{f(SCK)}^{(2)}$	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	6	ns	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)}	NSS setup time	Slave mode	4t _{HCLK}	-		
t _{h(NSS)}	NSS hold time	Slave mode	2t _{HCLK}	-		
t _{w(SCKH)} ⁽²⁾ t _{w(SCKL)} ⁽²⁾	SCK high and low time	Master mode	t _{SCK} /2-5	t _{SCK} /2+3		
t _{su(MI)} ⁽²⁾	Data input setup time	Master mode	5	-		
$t_{su(SI)}^{(2)}$	- Data input setup time	Slave mode	6	-		
t _{h(MI)} ⁽²⁾	Data input hold time	Master mode	5	-	ns	
t _{h(SI)} ⁽²⁾	Data input hold time	Slave mode	5	-		
t _{a(SO)} ⁽⁴⁾	Data output access time	Slave mode	0	3t _{HCLK}		
t _{v(SO)} (2)	Data output valid time	Slave mode	-	33		
t _{v(MO)} ⁽²⁾	Data output valid time	Master mode	-	6.5		
t _{h(SO)} ⁽²⁾	Data output hold time	Slave mode	17	-		
t _{h(MO)} ⁽²⁾	Data output hold time	Master mode	0.5	-		

Table 49. SPI characteristics⁽¹⁾

1. The characteristics above are given for voltage range 1.

2. Guaranteed by characterization results.

3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty cycle (DuCy(SCK)) ranging between 40 to 60%.

4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the data.

6.3.22 LCD controller

The device embeds a built-in step-up converter to provide a constant LCD reference voltage independently from the V_{DD} voltage. An external capacitor C_{ext} must be connected to the V_{LCD} pin to decouple this converter.

Symbol	Parameter	Min	Тур	Max	Unit	
V_{LCD}	LCD external voltage	-	-	3.6		
V _{LCD0}	LCD internal reference voltage 0	-	2.6	-	1	
V _{LCD1}	LCD internal reference voltage 1	-	2.73	-]	
V_{LCD2}	LCD internal reference voltage 2	-	2.86	-		
V_{LCD3}	LCD internal reference voltage 3	-	2.98	-	V	
V_{LCD4}	LCD internal reference voltage 4	-	3.12	-		
V_{LCD5}	LCD internal reference voltage 5	-	3.26	-		
V_{LCD6}	LCD internal reference voltage 6	-	3.4	-		
V_{LCD7}	LCD internal reference voltage 7	-	3.55	-	†	
C _{ext}	V _{LCD} external capacitance	0.1	-	2	μF	
I _{LCD} ⁽¹⁾	Supply current at V_{DD} = 2.2 V	-	3.3	-	μA	
	Supply current at V_{DD} = 3.0 V	-	3.1	-	μΛ	
R _{Htot} ⁽²⁾	Low drive resistive network overall value	5.28	6.6	7.92	MΩ	
$R_L^{(2)}$	High drive resistive network total value	192	240	288	kΩ	
V ₄₄	Segment/Common highest level voltage	-	-	V_{LCD}	V	
V ₃₄	Segment/Common 3/4 level voltage	-	$3/4 V_{LCD}$	-		
V ₂₃	Segment/Common 2/3 level voltage	-	$2/3 V_{LCD}$	-		
V ₁₂	Segment/Common 1/2 level voltage	-	1/2 V _{LCD}	-	v	
V ₁₃	Segment/Common 1/3 level voltage	-	1/3 V _{LCD}	V		
V ₁₄	Segment/Common 1/4 level voltage	-	1/4 V _{LCD}	-		
V ₀	Segment/Common lowest level voltage	0	-	-		
$\Delta Vxx^{(3)}$	Segment/Common level voltage error $T_A = -40$ to 105 ° C	-	-	±50	mV	

Table 64. LCD controller characteristics

1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected.

2. Guaranteed by design.

3. Guaranteed by characterization results.

7.2 LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package information

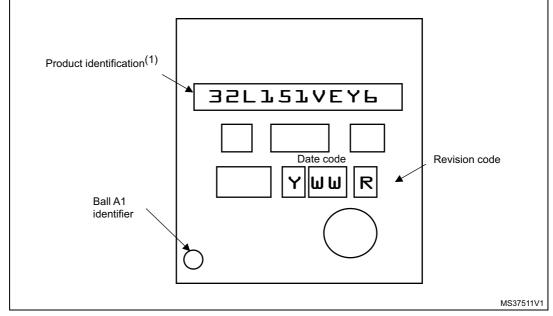


Figure 34. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 66. LQPF100, 14 x 14 mm,	100-pin low-profile quad flat package mechanical
	data

	uata							
Symbol		millimeters		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	-	0.200	0.0035	-	0.0079		
D	15.800	16.000	16.200	0.6220	0.6299	0.6378		
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591		
D3	-	12.000	-	-	0.4724	-		
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378		
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591		



Dimension	Recommended values			
Pitch	0.4			
Dpad	260 µm max. (circular)			
	220 µm recommended			
Dsm	300 μm min. (for 260 μm diameter pad)			
PCB pad design	Non-solder mask defined via underbump allowed.			

 Table 70. WLCSP104, 0.4 mm pitch recommended PCB design rules

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Figure 45. WLCSP104, 0.4 mm pitch wafer level chip scale package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	Changes
10-Feb-2015	6	Updated Section : In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. with new package device marking. Updated Figure 8: Memory map.
27-Apr-2015	7	Updated Section 7: Package information structure: Paragraph titles and paragraph heading level. Updated Section 7.1: LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package information removing gate mark in Figure 33 and adding text for device orientation versus pin1 identifier. Updated Section 7.2: LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package information removing gate mark in Figure 36 and adding note for device orientation versus pin 1 identifier. Updated Section 7: Package information for all other package device marking adding text in for device orientation versus pin 1 or ball A1 identifier. Added Figure 44: WLCSP104, 0.4 mm pitch wafer level chip scale package recommended footprint and Table 70: WLCSP104, 0.4 mm pitch recommended PCB design rules. Updated Table 8: STM32L151xE and STM32L152xE pin definitions ADC inputs. Updated Table 16: Embedded internal reference voltage temperature coefficient at 100ppm/°C. and table footnote 3: "guaranteed by design" changed by "guaranteed by characterization results". Updated Table 63: Comparator 2 characteristics new maximum threshold voltage temperature coefficient at 100ppm/°C.
09-Feb-2016	8	Updated cover page putting eight SPIs in the peripheral communication interface list. Updated <i>Table 2: Ultra-low-power STM32L151xE and STM32L152xE</i> <i>device features and peripheral counts</i> SPI and I2S lines. Updated <i>Table 39: ESD absolute maximum ratings</i> CDM class II by class C3 and C4 depending of the package. Updated all the notes, removing 'not tested in production'. Updated <i>Table 10: Voltage characteristics</i> adding note about V _{REF} - pin. Updated <i>Table 5: Functionalities depending on the working mode (from</i> <i>Run/active down to standby)</i> LSI and LSE functionalities putting "Y" in Standby mode.

Table 73. Document revision history (continued)

