E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Cap Sense, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	83
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 25x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l152vet6d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32L151xE and STM32L152xE ultra-low-power ARM[®] Cortex[®]-M3 based microcontroller product line. STM32L151xE and STM32L152xE devices are microcontrollers with a Flash memory density of 512 Kbytes.

The ultra-low-power STM32L151xE and STM32L152xE family includes devices in 5 different package types: from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family.

These features make the ultra-low-power STM32L151xE and STM32L152xE microcontroller family suitable for a wide range of applications:

- Medical and handheld equipment
- Application control and user interface
- PC peripherals, gaming, GPS and sport equipment
- Alarm systems, wired and wireless sensors, video intercom
- Utility metering

This STM32L151xE and STM32L152xE datasheet should be read in conjunction with the STM32L1xxxx reference manual (RM0038). The application note "Getting started with STM32L1xxxx hardware development" (AN3216) gives a hardware implementation overview. Both documents are available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M3 core please refer to the ARM[®] Cortex[®]-M3 technical reference manual, available from the www.arm.com website. *Figure 1* shows the general block diagram of the device family.

	Functionalities depending on the operating power supply range						
Operating power supply range	DAC and ADC operation USB		Dynamic voltage scaling range	I/O operation			
$V_{DD}=V_{DDA}=2.0$ to 2.4 V	Conversion time up to 500 Ksps	Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			
V _{DD} =V _{DDA} = 2.4 to 3.6 V Conversion time up to 1 Msps		Functional ⁽²⁾	Range 1, Range 2 or Range 3	Full speed operation			

Table 3. Functionalities depending on the operating power supply range (continued)

 CPU frequency changes from initial to final must respect "F_{CPU} initial < 4*F_{CPU} final" to limit V_{CORE} drop due to current consumption peak when frequency increases. It must also respect 5 μs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, the user can switch from 4.2 MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.

2. Should be USB compliant from I/O voltage standpoint, the minimum $\rm V_{DD}$ is 3.0 V.

CPU frequency range	Dynamic voltage scaling range			
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1			
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2			
2.1MHz to 4.2 MHz (1ws) 32 kHz to 2.1 MHz (0ws)	Range 3			

Table 4. CPU frequency range depending on dynamic voltage scaling

3.13 Ultra-low-power comparators and reference voltage

The STM32L151xE and STM32L152xE devices embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with fixed threshold
- One comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of the following:
 - DAC output
 - External I/O
 - Internal reference voltage (V_{REFINT}) or a sub-multiple (1/4, 1/2, 3/4)

Both comparators can wake up from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 µA typical).

3.14 System configuration controller and routing interface

The system configuration controller provides the capability to remap some alternate functions on different I/O ports.

The highly flexible routing interface allows the application firmware to control the routing of different I/Os to the TIM2, TIM3 and TIM4 timer input captures. It also controls the routing of internal analog signals to ADC1, COMP1 and COMP2 and the internal reference voltage V_{REFINT} .

3.15 Touch sensing

The STM32L151xE and STM32L152xE devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 34 capacitive sensing channels distributed over 11 analog I/O groups. Both software and timer capacitive sensing acquisition modes are supported.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. The capacitive sensing acquisition only requires few external components to operate. This acquisition is managed directly by the GPIOs, timers and analog I/O groups (see Section 3.14: System configuration controller and routing interface).

Reliable touch sensing functionality can be quickly and easily implemented using the free STM32L1xx STMTouch touch sensing firmware library.

3.16 Timers and watchdogs

The ultra-low-power STM32L151xE and STM32L152xE devices include seven generalpurpose timers, two basic timers, and two watchdog timers.

Table 6 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor DMA request generation Capture/compa		Capture/compare channels	Complementary outputs			
TIM2, TIM3, TIM4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No			
TIM5	32-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No			
TIM9	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No			
TIM10, TIM11	16-bit	Up	Any integer between 1 and 65536	No 1		No			
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No			

Table 6. Timer feature comparison

3.16.1 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM9, TIM10 and TIM11)

There are seven synchronizable general-purpose timers embedded in the STM32L151xE and STM32L152xE devices (see *Table 6* for differences).

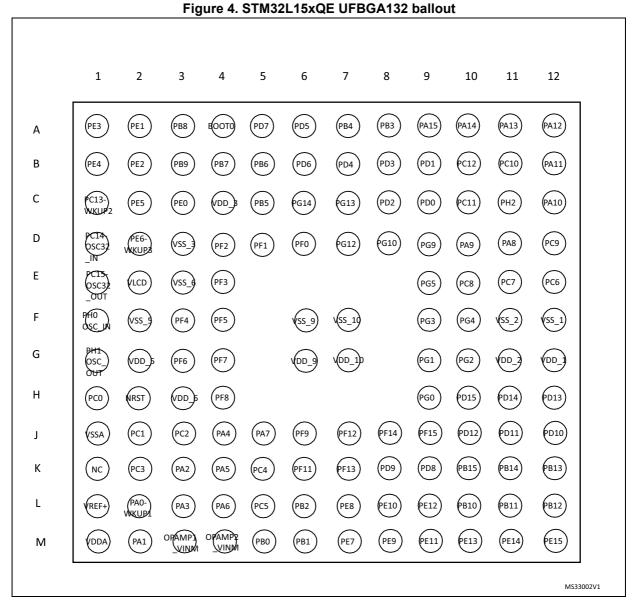
TIM2, TIM3, TIM4, TIM5

TIM2, TIM3, TIM4 are based on 16-bit auto-reload up/down counter. TIM5 is based on a 32bit auto-reload up/down counter. They include a 16-bit prescaler. They feature four independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input captures/output compares/PWMs on the largest packages.

TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM10, TIM11 and TIM9 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.


TIM10, TIM11 and TIM9

TIM10 and TIM11 are based on a 16-bit auto-reload upcounter. TIM9 is based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. TIM10 and TIM11 feature one independent channel, whereas TIM9 has two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers.

DocID025433 Rev 8

STM32L151xE STM32L152xE

1. This figure shows the package top view.

	F	igure <i>i</i>	. 31 101	52L15X		VLC3F	2104 b	anout	
	1	2	3	4	5	6	7	8	9
А	VSS_2	PDO	(PD4)	(PD7)	(PB4)	(PB5)	воото	(PE1)	VDD_3
В	(PA15)	PC12	(PD5)	PD6	РВЗ	(РВ7)	PEO	VDD_3	(PE5)
С	(DD_2)	PC11	(PD2)	(PD3)	(PB6)	(PB9)	(VSS_3)	(PE4)	PC13 WKUP2
D	(PH2)	VSS_2	(PA14)	(PD1)	PB8	(PE2)	(PE3)	PC14 QSC3ZIN	PC15 OSC32OUT
E	PA11	(PA12)	(PA13)	PC10		PE6 WKUP3	VLCD	VSS_5	VDD_5
F	(PA9)	PA10	PA8	PC9		PCO	NRST	PHO OSCIN	PH1 OSCOUT
G	PC7	PC8	(PD15)	(PD11)		VDDA	VREF+	PC3	PC2
н	PC6	(PD13)	(PD12)	PD8		(PA6)	(PA3)	VREF-	PC1
J	(PD14)	PD9	(PB13)	(PB12)	PE10	РВО	(PA4)	(PA2)	VSSA
к	(PD10)	(PB15)		(PE15)	(PE13)	(PB1)	(PA7)	VSS_4	PA0 WKUP1
L	(PB14)	(VSS_1)	(PB11)	(PE14)	(PE11)	PE7	PC4	VDD_4	PA1
М	(VSS_1)	(PB10)	(PE12)	PE9	(PE8)	(PB2)	PC5	(PA5)	VDD_4
Ĺ									

Figure 7. STM32L15xVEY WLCSP104 ballout

1. This figure shows the package top view.

Table 7. Legend/abbreviations used in the pinout table

Name	Abbreviation	Definition				
Pin name	Unless otherwise specified in brackets below the pin name, the pin functior during and after reset is the same as the actual pin name					
	S	Supply pin				
Pin type	I	Input only pin				
	I/O	Input / output pin				
	FT	5 V tolerant I/O				
I/O structure	TC	Standard 3.3 V I/O				
	В	Dedicated BOOT0 pin				
	RST	Bidirectional reset pin with embedded weak pull-up resistor				

DocID025433 Rev 8

Table 8. STM32L151xE and STM32L152xE pin defin Pins								Pin functions		
		-ins				Pin name L Pin name Alterna				
LQFP144	UFBGA132	LQFP100	LQFP64	WLCSP104	Pin name			Alternate functions	Additional functions	
16	F2	10	-	E8	V _{SS_5}	S		V _{SS_5}	-	-
17	G2	11	-	E9	V_{DD_5}	S		V_{DD_5}	-	-
18	G3	-	-	-	PF6	I/O	FT	PF6	TIM5_CH1/TIM5_ETR	ADC_IN27
19	G4	-	-	-	PF7	I/O	FT	PF7	TIM5_CH2	ADC_IN28/ COMP1_INP
20	H4	-	-	-	PF8	I/O	FT	PF8	TIM5_CH3	ADC_IN29/ COMP1_INP
21	J6	-	-	-	PF9	I/O	FT	PF9	TIM5_CH4	ADC_IN30/ COMP1_INP
22	-	-	-	-	PF10	I/O	FT	PF10	-	ADC_IN31/ COMP1_INP
23	F1	12	5	F8	PH0-OSC_IN ⁽⁵⁾	I/O	TC	PH0	-	OSC_IN
24	G1	13	6	F9	PH1- OSC_OUT ⁽⁵⁾	I/O	тс	PH1	-	OSC_OUT
25	H2	14	7	F7	NRST	I/O	RST	NRST	-	-
26	H1	15	8	F6	PC0	I/O	FT	PC0	LCD_SEG18	ADC_IN10/ COMP1_INP
27	J2	16	9	H9	PC1	I/O	FT	PC1	LCD_SEG19	ADC_IN11/ COMP1_INP
28	-	17	10	G9	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP
-	J3	-	-	-	PC2	I/O	FT	PC2	LCD_SEG20	ADC_IN12/ COMP1_INP
-	K1	I	-	-	NC			NC	-	-
29	K2	18	11	G8	PC3	I/O	тс	PC3	LCD_SEG21	ADC_IN13/ COMP1_INP
30	J1	19	12	J9	V _{SSA}	S	-	V _{SSA}	-	-
31	-	20	-	H8	V _{REF-}	S	-	V _{REF-}	-	-
32	L1	21	-	G7	V _{REF+}	S	-	V_{REF^+}	-	-
33	M1	22	13	G6	V_{DDA}	S	-	V_{DDA}	-	-

Table 8. STM32L151xE and STM32L152xE pin definitions (continued)

Pin
des
crip
tio
S

	1		Tal	ble 9. Alte	rnate fui	nction inp	ut/output	t (continued	l)					
		Digital alternate function number												
	AFIO0	AFIO1	AFIO2	AFIO3	AFIO4	AFIO5	AFIO6	AFIO7	AFIO8	•	AFIO11	•	AFIO14	AFIO15
Port name		I		I		Alterna	te functior	1	I	1		11		I
	SYSTEM	TIM2	TIM3/4/ 5	TIM9/ 10/11	I2C1/2	SPI1/2	SPI3	USART1/2/ 3	UART4/ 5	-	LCD	-	CPRI	SYSTEM
PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	-	-	-	-	-	COM3	-	-	EVENT OUT
PB10	-	TIM2_CH3	-	-	I2C2_SCL	-	-	USART3_TX	-	-	SEG10	-	-	EVENT OUT
PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	SEG11	-	-	EVENT OUT
PB12	-	-	-	TIM10_CH1	I2C2_SM BA	SPI2_NSS I2S2_WS	-	USART3_CK	-	-	SEG12	-	-	EVENT OUT
PB13	-	-	-	TIM9_CH1	-	SPI2_SCK I2S2_CK	-	USART3_CTS	-	-	SEG13	-	-	EVENT OUT
PB14	-	-	-	TIM9_CH2	-	SPI2_MISO	-	USART3_RTS	-	-	SEG14	-	-	EVENT OUT
PB15	-	-	-	TIM11_CH1	-	SPI2_MOSI I2S2_SD	-	-	-	-	SEG15	-	-	EVENT OUT
PC0	-	-	-	-	-	-	-	-	-	-	SEG18	-	TIMx_IC1	EVENT OUT
PC1	-	-	-	-	-	-	-	-	-	-	SEG19	-	TIMx_IC2	EVENT OUT
PC2	-	-	-	-	-	-	-	-	-	-	SEG20	-	TIMx_IC3	EVENT OUT
PC3	-	-	-	-	-	-	-	-	-	-	SEG21	-	TIMx_IC4	EVENT OUT
PC4	-	-	-	-	-	-	-	-	-	-	SEG22	-	TIMx_IC1	EVENT OUT
PC5	-	-	-	-	-	-	-	-	-	-	SEG23	-	TIMx_IC2	EVENT OUT
PC6	-	-	TIM3_CH1	-	-	I2S2_MCK	-	-	-	-	SEG24	-	TIMx_IC3	EVENT OUT

DocID025433 Rev 8

48/134

STM32L151xE STM32L152xE

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
M	Drown out react threshold 2	Falling edge	2.45	2.55	2.6	
V _{BOR3}	Brown-out reset threshold 3	Rising edge	2.54	2.66	2.7	
V	Brown-out reset threshold 4	Falling edge	2.68	2.8	2.85	
V_{BOR4}	Brown-out reset threshold 4	Rising edge	2.78	2.9	2.95	
V	Programmable voltage detector	Falling edge	1.8	1.85	1.88	
V _{PVD0}	threshold 0	Rising edge	1.88	1.94	1.99	
V	PVD threshold 1	Falling edge	1.98	2.04	2.09	
V _{PVD1}		Rising edge	2.08	2.14	2.18	
	PVD threshold 2	Falling edge	2.20	2.24	2.28	V
V _{PVD2}	PVD threshold 2	Rising edge	2.28	2.34	2.38	v
V	PVD threshold 3	Falling edge	2.39	2.44	2.48	
V _{PVD3}	PVD threshold 5	Rising edge	2.47	2.54	2.58	
M	PVD threshold 4	Falling edge	2.57	2.64	2.69	
V _{PVD4}	PVD threshold 4	Rising edge	2.68	2.74	2.79	
V	PVD threshold 5	Falling edge	2.77	2.83	2.88	
V _{PVD5}	PVD threshold 5	Rising edge	2.87	2.94	2.99	
V	PVD threshold 6	Falling edge	2.97	3.05	3.09	
V _{PVD6}	PVD threshold 6	Rising edge	3.08	3.15	3.20	
		BOR0 threshold	-	40	-	
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV

Table 14. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 16* are based on characterization results, unless otherwise specified.

Table 15. Embedde	ed internal reference voltage	calibration values
	B i ti	

Calibration value name	Description	Memory address			
VREFINT_CAL	Raw data acquired at temperature of 30 °C ±5 °C V _{DDA} = 3 V ±10 mV	0x1FF8 00F8 - 0x1FF8 00F9			

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽¹⁾	Internal reference voltage	– 40 °C < T _J < +110 °C	1.202	1.224	1.242	V
I _{REFINT}	Internal reference current consumption	-	-	1.4	2.3	μΑ
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V _{REF} value ⁽²⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽³⁾	Temperature coefficient	–40 °C < T _J < +110 °C	-	25	100	ppm/° C
A _{Coeff} ⁽³⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽³⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽³⁾	ADC sampling time when reading the internal reference voltage	-	4	-	-	μs
T _{ADC_BUF} ⁽³⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽³⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽³⁾	VREF_OUT output current (4)	-	-	-	1	μA
C _{VREF_OUT} ⁽³⁾	VREF_OUT output load	-	-	-	50	pF
I _{LPBUF} ⁽³⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽³⁾	1/4 reference voltage	-	24	25	26	%
V _{REFINT_DIV2} ⁽³⁾	1/2 reference voltage	-	49	50	51	V _{REFIN}
V _{REFINT_DIV3} ⁽³⁾	3/4 reference voltage	-	74	75	76	Т

Table 16. Embedded internal reference voltage

1. Guaranteed by test in production.

2. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

3. Guaranteed by characterization results.

4. To guarantee less than 1% VREF_OUT deviation.

DocID025433 Rev 8

Symbol	Parameter	Cond	litions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit		
				1 MHz	225	500			
			Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	2 MHz	420	750	μA		
				4 MHz	780	1200			
		f _{HSE} = f _{HCLK} up to 16 MHz included,		4 MHz	0.98	1.6			
		$f_{HSE} = f_{HCLK}/2$	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	8 MHz	1.85	2.9			
	Cumple.	above 16 MHz (PLL ON) ⁽²⁾		16 MHz	3.6	5.2			
I _{DD}	Supply current in			8 MHz	2.2	3.5			
(Run from	Run mode, code				Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	16 MHz	4.4	6.5	mA
Flash)	executed			32 MHz	8.6	12			
	from Flash	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.6	5.2			
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	8.7	12.3			
		MSI clock, 65 kHz		65 kHz	42	145			
		MSI clock, 524 kHz	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	524 kHz	135	250	μA		
		MSI clock, 4.2 MHz		4.2 MHz	820	1200			

Table 17. Current consumption in Run mode, code with data processing running from Flash

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Condi	tions	f _{HCLK}	Тур	Max ⁽¹⁾	Unit
			Range 3,	1 MHz	200	470	
			V _{CORE} =1.2 V	2 MHz	360	780	μA
			VOS[1:0] = 11	4 MHz	685	1200	
		f _{HSE} = f _{HCLK} up to 16 MHz included,	Range 2,	4 MHz	0.80	1.5	
		f _{HSE} = f _{HCLK} /2	V _{CORE} =1.5 V	8 MHz	1.6	3	
		above 16 MHz (PLL ON) ⁽²⁾	VOS[1:0] = 10	16 MHz	3.1	5	
	Supply current	,	Range 1,	8 MHz	1.9	3.5	
I _{DD} (Run	in Run mode, code executed		V _{CORE} =1.8 V	16 MHz	3.7	5.55	
from	from RAM,		VOS[1:0] = 01	32 MHz	7.55	10.9	mA
RAM)	Flash switched off	HSI clock source	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	16 MHz	3.15	4.8	
		(16 MHz)	Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	32 MHz	7.75	11.7	
		MSI clock, 65 kHz	Range 3,	65 kHz	40	130	
		MSI clock, 524 kHz	V _{CORE} =1.2 V	524 kHz	115	215	μA
		MSI clock, 4.2 MHz	VOS[1:0] = 11	4.2 MHz	715	1100	

Table 18. Current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

		-	l consumption,			
Peri	ipheral	Range 1, V _{CORE} = 1.8 V VOS[1:0] = 01	Range 2, V _{CORE} = 1.5 V VOS[1:0] = 10	Range 3, V _{CORE} = 1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	SYSCFG & RI	2.9	2.4	2.0	2.4	
	ТІМ9	8.2	6.9	5.5	6.9	
	TIM10	6.2	5.1	4.1	5.1	
APB2	TIM11	6.2	5.1	4.1	5.1	
APDZ	ADC ⁽²⁾	9.5	7.9	6.2	7.9	
	SPI1	4.8	3.9	3.2	3.9	
	USART1	8.2	6.9	5.4	6.9	
	GPIOA	6.3	5.3	4.1	5.3	
	GPIOB	6.3	5.3	4.1	5.3	
	GPIOC	6.3	5.2	4.1	5.2	
	GPIOD	8.1	6.8	5.4	6.8	
	GPIOE	6.7	5.7	4.5	5.7	µA/MHz
	GPIOF	5.9	4.9	3.9	4.9	(f _{HCLK})
АНВ	GPIOG	7.2	6.1	4.9	6.1	
АПБ	GPIOH	1.7	1.4	1.1	1.4	
	CRC	0.8	0.7	0.5	0.7	
	FLASH	21.6	18.1	16.0	-(6)	
	DMA1	16.8	14.5	11.5	14.5	
	DMA2	15.7	13.6	10.8	13.6	
All enabled	·	222	184	160	165.9	
I _{DD (RTC)}			0	.4		
I _{DD (LCD)}			3	.1		
$I_{\text{DD}(\text{ADC})}^{(3)}$			14	50		
$I_{\text{DD (DAC)}}^{(4)}$			34	40		
I _{DD (COMP1)}			0.	16		μA
	Slow mode			2		
IDD (COMP2)	Fast mode		(5		
I _{DD (PVD / BOR)}	(5)		2	.6		
I _{DD (IWDG)}			0.	25		

Table 24. Peripheral current consumption⁽¹⁾ (continued)

 Data based on differential I_{DD} measurement between all peripherals OFF an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Lowpower run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling.

2. HSI oscillator is OFF for this measure.

Symbol	Parameter	Condition	Тур	Мах	Unit
		MSI range 0	-	40	
		MSI range 1	-	20	
		MSI range 2	-	10	
		MSI range 3	-	4	
+ (2)	MSL assillator stabilization time	MSI range 4	-	2.5	
t _{STAB(MSI)} ⁽²⁾	MSI oscillator stabilization time	MSI range 5	-	2	μs
		MSI range 6, Voltage range 1 and 2	-	2	
		MSI range 3, Voltage range 3	-	3	
f	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
fover(MSI)		Any range to range 6	-	6	

Table 32. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.

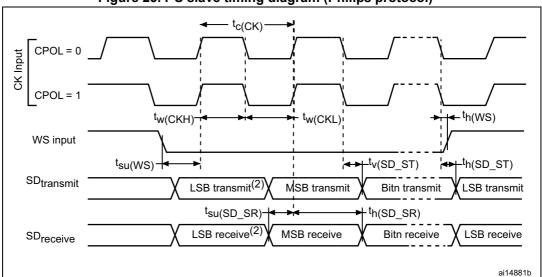
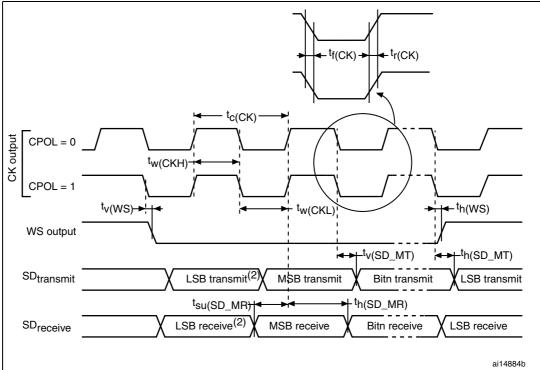



Figure 25. I²S slave timing diagram (Philips protocol)⁽¹⁾

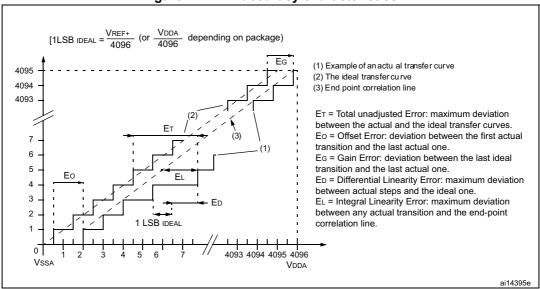
- 1. Measurement points are done at CMOS levels: 0.3 × V_{DD} and 0.7 × $V_{DD}.$
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 26. I²S master timing diagram (Philips protocol)⁽¹⁾

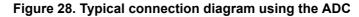
- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Electrical characteristics

Symbol	Parameter	Test conditions	Min ⁽³⁾	Тур	Max ⁽³⁾	Unit
ET	Total unadjusted error		-	2.5	4	
EO	Offset error	$2.4 \text{ V} \leq \text{V}_{\text{DDA}} \leq 3.6 \text{ V}$	-	1	2	
EG	Gain error	2.4 V ≤V _{REF+} ≤ 3.6 V f _{ADC} = 8 MHz, R _{AIN} = 50 Ω	-	1.5	3.5	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	2.2	3	
ENOB	Effective number of bits		9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	2.4 V ≤V _{DDA} ≤ 3.6 V V _{DDA} = V _{REF+} f _{ADC} = 16 MHz, R _{AIN} = 50 Ω	57.5	62	-	
SNR	Signal-to-noise ratio	T _A = -40 to 105 ° C	57.5	62	-	dB
THD	Total harmonic distortion	F _{input} =10kHz	-	-70	-65	
ENOB	Effective number of bits		9.2	10	-	bits
SINAD	Signal-to-noise and distortion ratio	1.8 V \leq V _{DDA} \leq 2.4 V V _{DDA} = V _{REF+} f _{ADC} = 8 MHz or 4 MHz, R _{AIN} = 50 Ω	57.5	62	-	
SNR	Signal-to-noise ratio	$T_A = -40$ to 105 ° C	57.5	62	-	dB
THD	Total harmonic distortion	F _{input} =10kHz	-	-70	-65	
ET	Total unadjusted error		-	4	6.5	
EO	Offset error	2.4 V ≤V _{DDA} ≤ 3.6 V	-	1.5	4	
EG	Gain error	1.8 V ≤V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	3.5	6	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	2.5	3	
ET	Total unadjusted error		-	2	3	
EO	Offset error	1.8 V ≤V _{DDA} ≤ 2.4 V	-	1	1.5	
EG	Gain error	1.8 V ≤V _{REF+} ≤ 2.4 V f _{ADC} = 4 MHz, R _{AIN} = 50 Ω	-	1.5	2	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	-	1	2	
EL	Integral linearity error		-	2.2	3	


Table	56.	ADC	accuracy ⁽¹⁾⁽²⁾	
-------	-----	-----	----------------------------	--

1. ADC DC accuracy values are measured after internal calibration.


 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.12 does not affect the ADC accuracy.

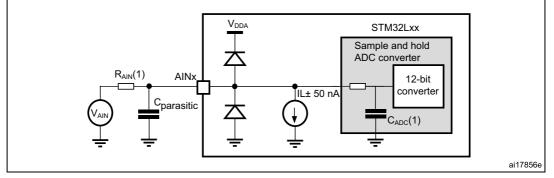
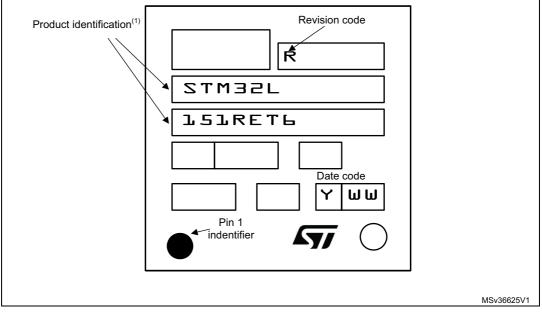

3. Guaranteed by characterization results.

Figure 27. ADC accuracy characteristics



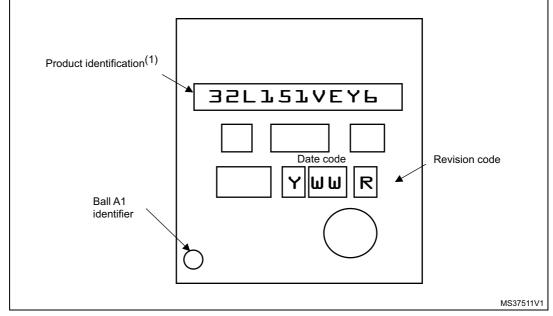
- 1. Refer to Table 57: Maximum source impedance RAIN max for the value of R_{AIN} and Table 55: ADC characteristics for the value of C_{ADC} .
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

Marking of engineering samples

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 39. LQFP64 10 x 10 mm, 64-pin low-profile quad flat package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity



Dimension	Recommended values
Pitch	0.4
Dpad	260 µm max. (circular)
Брац	220 µm recommended
Dsm	300 μm min. (for 260 μm diameter pad)
PCB pad design	Non-solder mask defined via underbump allowed.

 Table 70. WLCSP104, 0.4 mm pitch recommended PCB design rules

Marking of engineering samples

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Figure 45. WLCSP104, 0.4 mm pitch wafer level chip scale package top view example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

8 Part numbering

Table 72. STM32L151xE and STM32L152xE Ordering information scheme

Device family STM32 = ARM-based 32-bit microcontroller Product type L = Low-power Device subfamily 151: Devices without LCD 152: Devices with LCD 152: Devices with LCD 2 Pin count R = 64 pins V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E = 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range -40 to 85 °C 7 = Industrial temperature range, -40 to 105 °C
Product type L = Low-power Device subfamily 151: Devices without LCD 152: Devices with LCD 152: Devices with LCD Pin count R = 64 pins V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E = 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
L = Low-power Device subfamily 151: Devices without LCD 152: Devices with LCD Pin count R = 64 pins V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
L = Low-power Device subfamily 151: Devices without LCD 152: Devices with LCD Pin count R = 64 pins V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
151: Devices without LCD 152: Devices with LCD Pin count $R = 64 \text{ pins}$ $V = 100/104 \text{ pins}$ $Z = 144 \text{ pins}$ $Q = 132 \text{ pins}$ Flash memory size $E = 512 \text{ Kbytes of Flash memory}$ Package $H = BGA$ $T = LQFP$ $Y = WLCSP104$ Temperature range $6 = Industrial temperature range, -40 to 85 °C $
151: Devices without LCD 152: Devices with LCD Pin count $R = 64 \text{ pins}$ $V = 100/104 \text{ pins}$ $Z = 144 \text{ pins}$ $Q = 132 \text{ pins}$ Flash memory size $E = 512 \text{ Kbytes of Flash memory}$ Package $H = BGA$ $T = LQFP$ $Y = WLCSP104$ Temperature range $6 = Industrial temperature range, -40 to 85 °C $
152: Devices with LCD Pin count R = 64 pins V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
Pin count R = 64 pins V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
R = 64 pins V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
V = 100/104 pins Z = 144 pins Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
Z = 144 pins Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
Q = 132 pins Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
Flash memory size E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
E= 512 Kbytes of Flash memory Package H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
H = BGA T = LQFP Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
Y = WLCSP104 Temperature range 6 = Industrial temperature range, -40 to 85 °C
Temperature range 6 = Industrial temperature range, -40 to 85 °C
6 = Industrial temperature range, -40 to 85 °C
6 = Industrial temperature range, -40 to 85 °C
7 = Industrial temperature range, –40 to 105 °C
Options
No character = V _{DD} range: 1.8 to 3.6 V and BOR enabled
D = V_{DD} range: 1.65 to 3.6 V and BOR disabled
Packing

TR = tape and reel No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact the nearest ST sales office.

DocID025433 Rev 8