E·XFL

Welcome to E-XFL.COM

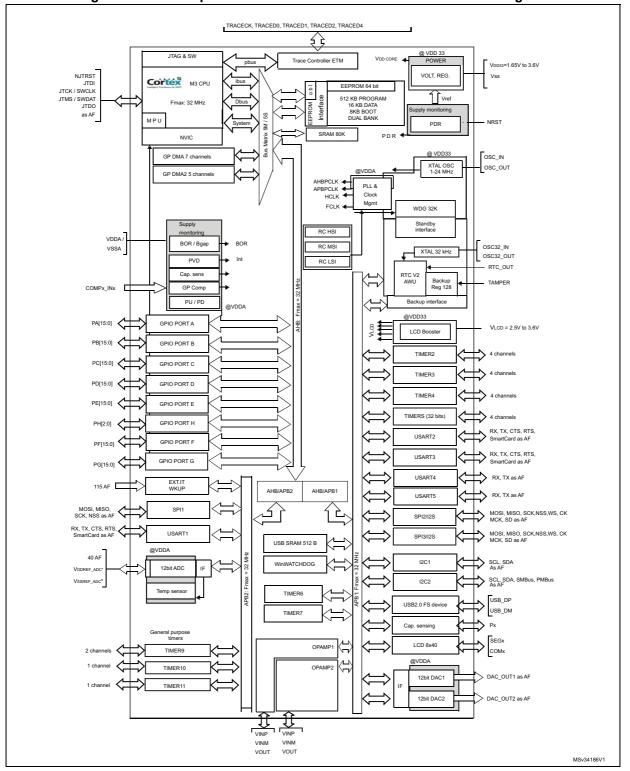
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K × 8
RAM Size	80K × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152vet6


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 47.	I ² C characteristics
Table 48.	SCL frequency (f _{PCI K1} = 32 MHz, V _{DD} = VDD_I2C = 3.3 V)
Table 49.	SPI characteristics
Table 50.	USB startup time
Table 51.	USB DC electrical characteristics
Table 52.	USB: full speed electrical characteristics
Table 53.	I2S characteristics
Table 54.	ADC clock frequency
Table 55.	ADC characteristics
Table 56.	ADC accuracy
Table 57.	Maximum source impedance R _{AIN} max 106
Table 58.	DAC characteristics
Table 59.	Operational amplifier characteristics
Table 60.	Temperature sensor calibration values
Table 61.	Temperature sensor characteristics
Table 62.	Comparator 1 characteristics
Table 63.	Comparator 2 characteristics
Table 64.	LCD controller characteristics
Table 65.	LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data 115
Table 66.	LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data 117
Table 67.	LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data 120
Table 68.	UFBGA132, 7 x 7 mm, 132-ball ultra thin, fine-pitch ball grid array
	package mechanical data
Table 69.	WLCSP104, 0.4 mm pitch wafer level chip scale package mechanical data 127
Table 70.	WLCSP104, 0.4 mm pitch recommended PCB design rules
Table 71.	Thermal characteristics
Table 72.	STM32L151xE and STM32L152xE Ordering information scheme
Table 73.	Document revision history

3 Functional overview

Figure 1. Ultra-low-power STM32L151xE and STM32L152xE block diagram

DocID025433 Rev 8

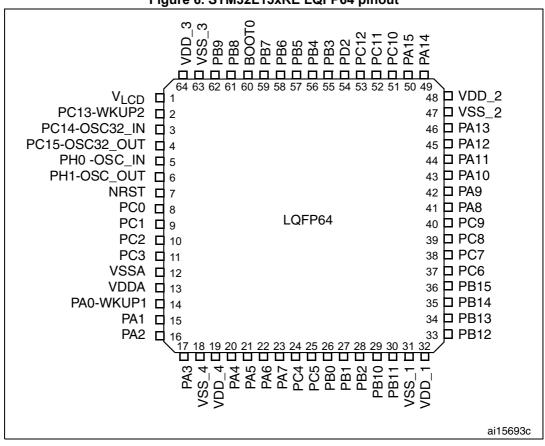


Figure 6. STM32L15xRE LQFP64 pinout

1. This figure shows the package top view.

	F	igure <i>i</i>	. 31 101.	52L15X		VLC3F	2104 b	anout	
	1	2	3	4	5	6	7	8	9
А	VSS_2	PDO	(PD4)	(PD7)	(PB4)	(PB5)	воото	(PE1)	VDD_3
В	(PA15)	PC12	(PD5)	PD6	РВЗ	(РВ7)	PEO	VDD_3	(PE5)
С	(DD_2)	PC11	(PD2)	(PD3)	(PB6)	(PB9)	(VSS_3)	(PE4)	PC13 WKUP2
D	(PH2)	VSS_2	(PA14)	(PD1)	PB8	(PE2)	(PE3)	PC14 QSC3ZIN	PC15 OSC32OUT
E	PA11	(PA12)	(PA13)	PC10		PE6 WKUP3	VLCD	VSS_5	VDD_5
F	(PA9)	PA10	PA8	PC9		PCO	NRST	PHO OSCIN	PH1 OSCOUT
G	PC7	PC8	(PD15)	(PD11)		VDDA	VREF+	PC3	PC2
н	PC6	(PD13)	(PD12)	PD8		(PA6)	(PA3)	VREF-	PC1
J	(PD14)	PD9	(PB13)	(PB12)	PE10	РВО	(PA4)	(PA2)	VSSA
к	(PD10)	(PB15)		(PE15)	(PE13)	(PB1)	(PA7)	VSS_4	PA0 WKUP1
L	(PB14)	(VSS_1)	(PB11)	(PE14)	(PE11)	PE7	PC4	VDD_4	PA1
М	(VSS_1)	(PB10)	(PE12)	PE9	(PE8)	(PB2)	PC5	(PA5)	VDD_4
Ĺ									

Figure 7. STM32L15xVEY WLCSP104 ballout

1. This figure shows the package top view.

Table 7. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition				
Pin name		Inless otherwise specified in brackets below the pin name, the pin function uring and after reset is the same as the actual pin name				
	S	Supply pin				
Pin type	I	Input only pin				
	I/O	Input / output pin				
	FT	5 V tolerant I/O				
I/O structure	TC	Standard 3.3 V I/O				
	В	Dedicated BOOT0 pin				
	RST	Bidirectional reset pin with embedded weak pull-up resistor				

DocID025433 Rev 8

S
-
<u> </u>
ω
Ň
ř
<u>``</u>
(1)
~
5
<u> </u>
Π
10
S
_
Ż
\geq
ω
N
<u>``</u>
(Th
Ň
5
<u> </u>
П

					Digi	tal alternat	e function	number						
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8		AFIO11		AFIO14	AFIO15
Port name						Alterna	te functior	1						<u>I</u>
	SYSTEM	TIM2	TIM3/4/ 5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/ 3	UART4/ 5	-	LCD	-	CPRI	SYSTEM
PC7	-	-	TIM3_CH2	-	-	-	I2S3_MCK	-	-	-	SEG25	-	TIMx_IC4	EVENT OUT
PC8	-	-	TIM3_CH3	-	-	-	-	-	-	-	SEG26	-	TIMx_IC1	EVENT OUT
PC9	-	-	TIM3_CH4	-	-	-	-	-	-	-	SEG27	-	TIMx_IC2	EVENT OUT
PC10	-	-	-	-	-	-	SPI3_SCK I2S3_CK	USART3_TX	UART4_TX	-	COM4/ SEG28/ SEG40	-	TIMx_IC3	EVENT OUT
PC11	-	-	-	-	-	-	SPI3_MISO	USART3_RX	UART4_RX	-	COM5/ SEG29 /SEG41	-	TIMx_IC4	EVENT OUT
PC12	-	-	-	-	-	-	SPI3_MOSI I2S3_SD	USART3_CK	UART5_TX	-	COM6/ SEG30/ SEG42	-	TIMx_IC1	EVENT OUT
PC13-WKUP2	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC2	EVENT OUT
PC14 OSC32_IN	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC3	EVENT OUT
PC15 OSC32_OUT	-	-	-	-	-	-	-	-	-	-	-	-	TIMx_IC4	EVENT OUT
PD0	-	-	-	TIM9_CH1	-	SPI2_NSS I2S2_WS	-	-	-	-	-	-	TIMx_IC1	EVENT OUT
PD1	-	-	-	-	-	SPI2 SCK I2S2_CK	-	-	-	-	-	-	TIMx_IC2	EVENT OUT
PD2	-	-	TIM3_ETR	-	-	-	-	-	UART5_RX	-	COM7/ SEG31/ SEG43	-	TIMx_IC3	EVENT OUT
PD3	-	-	-	-	-	SPI2_MISO	-	USART2_CTS	_	-	-	-	TIMx_IC4	EVENT OUT

DocID025433 Rev 8

577

49/134

6.1.6 Power supply scheme

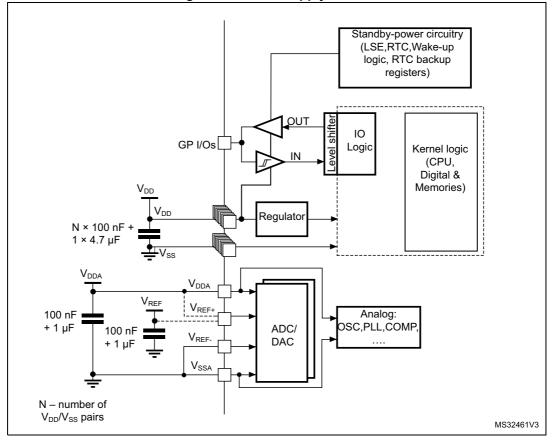


Figure 11. Power supply scheme

- Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10* for maximum allowed input voltage values.
- A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 10: Voltage characteristics* for the maximum allowed input voltage values.
- 6. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	–65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 12. Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter Conditions		Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency					
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V	
		BOR detector disabled, after power on	1.65	3.6		
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC and DAC not used)	Must be the same voltage as	1.65	3.6	V	
	Analog operating voltage (ADC or DAC used)	V _{DD} ⁽²⁾	1.8	3.6		
		FT pins; 2.0 V ⊴V _{DD}	-0.3	5.5 ⁽³⁾		
V	I/O input voltage	FT pins; $V_{DD} < 2.0 V$		5.25 ⁽³⁾	v	
V _{IN}		BOOT0 pin	0	5.5	V	
		Any other pin	-0.3	V _{DD} +0.3		
		UFBGA132 package	-	333		
		LQFP144 package	-	500		
P_D	Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix $7^{(4)}$	LQFP100 package	-	465	mW	
		LQFP64 package	-	435		
		WLCSP104 package	-	435		
т.	Ambient temperature for 6 suffix version	Maximum power dissipation ⁽⁵⁾	-40	85	°C	
ΤΑ	Ambient temperature for 7 suffix version	Maximum power dissipation	-40	105		

Table 13.	General	operating	conditions
-----------	---------	-----------	------------

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table* 37. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP144, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	4B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP144, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 37. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol		Conditions		Max vs.			
	Parameter		Monitored frequency band	4 MHz voltage range 3	16 MHz voltage range 2	voltage	Unit
		$V_{DD} = 3.6 V,$ $T_A = 25 °C,$ LQFP144 package compliant with IEC 61967-2	0.1 to 30 MHz	-14	-6	-4	
e			30 to 130 MHz	-11	0	9	dBµV
S _{EMI}			130 MHz to 1GHz	-7	-1	9	
			SAE EMI Level	1	2	2.5	-

Table 38. EMI characteristics

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114, ANSI/ESD STM5.3.1. standard.

Symbol	Ratings Conditions		Class	Maximu m value ⁽¹⁾	Uni t	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 $ °C, conforming to JESD22-A114		2	2000	V
V _{ESD(CDM)}	Electrostatic	$T_A = +25 \ ^{\circ}C$, conforming	LQFP144 and WLCSP104 packages	C3	250	
		to ANSI/ESD STM5.3.1.	packages except LQFP144 and WLCSP104	C4	500	V

Table 39. ESD absolute maximum ratings

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105$ °C conforming to JESD78A	II level A

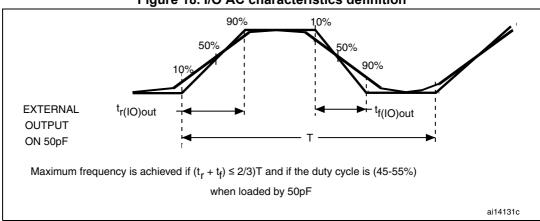
6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence oscillator frequency deviation, LCD levels).


The test results are given in the Table 41.

		Functional s		
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on all 5 V tolerant (FT) pins	-5 ⁽¹⁾	NA	
I _{INJ}	Injected current on BOOT0	-0	NA	mA
	Injected current on any other pin	-5 ⁽¹⁾	+5	

Table 41. I/O current	injection	susceptibility
-----------------------	-----------	----------------

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.14 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 45*)

Unless otherwise specified, the parameters given in *Table 45* are derived from tests performed under the conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)} ⁽¹⁾	NRST input low level voltage	-	-	-	0.3 V _{DD}	
V _{IH(NRST)} ⁽¹⁾	NRST input high level voltage	-	0.39V _{DD} +0.59	-	-	V
V _{OL(NRST)} ⁽¹⁾	NRST output low	I _{OL} = 2 mA 2.7 V < V _{DD} < 3.6 V	-	-	0.4	v
VOL(NRST)	level voltage	I _{OL} = 1.5 mA 1.65 V < V _{DD} < 2.7 V	-	-	0.4	
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	10%V _{DD} ⁽²⁾	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}$	30	45	60	kΩ
V _{F(NRST)} ⁽¹⁾	NRST input filtered pulse	-	-	-	50	ns
V _{NF(NRST)} ⁽³⁾	NRST input not filtered pulse	-	350	-	-	ns

Table 45. NRST pin characteristics

1. Guaranteed by design.

2. With a minimum of 200 mV.

3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%.

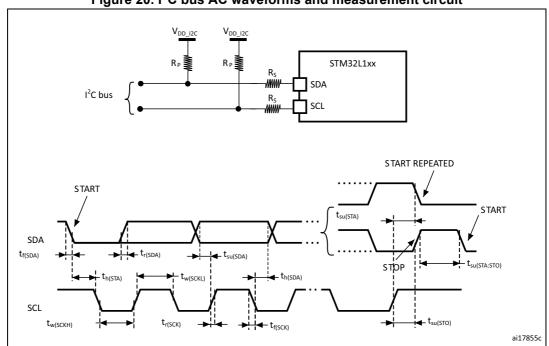


Figure 20. I²C bus AC waveforms and measurement circuit

- 1. R_S = series protection resistor.
- 2. R_P = external pull-up resistor.
- 3. V_{DD_12C} is the I2C bus power supply.
- 4. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

f (kUz)	I2C_CCR value
f _{SCL} (kHz)	R _P = 4.7 kΩ
400	0x801B
300	0x8024
200	0x8035
100	0x00A0
50	0x0140
20	0x0320

Table 48. SCL frequency (f_{PCLK1} = 32 MHz, $V_{DD} = V_{DD_{12C}} = 3.3 V$)⁽¹⁾⁽²⁾

1. R_P = External pull-up resistance, f_{SCL} = I^2C speed.

For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external components used to design the application.

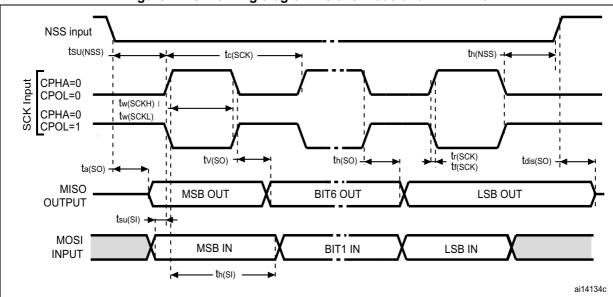
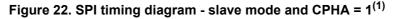
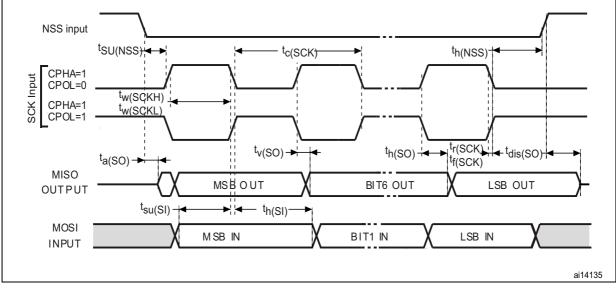




Figure 21. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: $0.3V_{DD}$ and $0.7V_{DD}$.

ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.

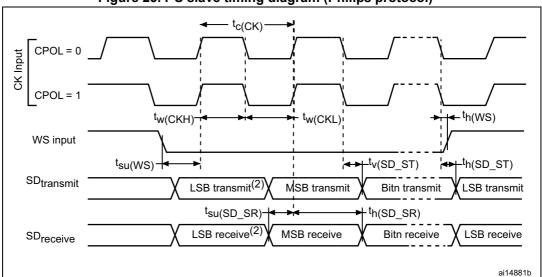
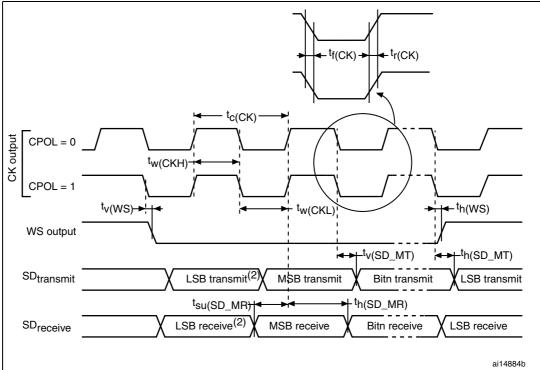



Figure 25. I²S slave timing diagram (Philips protocol)⁽¹⁾

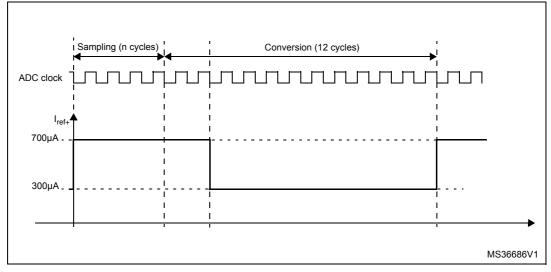

- 1. Measurement points are done at CMOS levels: 0.3 × V_{DD} and 0.7 × $V_{DD}.$
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 26. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 29. Maximum dynamic current consumption on V_{REF+} supply pin during ADC conversion

Table 57. Maximum source impedance R_{AIN} max⁽¹⁾

		R _{AIN} m	ax (kΩ)		
Ts (µs)	Multiplexe	d channels	Direct c	Ts (cycles) f _{ADC} =16 MHz ⁽²⁾	
	2.4 V < V _{DDA} < 3.6 V 1	1.8 V < V _{DDA} < 2.4 V	2.4 V < V _{DDA} < 3.6 V	1.8 V < V _{DDA} < 2.4 V	ADC
0.25	Not allowed	Not allowed	0.7	Not allowed	4
0.5625	0.8	Not allowed	2.0	1.0	9
1	2.0	0.8	4.0	3.0	16
1.5	3.0	1.8	6.0	4.5	24
3	6.8	4.0	15.0	10.0	48
6	15.0	10.0	30.0	20.0	96
12	32.0	25.0	50.0	40.0	192
24	50.0	50.0	50.0	50.0	384

1. Guaranteed by design.

2. Number of samples calculated for f_{ADC} = 16 MHz. For f_{ADC} = 8 and 4 MHz the number of sampling cycles can be reduced with respect to the minimum sampling time Ts (µs),

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 11*. The applicable procedure depends on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

Symbol	Par	ameter	Condition ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit	
	Power supply	Normal mode	DC	-	-85	-		
PSRR	rejection ratio	Low-power mode	- DC	-	-90	-	dB	
		Normal mode	N > 2 4 M	400	1000	3000		
GBW	Dondwidth	Low-power mode	- V _{DD} >2.4 V	150	300	800	kHZ	
GBW	Bandwidth	Normal mode	- V _{DD} <2.4 V	200	500	2200	КПД	
		Low-power mode	V _{DD} <2.4 V	70	150	800		
		Normal mode	V_{DD} >2.4 V (between 0.1 V and V_{DD} -0.1 V)	-	700	-		
SR	Slew rate	Low-power mode	V _{DD} >2.4 V	-	100	-	V/ms	
		Normal mode	N2 4 M	-	300	-		
		Low-power mode	- V _{DD} <2.4 V	-	50	-		
40	Open loop gain	Normal mode		55	100	-	dB	
AO	Open loop gain	Low-power mode		65	110	-		
RL	Resistive load	Normal mode	V <24V	4	-	-	kΩ	
κL	Resistive load	Low-power mode	- V _{DD} <2.4 V	20	-	-		
CL	Capacitive load		-	-	-	50	pF	
VOH _{SAT}	High saturation voltage	Normal mode		V _{DD} - 100	-	-	mV	
0,11		Low-power mode	I _{LOAD} = max or	V _{DD} -50	-	-		
VO	Low saturation	Normal mode	- R _L = min	-	-	100		
VOL _{SAT}	voltage	Low-power mode		-	-	50		
φm	Phase margin		-	-	60	-	0	
GM	Gain margin		-	-	-12	-	dB	
t _{OFFTRIM}	Offset trim time: during calibration, minimum time needed between two steps to have 1 mV accuracy		-	-	1	-	ms	
t	Wakeup time	Normal mode	$C_L \leq 50 \text{ pf}, R_L \geq 4 \text{ k}\Omega$	-	10	-		
t _{WAKEUP}	Wakeup time	Low-power mode	$C_L \leq 50 \text{ pf},$ $R_L \geq 20 \text{ k}\Omega$	-	30	-	μs	

Table 59. Operational	amplifier characteristics	(continued)
Tuble oprovidentia		(oonanaoa)

Operating conditions are limited to junction temperature (0 °C to 105 °C) when V_{DD} is below 2 V. Otherwise to the full ambient temperature range (-40 °C to 85 °C, -40 °C to 105 °C).

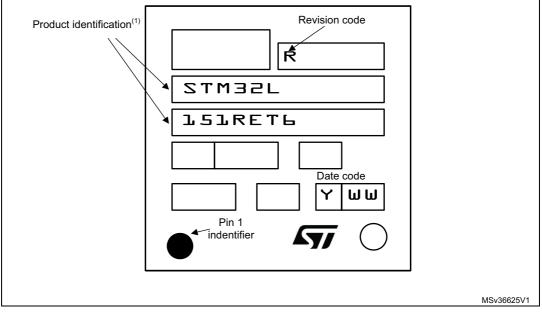
2. Guaranteed by characterization results.

- 1. Guaranteed by characterization results.
- 2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.
- 3. Comparator consumption only. Internal reference voltage not included.

Table 63. Comparator 2 characteristics									
Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit			
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V			
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V			
+.	Comparator startup time	Fast mode	-	15	20				
t _{start}		Slow mode	-	20	25				
+	Propagation delay ⁽²⁾ in slow mode	1.65 V ⊴V _{DDA} ⊴2.7 V	-	1.8	3.5				
t _{d slow}		2.7 V ≤V _{DDA} ≤3.6 V	-	2.5	6	μs			
4	Propagation delay ⁽²⁾ in fast mode	1.65 V ⊴V _{DDA} ⊴2.7 V	-	0.8	2				
t _{d fast} Propagation delay ⁽²⁾ in fast r		2.7 V ≤V _{DDA} ≤3.6 V		1.2	4				
V _{offset}	Comparator offset error		-	±4	±20	mV			
dThreshold/ dt	Threshold voltage temperature coefficient	$V_{DDA} = 3.3V$ $T_A = 0 \text{ to } 50 \circ C$ $V_{-} = V_{REFINT}$ $3/4 V_{REFINT}$ $1/2 V_{REFINT}$ $1/4 V_{REFINT}$	-	15	100	ppm /°C			
1	Current consumption ⁽³⁾	Fast mode	-	3.5	5				
I _{COMP2}		Slow mode	-	0.5	2	μA			

Table 63.	Com	parator	2	characteristics
	00111	purator	-	onunuotoristios

1. Guaranteed by characterization results.


2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

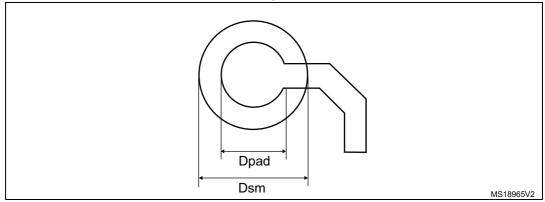
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not included.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 39. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity


Curren el		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	0.525	0.555	0.585	0.0207	0.0219	0.023
A1	-	0.175	-	-	0.0069	-
A2	-	0.38	-	-	0.015	-
A3 ⁽²⁾	-	0.025	-	-	0.001	-
ø b ⁽³⁾	0.22	0.25	0.28	0.0087	0.0098	0.011
D	4.06	4.095	4.13	0.1598	0.1612	0.1626
E	5.059	5.094	5.129	0.1992	0.2006	0.2019
е	-	0.4	-	-	0.0157	-
e1	-	3.2	-	-	0.126	-
e2	-	4.4	-	-	0.1732	-
F	-	0.447	-	-	0.0176	-
G	-	0.347	-	-	0.0137	-
aaa	-	-	0.1	-	-	0.0039
bbb	-	-	0.1	-	-	0.0039
ССС	-	-	0.1	-	-	0.0039
ddd	-	-	0.05	-	-	0.002
eee	-	-	0.05	-	-	0.002

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 44. WLCSP104, 0.4 mm pitch wafer level chip scale package recommended footprint

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID025433 Rev 8

