

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	40MHz
Connectivity	SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	49
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 16
Voltage - Supply (Vcc/Vdd)	2.25V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f8135vfge

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.1.3 Memory

Note: Features in italics are NOT available in the 56F8135 device.

- Harvard architecture permits as many as three simultaneous accesses to program and data memory
- Flash security protection feature
- On-chip memory, including a low-cost, high-volume Flash solution
 - 64KB of Program Flash
 - 4KB of Program RAM
 - 8KB of Data Flash
 - 8KB of Data RAM
 - 8KB of Boot Flash
- EEPROM emulation capability

1.1.4 Peripheral Circuits

Note: Features in italics are NOT available in the 56F8135 device.

- Pulse Width Modulator module:
 - In the 56F8335, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense inputs, and four Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes
 - In the 56F8135, one Pulse Width Modulator module with six PWM outputs, three Current Sense inputs and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes
- Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels 2 and 3
- Quadrature Decoder:
 - In the 56F8335, two four-input Quadrature Decoders or two additional Quad Timers
 - In the 56F8135, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A
- Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip temperature
- Quad Timer:
 - In the 56F8335, four dedicated general-purpose Quad Timers totaling six dedicated pins: Timer C with two pins and Timer D with four pins
 - In the 56F8135, two Quad Timers; Timer A and Timer C both work in conjunction with GPIO
- Optional On-Chip Regulator
- FlexCAN (CAN Version 2.0 B-compliant) module with 2-pin port for transmit and receive
- Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines)
- Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO lines); SPI 1 can also be used as Quadrature Decoder 1 or Quad Timer B
- Computer Operating Properly (COP)/Watchdog timer
- Two dedicated external interrupt pins

Figure 2-1 56F8335 Signals Identified by Functional Group¹ (128-Pin LQFP)

1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.

Table 2-2 Signal and Package Information for the 128-Pin LQFP ((Continued)
---	-------------

Signal Name	Pin No.	Туре	State During Reset	Signal Description
CLKO	6	Output	In reset, output is disabled	Clock Output — This pin outputs a buffered clock signal. Using the SIM CLKO Select Register (SIM_CLKOSR), this pin can be programmed as any of the following: disabled, CLK_MSTR (system clock), IPBus clock, oscillator output, prescaler clock and postscaler clock. Other signals are also available for test purposes.
				See Part 6.5.7 for details.
A8	15	Output	In reset, output is disabled, pull-up is enabled	Address Bus — A8 - A13 specify six of the address lines for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A8 - A13 and EMI control signals are tri-stated when the external bus is inactive.
(GPIOA0)		Schmitt		Port A GPIO — These six GPIO pins can be individually programmed as input or output pins
A9 (GPIOA1)	16	Output		After reset, these pins default to address bus functionality and
A10 (GPIOA2)	17			must be programmed as GPIO. To deactivate the internal pull-up resistor, clear the appropriate
A11 (GPIOA3)	18			GPIO bit in the GPIOA_PUR register.
A12 (GPIOA4)	19			Note: Primary function is not available in this package
A13 (GPIOA5)	20			configuration, GFIO function must be used instead.
GPIOB0	27	Schmitt Input/ Output	Input, pull-up enabled	Port B GPIO — These four GPIO pins can be individually programmed as an input or output pin.
(A16)		Output		Address Bus — A16 - A19 specify four of the address lines for
GPIOB1	28		external program or data memory accesses. Depen state of the DRV bit in the EMI bus control register A19 and EMI control signals are tri-stated when the	external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A16 - A19 and EMI control signals are tri-stated when the external bus
(A17)				is inactive.
GPIOB2	29			After reset, the default state is GPIO.
(A18)				To deactivate the internal pull-up resistor, clear bit 0 in the
GPIOB3	30			GPIOB_PUR register.
(A19)				Example: GPIOB1, clear bit 1 in the GPIOB_PUR register.

Table 2-2 Signal and Package Information for the 128-Pin LQFP (Continued)

Signal Name	Pin No.	Туре	State During Reset	Signal Description
RXD1	41	Input	Input,	Receive Data — SCI1 receive data input
(GPIOD7)		Input/ Output	pull-up enabled	Port D GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is SCI input.
				To deactivate the internal pull-up resistor, clear bit 7 in the GPIOD_PUR register.
тск	115	Schmitt Input	Input, pulled low internally	Test Clock Input — This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/EOnCE port. The pin is connected internally to a pull-down resistor.
TMS	116	Schmitt Input	Input, pulled high internally	Test Mode Select Input — This input pin is used to sequence the JTAG TAP controller's state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.
				Note: Always tie the TMS pin to V_{DD} through a 2.2K resistor.
TDI	117	Schmitt Input	Input, pulled high internally	Test Data Input — This input pin provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor.
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.
TDO	118	Output	In reset, output is disabled, pull-up is enabled	Test Data Output — This tri-stateable output pin provides a serial output data stream from the JTAG/EOnCE port. It is driven in the shift-IR and shift-DR controller states, and changes on the falling edge of TCK.

Table 2-2	Signal and Pa	kage Information	for the 128-Pin	LQFP (Continued)
	erginal and r a	inage in ernaner		

Signal Name	Pin No.	Туре	State During Reset	Signal Description
INDEX0	1	Schmitt	Input,	Index — Quadrature Decoder 0, INDEX input
(TA2)		Schmitt Input/ Output	enabled	TA2 — Timer A, Channel 2
(GPIOC6)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Capac		After reset, the default state is INDEX0.
				To deactivate the internal pull-up resistor, clear bit 6 of the GPIOC_PUR register.
HOME0	2	Schmitt Input	Input, pull-up	Home — Quadrature Decoder 0, HOME input
(TA3)		Schmitt Input/ Output	enabled	TA3 — Timer A ,Channel 3
(GPIOC7)		Schmitt Input/		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Output		After reset, the default state is HOME0.
				To deactivate the internal pull-up resistor, clear bit 7 of the GPIOC_PUR register.
SCLK0	124	Schmitt Input/ Output	Input, pull-up enabled	SPI 0 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input.
(GPIOE4)		Schmitt Input/ Output		Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Cuput		After reset, the default state is SCLK0.
				To deactivate the internal pull-up resistor, clear bit 4 in the GPIOE_PUR register.

Table 4-14 Quad Timer D Registers Address Map (Continued) (TMRD_BASE = \$00 F100) *Quad Timer D is NOT available in the 56F8135 device*

Register Acronym	Address Offset	Register Description
TMRD1_CAP	\$12	Capture Register
TMRD1_LOAD	\$13	Load Register
TMRD1_HOLD	\$14	Hold Register
TMRD1_CNTR	\$15	Counter Register
TMRD1_CTRL	\$16	Control Register
TMRD1_SCR	\$17	Status and Control Register
TMRD1_CMPLD1	\$18	Comparator Load Register 1
TMRD1_CMPLD2	\$19	Comparator Load Register 2
TMRD1_COMSCR	\$1A	Comparator Status and Control Register
		Reserved
TMRD2_CMP1	\$20	Compare Register 1
TMRD2_CMP2	\$21	Compare Register 2
TMRD2_CAP	\$22	Capture Register
TMRD2_LOAD	\$23	Load Register
TMRD2_HOLD	\$24	Hold Register
TMRD2_CNTR	\$25	Counter Register
TMRD2_CTRL	\$26	Control Register
TMRD2_SCR	\$27	Status and Control Register
TMRD2_CMPLD1	\$28	Comparator Load Register 1
TMRD2_CMPLD2	\$29	Comparator Load Register 2
TMRD2_COMSCR	\$2A	Comparator Status and Control Register
		Reserved
TMRD3_CMP1	\$30	Compare Register 1
TMRD3_CMP2	\$31	Compare Register 2
TMRD3_CAP	\$32	Capture Register
TMRD3_LOAD	\$33	Load Register
TMRD3_HOLD	\$34	Hold Register
TMRD3_CNTR	\$35	Counter Register
TMRD3_CTRL	\$36	Control Register
TMRD3_SCR	\$37	Status and Control Register
TMRD3_CMPLD1	\$38	Comparator Load Register 1
TMRD3_CMPLD2	\$39	Comparator Load Register 2
TMRD3_COMSCR	\$3A	Comparator Status and Control Register

Register Acronym	Address Offset	Register Description
DEC1_DECCR	\$0	Decoder Control Register
DEC1_FIR	\$1	Filter Interval Register
DEC1_WTR	\$2	Watchdog Time-out Register
DEC1_POSD	\$3	Position Difference Counter Register
DEC1_POSDH	\$4	Position Difference Counter Hold Register
DEC1_REV	\$5	Revolution Counter Register
DEC1_REVH	\$6	Revolution Hold Register
DEC1_UPOS	\$7	Upper Position Counter Register
DEC1_LPOS	\$8	Lower Position Counter Register
DEC1_UPOSH	\$9	Upper Position Hold Register
DEC1_LPOSH	\$A	Lower Position Hold Register
DEC1_UIR	\$B	Upper Initialization Register
DEC1_LIR	\$C	Lower Initialization Register
DEC1_IMR	\$D	Input Monitor Register

Table 4-18 Quadrature Decoder 1 Registers Address Map (DEC1_BASE = \$00 F190) Quadrature Decoder 1 is NOT available in the 56F8135 device

Table 4-19 Interrupt Control Registers Address Map (ITCN_BASE = \$00 F1A0)

Register Acronym	Address Offset	Register Description
IPR 0	\$0	Interrupt Priority Register 0
IPR 1	\$1	Interrupt Priority Register 1
IPR 2	\$2	Interrupt Priority Register 2
IPR 3	\$3	Interrupt Priority Register 3
IPR 4	\$4	Interrupt Priority Register 4
IPR 5	\$5	Interrupt Priority Register 5
IPR 6	\$6	Interrupt Priority Register 6
IPR 7	\$7	Interrupt Priority Register 7
IPR 8	\$8	Interrupt Priority Register 8
IPR 9	\$9	Interrupt Priority Register 9

Table 4-21 Analog-to-Dig	ital Converter	Registers Address	Map (Continued)
0	(ADCB_BASE	= \$00 F240)	

Register Acronym	Address Offset	Register Description
ADCB_HLMT 2	\$1B	High Limit Register 2
ADCB_HLMT 3	\$1C	High Limit Register 3
ADCB_HLMT 4	\$1D	High Limit Register 4
ADCB_HLMT 5	\$1E	High Limit Register 5
ADCB_HLMT 6	\$1F	High Limit Register 6
ADCB_HLMT 7	\$20	High Limit Register 7
ADCB_OFS 0	\$21	Offset Register 0
ADCB_OFS 1	\$22	Offset Register 1
ADCB_OFS 2	\$23	Offset Register 2
ADCB_OFS 3	\$24	Offset Register 3
ADCB_OFS 4	\$25	Offset Register 4
ADCB_OFS 5	\$26	Offset Register 5
ADCB_OFS 6	\$27	Offset Register 6
ADCB_OFS 7	\$28	Offset Register 7
ADCB_POWER	\$29	Power Control Register
ADCB_CAL	\$2A	ADC Calibration Register

Table 4-22 Temperature Sensor Register Address Map (TSENSOR_BASE = \$00 F270) Temperature Sensor is NOT available in the 56F8135 device

Register Acronym	Address Offset	Register Description
TSENSOR_CNTL	\$0	Control Register

Table 4-23 Serial Communication Interface 0 Registers Address Map (SCI0_BASE = \$00 F280)

Register Acronym	Address Offset	Register Description
SCI0_SCIBR	\$0	Baud Rate Register

Register Acronym	Address Offset	Register Description
COPCTL	\$0	Control Register
СОРТО	\$1	Time-Out Register
COPCTR	\$2	Counter Register

Table 4-27 Computer Operating Properly Registers Address Map (COP_BASE = \$00 F2C0)

Table 4-28 Clock Generation Module Registers Address Map (CLKGEN_BASE = \$00 F2D0)

Register Acronym	Address Offset	Register Description
PLLCR	\$0	Control Register
PLLDB	\$1	Divide-By Register
PLLSR	\$2	Status Register
		Reserved
SHUTDOWN	\$4	Shutdown Register
OSCTL	\$5	Oscillator Control Register

Table 4-29 GPIOA Registers Address Map (GPIOA_BASE = \$00 F2E0)

Register Acronym	Address Offset	Register Description	Reset Value
GPIOA_PUR	\$0	Pull-up Enable Register	0 x 3FFF
GPIOA_DR	\$1	Data Register	0 x 0000
GPIOA_DDR	\$2	Data Direction Register	0 x 0000
GPIOA_PER	\$3	Peripheral Enable Register	0 x 3FFF
GPIOA_IAR	\$4	Interrupt Assert Register	0 x 0000
GPIOA_IENR	\$5	Interrupt Enable Register	0 x 0000
GPIOA_IPOLR	\$6	Interrupt Polarity Register	0 x 0000
GPIOA_IPR	\$7	Interrupt Pending Register	0 x 0000
GPIOA_IESR	\$8	Interrupt Edge-Sensitive Register	0 x 0000
GPIOA_PPMODE	\$9	Push-Pull Mode Register	0 x 3FFF
GPIOA_RAWDATA	\$A	Raw Data Input Register	_

Table 4-38 FlexCAN Registers Address Map (Continued) (FC_BASE = \$00 F800) FlexCAN is NOT available in the 56F8135 device

Register Acronym	Address Offset	Register Description
FCMB9_ID_LOW	\$8A	Message Buffer 9 ID Low Register
FCMB9_DATA	\$8B	Message Buffer 9 Data Register
FCMB9_DATA	\$8C	Message Buffer 9 Data Register
FCMB9_DATA	\$8D	Message Buffer 9 Data Register
FCMB9_DATA	\$8E	Message Buffer 9 Data Register
		Reserved
FCMB10_CONTROL	\$90	Message Buffer 10 Control / Status Register
FCMB10_ID_HIGH	\$91	Message Buffer 10 ID High Register
FCMB10_ID_LOW	\$92	Message Buffer 10 ID Low Register
FCMB10_DATA	\$93	Message Buffer 10 Data Register
FCMB10_DATA	\$94	Message Buffer 10 Data Register
FCMB10_DATA	\$95	Message Buffer 10 Data Register
FCMB10_DATA	\$96	Message Buffer 10 Data Register
		Reserved
FCMB11_CONTROL	\$98	Message Buffer 11 Control / Status Register
FCMB11_ID_HIGH	\$99	Message Buffer 11 ID High Register
FCMB11_ID_LOW	\$9A	Message Buffer 11 ID Low Register
FCMB11_DATA	\$9B	Message Buffer 11 Data Register
FCMB11_DATA	\$9C	Message Buffer 11 Data Register
FCMB11_DATA	\$9D	Message Buffer 11 Data Register
FCMB11_DATA	\$9E	Message Buffer 11 Data Register
		Reserved
FCMB12_CONTROL	\$A0	Message Buffer 12 Control / Status Register
FCMB12_ID_HIGH	\$A1	Message Buffer 12 ID High Register
FCMB12_ID_LOW	\$A2	Message Buffer 12 ID Low Register
FCMB12_DATA	\$A3	Message Buffer 12 Data Register
FCMB12_DATA	\$A4	Message Buffer 12 Data Register
FCMB12_DATA	\$A5	Message Buffer 12 Data Register
FCMB12_DATA	\$A6	Message Buffer 12 Data Register
		Reserved
FCMB13_CONTROL	\$A8	Message Buffer 13 Control / Status Register
FCMB13_ID_HIGH	\$A9	Message Buffer 13 ID High Register
FCMB13_ID_LOW	\$AA	Message Buffer 13 ID Low Register

4.8 Factory Programmed Memory

The Boot Flash memory block is programmed during manufacturing with a default Serial Bootloader program. The Serial Bootloader application can be used to load a user application into the Program and *Data Flash(NOT available in the 56F8135)* memories of the device. The **56F83xx SCI/CAN Bootloader User Manual (MC56F83xxBLUM)** provides detailed information on this firmware. An application note, **Production Flash Programming (AN1973)**, details how the Serial Bootloader program can be used to perform production Flash programming of the on-board Flash memories as well as other potential methods.

Like all the Flash memory blocks, the Boot Flash can be erased and programmed by the user. The Serial Bootloader application is programmed as an aid to the end user, but is not required to be used or maintained in the Boot Flash memory.

Part 5 Interrupt Controller (ITCN)

5.1 Introduction

The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in order to service this interrupt.

5.2 Features

The ITCN module design includes these distinctive features:

- Programmable priority levels for each IRQ
- Two programmable Fast Interrupts
- Notification to SIM module to restart clocks out of Wait and Stop modes
- Drives initial address on the address bus after reset

For further information, see **Table 4-5**, Interrupt Vector Table Contents.

5.3 Functional Description

The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the active interrupt requests for that level. Within a given priority level, 0 is the highest priority, while number 81 is the lowest.

5.3.1 Normal Interrupt Handling

Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the vector number to determine the vector address. In this way, an offset is generated into the vector table for each interrupt.

Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$0	IPR0	R	0	0	BKPT	U0 IPL	STPC	NT IPL	0	0	0	0	0	0	0	0	0	0
		W	0	0	0	0	0	0	0	0	0	0						
\$1	IPR1	W	0				0						RX_RE	g ipl	TX_RI	EG IPL	TRB	JF IPL
\$2	IPR2	R W	FMCE	BE IPL	FMC	C IPL	FME	RR IPL	LOC	K IPL	LVI	IPL	0	0	IRQI	B IPL	IRQA IPL	
\$3	IPR3	R W	GP IF	IOD PL	GP If	IOE PL	GP II	PIOF PL	FCMSG	BUF IPL	FCWK	UP IPL	FCERR	IPL	FCBO	FF IPL	0	0
\$4	IPR4	R W	SPIO. IF	_RCV PL	SPI1_ IF	_XMIT PL	SPI1 II	_RCV PL	0	0	0	0	GPIOA	IPL	GPIC	B IPL	GPIC	OC IPL
\$5	IPR5	R W	DEC1_>	(IRQ IPL	DEC1_H	HRQ IPL	SCI1 II	_RCV PL	SCI1_ IF	_RERR PL	0	0	SCI1_1 IPL	TIDL	SCI1_ IF	_XMIT PL	SPI0 I	_XMIT PL
\$6	IPR6	R W	TMR	C0 IPL	TMRI	D3 IPL	TMRI	D2 IPL	TMRI	D1 IPL	TMR	00 IPL	0	0	DEC0_>	(IRQ IPL	DECO	_HIRQ PL
\$7	IPR7	R W	TMR	A0 IPL	TMRI	33 IPL	TMR	B2 IPL	TMRI	B1 IPL	TMRE	30 IPL	TMRC3	B IPL	TMRO	C2 IPL	TMR	C1 IPL
\$8	IPR8	R W	SCI0_F	RCV IPL	SCI0_R	ERR IPL	0	0	SCI0_T	TIDL IPL	SCI0_X	MIT IPL	TMRA3	B IPL	TMR	A2 IPL	TMR	A1 IPL
\$9	IPR9	R W	PWMA	_F IPL	PWME	3_F IPL	PWN II	1A_RL PL	PWMB	_RL IPL	ADCA_	ZC IPL	ABCB_Z	CIPL	ADCA_	CC IPL	ADCB	_CC IPL
\$A	VBA	R W	0	0	0						VECTOR	R BASE /	ADDRESS					
\$B	FIM0	R W	0	0	0	0	0	0	0	0	0			FAST	INTERRU	JPT 0		
\$C	FIVAL0	R W							l VE	FAST INT CTOR AL	ERRUPT	r o LOW						
\$D	FIVAH0	R W	0	0	0	0	0	0	0	0	0	0	0		FAST VECTOF	INTERR R ADDRE	UPT 0 SS HIG	н
\$E	FIM1	R W	0	0	0	0	0	0	0	0	0			FAST	INTERRU	JPT 1		
\$F	FIVAL1	R W							l VE	FAST INT CTOR AL	ERRUPT	「1 LOW						
\$10	FIVAH1	R W	0	0	0 0	0 0	0 0	0 0	0	0	0	0	0		FAST VECTOF	INTERR R ADDRE	UPT 1 SS HIG	н
\$11	IRQP0	R							PE	ENDING [16:2]							1
		R								PENDIN	G [32:17	1						
\$12	IRQP1	W									-	-						
\$13	IRQP2	R W								PENDIN	IG [48:33]						
\$14	IROP3	R								PENDIN	I IG [64:49]						
Ψιτ	inter o	W									10 190-65							
\$15	IRQP4	W								PENDIN	10.05							
\$16	IRQP5	R	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
	Reserved	W																
		R	INT						V/AP					1	IRQB	IRQA		
\$1D	ICTL	W							VAD				INT_DIS		STATE	STATE	EDG	EDG
				= Resei	rved													

5.6.30 ITCN Control Register (ICTL)

Base + \$1D	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	INT	IP	IC				VAB					1	IRQB STATE	IRQA STATE	IRQB	IRQA
Write															EDG	EDG
RESET	0	0	0	1	0	0	0	0	0	0	0	1	1	1	0	0

Figure 5-26 ITCN Control Register (ICTL)

5.6.30.1 Interrupt (INT)—Bit 15

This *read-only* bit reflects the state of the interrupt to the 56800E core.

- 0 = No interrupt is being sent to the 56800E core
- 1 = An interrupt is being sent to the 56800E core

5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13

These *read-only* bits reflect the state of the new interrupt priority level bits being presented to the 56800E core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new interrupt service routine.

- **Note:** Nested interrupts may cause this field to be updated before the original interrupt service routine can read it.
 - 00 = Required nested exception priority levels are 0, 1, 2, or 3
 - 01 = Required nested exception priority levels are 1, 2, or 3
 - 10 = Required nested exception priority levels are 2 or 3
 - 11 = Required nested exception priority level is 3

5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6

This *read-only* field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new interrupt service routine.

Note: Nested interrupts may cause this field to be updated before the original interrupt service routine can read it.

5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5

This bit allows all interrupts to be disabled.

- 0 = Normal operation (default)
- 1 = All interrupts disabled

5.6.30.5 Reserved—Bit 4

This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing.

Part 6 System Integration Module (SIM)

6.1 Introduction

The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls distribution of resets and clocks and provides a number of control features. The system integration module is responsible for the following functions:

- Reset sequencing
- Clock generation & distribution
- Stop/Wait control
- Pull-up enables for selected peripherals
- System status registers
- Registers for software access to the JTAG ID of the chip
- Enforcing Flash security

These are discussed in more detail in the sections that follow.

6.2 Features

The SIM has the following features:

- Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory
- Power-saving clock gating for peripheral
- Three power modes (Run, Wait, Stop) to control power utilization
 - Stop mode shuts down the 56800E core, system clock, peripheral clock, and PLL operation
 - Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be done
 explicitly
 - Wait mode shuts down the 56800E core and unnecessary system clock operation
 - Run mode supports full part operation
- Controls to enable/disable the 56800E core WAIT and STOP instructions
- Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will be 3 x 32 clocks (phased release of reset) for reset, except for POR, which is 2²¹ clock cycles.
- Controls reset sequencing after reset
- Software-initiated reset
- Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control
- System Control Register
- Registers for software access to the JTAG ID of the chip

6.3 Operating Modes

Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the various chip operating modes and take appropriate action. These are:

- **Reset Mode,** which has two submodes:
 - POR and $\overline{\text{RESET}}$ operation

The 56800E core and all peripherals are reset. This occurs when the internal POR is asserted or the RESET pin is asserted.

— COP reset and software reset operation

The 56800E core and all peripherals are reset. The MA bit within the OMR is not changed. This allows the software to determine the boot mode (internal or external boot) to be used on the next reset.

• Run Mode

This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation.

Debug Mode

The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP and PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to disable any motor from being driven; see the PWM chapter in the **56F8300 Peripheral User Manual** for details.

Wait Mode

In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped. Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other peripherals continue to run.

• Stop Mode

When in Stop mode, the 56800E core, memory and most peripheral clocks are shut down. Optionally, the COP and CAN can be stopped. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. The CAN (along with any non-gated interrupt) is capable of waking the chip up from Stop mode, but is not fully functional in Stop mode.

6.4 Operating Mode Register

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	NL							СМ	XP	SD	R	SA	EX	0	MB	MA
Туре	R/W							R/W	R/W	R/W	R/W	R/W	R/W		R/W	R/W
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	Х

Figure 6-1 OMR

The reset state for MB and MA will depend on the Flash secured state. See **Part 4.2** and **Part 7** for detailed information on how the Operating Mode Register (OMR) MA and MB bits operate in this device. For additional information on the EX bit, see **Part 4.4**. For all other bits, see the **DSP56F800E Reference Manual**.

Note: The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR.

6.5.7.1 Reserved—Bits 15–10

This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing.

6.5.7.2 Alternate GPIO_B Peripheral Function for A23 (A23)—Bit 9

- 0 = Peripheral output function of GPIOB[7] is defined to be A[23]
- 1 = Peripheral output function of GPIOB[7] is defined to be the oscillator clock (MSTR_OSC, see Figure 3-4)

6.5.7.3 Alternate GPIO_B Peripheral Function for A22 (A22)—Bit 8

- 0 = Peripheral output function of GPIOB[6] is defined to be A[22]
- 1 = Peripheral output function of GPIOB[6] is defined to be SYS_CLK2

6.5.7.4 Alternate GPIO_B Peripheral Function for A21 (A21)—Bit 7

- 0 = Peripheral output function of GPIOB[5] is defined to be A[21]
- 1 = Peripheral output function of GPIOB[5] is defined to be SYS_CLK

6.5.7.5 Alternate GPIO_B Peripheral Function for A20 (A20)—Bit 6

- 0 = Peripheral output function of GPIOB[4] is defined to be A[20]
- 1 = Peripheral output function of GPIOB[4] is defined to be the prescaler clock (FREF, see Figure 3-4)

6.5.7.6 Clockout Disable (CLKDIS)—Bit 5

- 0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL
- 1 = CLKOUT is tri-stated

6.5.7.7 CLockout Select (CLKOSEL)—Bits 4–0

Selects clock to be muxed out on the CLKO pin.

- 00000 = SYS_CLK (from OCCS DEFAULT)
- 00001 = Reserved for factory test—56800E clock
- 00010 = Reserved for factory test—XRAM clock
- 00011 = Reserved for factory test—PFLASH odd clock
- 00100 = Reserved for factory test—PFLASH even clock
- 00101 = Reserved for factory test—BFLASH clock
- 00110 = Reserved for factory test—DFLASH clock
- 00111 = Oscillator output
- $01000 = F_{out}$ (from OCCS)
- 01001 = Reserved for factory test—IPB clock
- 01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL)
- 01011 = Reserved for factory test—Prescaler clock (from OCCS)
- 01100 = Reserved for factory test—Postscaler clock (from OCCS)
- 01101 = Reserved for factory test—SYS_CLK2 (from OCCS)

7. TJ = Junction Temperature TA = Ambient Temperature

Note: The 56F8135 device is guaranteed to 40MHz and specified to meet Industrial requirements only; CAN is NOT available on the 56F8135 device.

Characteristic	Symbol	Notes	Min	Тур	Max	Unit
Supply voltage	V _{DD_IO}		3	3.3	3.6	V
ADC Supply Voltage	V _{DDA_ADC} , V _{REFH}	V _{REFH} must be less than or equal to V _{DDA_ADC}	3	3.3	3.6	V
Oscillator / PLL Supply Voltage	V _{DDA_OSC} _PLL		3	3.3	3.6	V
Internal Logic Core Supply Voltage	V _{DD_CORE}	OCR_DIS is High	2.25	2.5	2.75	V
Device Clock Frequency	FSYSCLK		0	—	60	MHz
Input High Voltage (digital)	V _{IN}	Pin Groups 1, 2, 5, 6, 9, 10	2	_	5.5	V
Input High Voltage (analog)	V _{IHA}	Pin Group 13	2	—	V _{DDA} +0.3	V
Input High Voltage (XTAL/EXTAL, XTAL is not driven by an external clock)	V _{IHC}	Pin Group 11	V _{DDA} -0.8	_	V _{DDA} +0.3	V
Input high voltage (XTAL/EXTAL, XTAL is driven by an external clock)	V _{IHC}	Pin Group 11	2	_	V _{DDA} +0.3	V
Input Low Voltage	V _{IL}	Pin Groups 1, 2, 5, 6, 9, 10, 11, 13	-0.3	_	.8	V
Output High Source Current	I _{ОН}	Pin Groups 1, 2, 3	—	—	-4	mA
$v_{OH} = 2.4v (v_{OH} min.)$		Pin Groups 5, 6, 7			-8	
		Pin Groups 8		_	-12	
Output Low Sink Current	I _{OL}	Pin Groups 1, 2, 3, 4	—	—	4	mA
$v_{OL} = 0.4 v (v_{OL} max)$		Pin Groups 5, 6, 7	—	—	8	
		Pin Group 8	—	—	12	
Ambient Operating Temperature (Automotive)	T _A		-40	_	125	°C
Ambient Operating Temperature (Industrial)	T _A		-40	_	105	°C
Flash Endurance (Automotive) (Program Erase Cycles)	N _F	$T_A = -40^{\circ}C$ to $125^{\circ}C$	10,000	_	_	Cycles
Flash Endurance (Industrial) (Program Erase Cycles)	N _F	T _A = -40°C to 105°C	10,000	_	—	Cycles
Flash Data Retention (Automotive)	T _R	T _J <= 85°C avg	15	_	—	Years

Table 10-4 Operating Conditions

 $(V_{REFLO} = 0V, V_{SS} = V_{SSA_ADC} = 0V, V_{DDA} = V_{DDA_ADC} = V_{DDA_OSC_PLL})$

Note: Total chip source or sink current cannot exceed 200mA See Pin Groups listed in **Table 10-1**

Characteristic	Symbol	Min	Тур	Max	Unit
Signal-to-noise plus distortion ratio	SINAD		59.1		db
Total Harmonic Distortion	THD	_	60.6		db
Spurious Free Dynamic Range	SFDR	_	61.1		db
Effective Number Of Bits ⁸	ENOB	_	9.6	_	Bits

Table 10-23 ADC Parameters (Continued)

1. INL measured from V_{in} = .1V_{REFH} to V_{in} = .9V_{REFH} 10% to 90% Input Signal Range

2. LSB = Least Significant Bit

3. ADC clock cycles

4. Assumes each voltage reference pin is bypassed with $0.1 \mu F$ ceramic capacitors to ground

5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible.

6. Absolute error includes the effects of both gain error and offset error.

7. Please see the 56F8300 Peripheral User's Manual for additional information on ADC calibration.

8. ENOB = (SINAD - 1.76)/6.02

Pi	in No.	Signal Name	Pin No.	in No. Signal Name		Signal Name	Pin No.	Signal Name
	31	GPIOB4	63	PWMA3	95	V _{SSA_ADC}	127	PHASEA0
	32	PWMB0	64	PWMA4	96	ANB0	128	PHASEB0

Table 11-1 56F8335 128-Pin LQFP Package Identification by Pin Number (Continued)

11.2 56F8135 Package and Pin-Out Information

This section contains package and pin-out information for the 56F8135. This device comes in a 128-pin Low-profile Quad Flat Pack (LQFP). **Figure 11-1**. shows the package outline for the 128-pin LQFP, **Figure 11-3** shows the mechanical parameters for this package, and **Table 11-1** lists the pin-out for the 128-pin LQFP.

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
3	V _{SS}	35	V _{SS}	67	NC	99	ANB3
4	V _{DD_IO}	36	V _{DD_IO}	68	NC	100	ANB4
5	V _{PP} 2	37	PWMB3	69	NC	101	ANB5
6	CLKO	38	PWMB4	70	NC	102	ANB6
7	TXD0	39	PWMB5	71	OCR_DIS	103	ANB7
8	RXD0	40	TXD1	72	V _{DDA_OSC_PLL}	104	GPIOC8
9	SCLK1	41	RXD1	73	XTAL	105	GPIOC9
10	MOSI1	42	GPIOD0	74	EXTAL	106	GPIOC10
11	MISO1	43	GPIOD1	75	V _{CAP} 3	107	GPIOE10
12	SS1	44	GPIOD2	76	V _{DD_IO}	108	GPIOE11
13	V _{CAP} 4	45	GPIOD3	77	RSTO	109	GPIOE12
14	V _{DD_IO}	46	GPIOD4	78	RESET	110	GPIOE13
15	GPIOA0 ¹	47	GPIOD5	79	CLKMODE	111	TC0
16	GPIOA1 ¹	48	ISB0	80	ANA0	112	V _{DD_IO}
17	GPIOA2 ¹	49	V _{CAP} 1	81	ANA1	113	TC1
18	GPIOA3 ¹	50	ISB1	82	ANA2	114	TRST
19	GPIOA4 ¹	51	ISB2	83	ANA3	115	ТСК
20	GPIOA5 ¹	52	IRQA	84	ANA4	116	TMS
21	V _{SS}	53	IRQB	85	ANA5	117	TDI
22	GPIOF0 ¹	54	FAULTB0	86	ANA6	118	TDO
23	GPIOF1 ¹	55	FAULTB1	87	ANA7	119	V _{PP} 1
24	GPIOF2 ¹	56	FAULTB2	88	NC	120	NC
25	V _{DD_IO}	57	FAULTB3	89	V _{REFLO}	121	NC
1. Primary	/ function is not ava	ailable in thi	s package configura	ation; GPIO	function must be us	ed instead	
26	GPIOF31	58	NC	90	V _{REFN}	122	V _{CAP} 2
27	GPIOB0	59	V _{SS}	91	V _{REFMID}	123	SS0

Table 11-2 56F8135 128-Pin LQFP Package Identification by Pin Number (Continued)