

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	56800E
Core Size	16-Bit
Speed	60MHz
Connectivity	CANbus, EBI/EMI, SCI, SPI
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	49
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 16
Voltage - Supply (Vcc/Vdd)	2.25V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	128-LQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc56f8335vfge

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

56F8335/56F8135 General Description

Note: Features in italics are NOT available in the 56F8135 device.

- Up to 60 MIPS at 60MHz core frequency
- DSP and MCU functionality in a unified, C-efficient architecture
- 64KB Program Flash
- 4KB Program RAM
- 8KB Data Flash
- 8KB Data RAM
- 8KB Boot Flash
- Up to two 6-channel PWM modules
- Four 4-channel, 12-bit ADCs
- Temperature Sensor

- Up to two Quadrature Decoders
- FlexCAN module
- Optional On-Chip Regulator
- Two Serial Communication Interfaces (SCIs)
- Up to two Serial Peripheral Interface (SPIs)
- Up to four general-purpose Quad Timers
- Computer Operating Properly (COP)/Watchdog
- JTAG/Enhanced On-Chip Emulation (OnCE™) for unobtrusive, real-time debugging
- Up to 49 GPIO lines
- 128-pin LQFP Package

56F8335/56F8135 Block Diagram - 128 LQFP

Figure 1-2 Peripheral Subsystem

Figure 2-1 56F8335 Signals Identified by Functional Group¹ (128-Pin LQFP)

1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality.

Table 2-2 Signal and Package Information for the 128-Pin L	QFP (Continued)
--	-----------------

Signal Name	Pin No.	Туре	State During Reset	Signal Description
TRST	114	Schmitt Input	Input, pulled high internally	Test Reset — As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted whenever RESET is asserted. The only exception occurs in a debugging environment when a hardware device reset is required and the JTAG/EOnCE module must not be reset. In this case, assert RESET, but do not assert TRST.
				To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register.
				Note: For normal operation, connect $\overline{\text{TRST}}$ directly to V _{SS} . If the design is to be used in a debugging environment, $\overline{\text{TRST}}$ may be tied to V _{SS} through a 1K resistor.
PHASEA0	127	Schmitt Input	Input, pull-up enabled	Phase A — Quadrature Decoder 0, PHASEA input
(TA0)		Schmitt Input/ Output	enabled	TA0 — Timer A, Channel 0
(GPIOC4)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
		Capac		After reset, the default state is PHASEA0.
				To deactivate the internal pull-up resistor, clear bit 4 of the GPIOC_PUR register.
PHASEB0	128	Schmitt Input	Input, pull-up	Phase B — Quadrature Decoder 0, PHASEB input
(TA1)		Schmitt Input/ Output	enabled	TA1 — Timer A, Channel 1
(GPIOC5)		Schmitt Input/ Output		Port C GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is PHASEB0.
				To deactivate the internal pull-up resistor, clear bit 5 of the GPIOC_PUR register.

Table 2-2	Signal and	Package	Information	for the	128-Pin	LQFP	(Continued)
-----------	------------	---------	-------------	---------	---------	------	-------------

Signal Name	Pin No.	Туре	State During Reset	Signal Description
MOSIO	126	Input/ Output	In reset, output is disabled, pull-up is enabled	SPI 0 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data.
(GPIOE5)		Input/ Output	chabled	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is MOSI0.
				To deactivate the internal pull-up resistor, clear bit 5 in the GPIOE_PUR register.
MISOO	125	Input/ Output	Input, pull-up enabled	SPI 0 Master In/Slave Out — This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected. The slave device places data on the MISO line a half-cycle before the clock edge the master device uses to latch the data.
(GPIOE6)		Input/ Output		Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is MISO0.
				To deactivate the internal pull-up resistor, clear bit 6 in the GPIOE_PUR register.
SS0	123	Input	Input, pull-up	SPI 0 Slave Select — $\overline{SS0}$ is used in slave mode to indicate to the SPI module that the current transfer is to be received.
(GPIOE7)		Input/ Output	enabled	Port E GPIO — This GPIO pin can be individually programmed as an input or output pin.
				After reset, the default state is $\overline{SS0}$.
				To deactivate the internal pull-up resistor, clear bit 7 in the GPIOE_PUR register.

Part 3 On-Chip Clock Synthesis (OCCS)

3.1 Introduction

Refer to the OCCS chapter of the **56F8300 Peripheral User Manual** for a full description of the OCCS. The material contained here identifies the specific features of the OCCS design. **Figure 3-1** shows the specific OCCS block diagram to reference in the OCCS chapter of the **56F8300 Peripheral User Manual**.

Figure 3-1 OCCS Block Diagram

3.2 External Clock Operation

The system clock can be derived from an external crystal, ceramic resonator, or an external system clock signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic resonator must be connected between the EXTAL and XTAL pins.

3.2.1 Crystal Oscillator

The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency range specified for the external crystal in **Table 10-15**. A recommended crystal oscillator circuit is shown in **Figure 3-2**. Follow the crystal supplier's recommendations when selecting a crystal, since crystal parameters determine the component values required to provide maximum stability and reliable start-up. The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL

pins to minimize output distortion and start-up stabilization time.

Crystal Frequency = 4 - 8MHz (optimized for 8MHz)

Sample External Crystal Parameters: $R_z = 750 \text{ K}\Omega$

Note: If the operating temperature range is limited to below 85°C (105°C junction), then $R_z = 10 \text{ Meg }\Omega$

Figure 3-2 Connecting to a Crystal Oscillator

Note: The OCCS_COHL bit must be set to 1 when a crystal oscillator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in the **56F8300 Peripheral User's Manual**.

3.2.2 Ceramic Resonator (Default)

It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in **Figure 3-3**. Refer to the supplier's recommendations when selecting a ceramic resonator and associated components. The resonator and components should be mounted as near as possible to the EXTAL and XTAL pins.

Resonator Frequency = 4 - 8MHz (optimized for 8MHz)

Figure 3-3 Connecting a Ceramic Resonator

Note: The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in the **56F8300 Peripheral User's Manual**.

3.2.3 External Clock Source

The recommended method of connecting an external clock is illustrated in **Figure 3-4**. The external clock source is connected to XTAL and the EXTAL pin is grounded. Set OCCS_COHL bit high when using an external clock source as well.

4.5 Flash Memory Map

Figure 4-1 illustrates the Flash Memory (FM) map on the system bus.

The Flash Memory is divided into three functional blocks. The Program and boot memories reside on the Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides on the Data Memory buses and is controlled separately by its own set of banked registers.

The top nine words of the Program Memory Flash are treated as special memory locations. The content of these words is used to control the operation of the Flash Controller. Because these words are part of the Flash Memory content, their state is maintained during power-down and reset. During chip initialization, the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash Memory chapter of the **56F8300 Peripheral User Manual**. These configuration parameters are located between \$00_FFF7 and \$00_FFFF.

Figure 4-1 Flash Array Memory Maps

Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip.

Note: Data Flash is NOT available on the 56F8135 device.

	Flash Size	Sectors	Sector Size	Page Size
Program Flash	64KB	16	2K x 16 bits	512 x 16 bits

Table 4-7.	Flash	Memory	Partitions
	1 10011	moniory	

Table 4-20 Analog-to-Digital Converter Registers Address Map (Continued) (ADCA_BASE = \$00 F200)

Register Acronym	Address Offset	Register Description
ADCA_POWER	\$29	Power Control Register
ADCA_CAL	\$2A	ADC Calibration Register

Table 4-21 Analog-to-Digital Converter Registers Address Map (ADCB_BASE = \$00 F240)

Register Acronym	Address Offset	Register Description
ADCB_CR1	\$0	Control Register 1
ADCB_CR2	\$1	Control Register 2
ADCB_ZCC	\$2	Zero Crossing Control Register
ADCB_LST 1	\$3	Channel List Register 1
ADCB_LST 2	\$4	Channel List Register 2
ADCB_SDIS	\$5	Sample Disable Register
ADCB_STAT	\$6	Status Register
ADCB_LSTAT	\$7	Limit Status Register
ADCB_ZCSTAT	\$8	Zero Crossing Status Register
ADCB_RSLT 0	\$9	Result Register 0
ADCB_RSLT 1	\$A	Result Register 1
ADCB_RSLT 2	\$B	Result Register 2
ADCB_RSLT 3	\$C	Result Register 3
ADCB_RSLT 4	\$D	Result Register 4
ADCB_RSLT 5	\$E	Result Register 5
ADCB_RSLT 6	\$F	Result Register 6
ADCB_RSLT 7	\$10	Result Register 7
ADCB_LLMT 0	\$11	Low Limit Register 0
ADCB_LLMT 1	\$12	Low Limit Register 1
ADCB_LLMT 2	\$13	Low Limit Register 2
ADCB_LLMT 3	\$14	Low Limit Register 3
ADCB_LLMT 4	\$15	Low Limit Register 4
ADCB_LLMT 5	\$16	Low Limit Register 5
ADCB_LLMT 6	\$17	Low Limit Register 6
ADCB_LLMT 7	\$18	Low Limit Register 7
ADCB_HLMT 0	\$19	High Limit Register 0
ADCB_HLMT 1	\$1A	High Limit Register 1

Table 4-38 FlexCAN Registers Address Map (FC_BASE = \$00 F800) FlexCAN is NOT available in the 56F8135 device

Register Acronym	Address Offset	Register Description
FCMCR	\$0	Module Configuration Register
		Reserved
FCCTL0	\$3	Control Register 0 Register
FCCTL1	\$4	Control Register 1 Register
FCTMR	\$5	Free-Running Timer Register
FCMAXMB	\$6	Maximum Message Buffer Configuration Register
		Reserved
FCRXGMASK_H	\$8	Receive Global Mask High Register
FCRXGMASK_L	\$9	Receive Global Mask Low Register
FCRX14MASK_H	\$A	Receive Buffer 14 Mask High Register
FCRX14MASK_L	\$B	Receive Buffer 14 Mask Low Register
FCRX15MASK_H	\$C	Receive Buffer 15 Mask High Register
FCRX15MASK_L	\$D	Receive Buffer 15 Mask Low Register
		Reserved
FCSTATUS	\$10	Error and Status Register
FCIMASK1	\$11	Interrupt Masks 1 Register
FCIFLAG1	\$12	Interrupt Flags 1 Register
FCR/T_ERROR_CNTRS	\$13	Receive and Transmit Error Counters Register
		Reserved
		Reserved
		Reserved
FCMB0_CONTROL	\$40	Message Buffer 0 Control / Status Register
FCMB0_ID_HIGH	\$41	Message Buffer 0 ID High Register
FCMB0_ID_LOW	\$42	Message Buffer 0 ID Low Register
FCMB0_DATA	\$43	Message Buffer 0 Data Register
FCMB0_DATA	\$44	Message Buffer 0 Data Register
FCMB0_DATA	\$45	Message Buffer 0 Data Register
FCMB0_DATA	\$46	Message Buffer 0 Data Register
		Reserved
FCMSB1_CONTROL	\$48	Message Buffer 1 Control / Status Register
FCMSB1_ID_HIGH	\$49	Message Buffer 1 ID High Register

Table 4-38 FlexCAN Registers Address Map (Continued) (FC_BASE = \$00 F800) FlexCAN is NOT available in the 56F8135 device

Register Acronym	Address Offset	Register Description
FCMB5_DATA	\$6B	Message Buffer 5 Data Register
FCMB5_DATA	\$6C	Message Buffer 5 Data Register
FCMB5_DATA	\$6D	Message Buffer 5 Data Register
FCMB5_DATA	\$6E	Message Buffer 5 Data Register
		Reserved
FCMB6_CONTROL	\$70	Message Buffer 6 Control / Status Register
FCMB6_ID_HIGH	\$71	Message Buffer 6 ID High Register
FCMB6_ID_LOW	\$72	Message Buffer 6 ID Low Register
FCMB6_DATA	\$73	Message Buffer 6 Data Register
FCMB6_DATA	\$74	Message Buffer 6 Data Register
FCMB6_DATA	\$75	Message Buffer 6 Data Register
FCMB6_DATA	\$76	Message Buffer 6 Data Register
		Reserved
FCMB7_CONTROL	\$78	Message Buffer 7 Control / Status Register
FCMB7_ID_HIGH	\$79	Message Buffer 7 ID High Register
FCMB7_ID_LOW	\$7A	Message Buffer 7 ID Low Register
FCMB7_DATA	\$7B	Message Buffer 7 Data Register
FCMB7_DATA	\$7C	Message Buffer 7 Data Register
FCMB7_DATA	\$7D	Message Buffer 7 Data Register
FCMB7_DATA	\$7E	Message Buffer 7 Data Register
		Reserved
FCMB8_CONTROL	\$80	Message Buffer 8 Control / Status Register
FCMB8_ID_HIGH	\$81	Message Buffer 8 ID High Register
FCMB8_ID_LOW	\$82	Message Buffer 8 ID Low Register
FCMB8_DATA	\$83	Message Buffer 8 Data Register
FCMB8_DATA	\$84	Message Buffer 8 Data Register
FCMB8_DATA	\$85	Message Buffer 8 Data Register
FCMB8_DATA	\$86	Message Buffer 8 Data Register
		Reserved
FCMB9_CONTROL	\$88	Message Buffer 9 Control / Status Register
FCMB9_ID_HIGH	\$89	Message Buffer 9 ID High Register

Table 4-38 FlexCAN Registers Address Map (Continued) (FC_BASE = \$00 F800) FlexCAN is NOT available in the 56F8135 device

Register Acronym	Address Offset	Register Description
FCMB9_ID_LOW	\$8A	Message Buffer 9 ID Low Register
FCMB9_DATA	\$8B	Message Buffer 9 Data Register
FCMB9_DATA	\$8C	Message Buffer 9 Data Register
FCMB9_DATA	\$8D	Message Buffer 9 Data Register
FCMB9_DATA	\$8E	Message Buffer 9 Data Register
		Reserved
FCMB10_CONTROL	\$90	Message Buffer 10 Control / Status Register
FCMB10_ID_HIGH	\$91	Message Buffer 10 ID High Register
FCMB10_ID_LOW	\$92	Message Buffer 10 ID Low Register
FCMB10_DATA	\$93	Message Buffer 10 Data Register
FCMB10_DATA	\$94	Message Buffer 10 Data Register
FCMB10_DATA	\$95	Message Buffer 10 Data Register
FCMB10_DATA	\$96	Message Buffer 10 Data Register
		Reserved
FCMB11_CONTROL	\$98	Message Buffer 11 Control / Status Register
FCMB11_ID_HIGH	\$99	Message Buffer 11 ID High Register
FCMB11_ID_LOW	\$9A	Message Buffer 11 ID Low Register
FCMB11_DATA	\$9B	Message Buffer 11 Data Register
FCMB11_DATA	\$9C	Message Buffer 11 Data Register
FCMB11_DATA	\$9D	Message Buffer 11 Data Register
FCMB11_DATA	\$9E	Message Buffer 11 Data Register
		Reserved
FCMB12_CONTROL	\$A0	Message Buffer 12 Control / Status Register
FCMB12_ID_HIGH	\$A1	Message Buffer 12 ID High Register
FCMB12_ID_LOW	\$A2	Message Buffer 12 ID Low Register
FCMB12_DATA	\$A3	Message Buffer 12 Data Register
FCMB12_DATA	\$A4	Message Buffer 12 Data Register
FCMB12_DATA	\$A5	Message Buffer 12 Data Register
FCMB12_DATA	\$A6	Message Buffer 12 Data Register
		Reserved
FCMB13_CONTROL	\$A8	Message Buffer 13 Control / Status Register
FCMB13_ID_HIGH	\$A9	Message Buffer 13 ID High Register
FCMB13_ID_LOW	\$AA	Message Buffer 13 ID Low Register

5.6 Register Descriptions

A register address is the sum of a base address and an address offset. The base address is defined at the system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers.

Register Acronym	Base Address +	Register Name	Section Location
IPR0	\$0	Interrupt Priority Register 0	5.6.1
IPR1	\$1	Interrupt Priority Register 1	5.6.2
IPR2	\$2	Interrupt Priority Register 2	5.6.3
IPR3	\$3	Interrupt Priority Register 3	5.6.4
IPR4	\$4	Interrupt Priority Register 4	5.6.5
IPR5	\$5	Interrupt Priority Register 5	5.6.6
IPR6	\$6	Interrupt Priority Register 6	5.6.7
IPR7	\$7	Interrupt Priority Register 7	5.6.8
IPR8	\$8	Interrupt Priority Register 8	5.6.9
IPR9	\$9	Interrupt Priority Register 9	5.6.10
VBA	\$A	Vector Base Address Register	5.6.11
FIM0	\$B	Fast Interrupt 0 Match Register	5.6.12
FIVAL0	\$C	Fast Interrupt 0 Vector Address Low Register	5.6.13
FIVAH0	\$D	Fast Interrupt 0 Vector Address High Register	5.6.14
FIM1	\$E	Fast Interrupt 1 Match Register	5.6.15
FIVAL1	\$F	Fast Interrupt 1 Vector Address Low Register	5.6.16
FIVAH1	\$10	Fast Interrupt 1 Vector Address High Register	5.6.17
IRQP0	\$11	IRQ Pending Register 0	5.6.18
IRQP1	\$12	IRQ Pending Register 1	5.6.19
IRQP2	\$13	IRQ Pending Register 2	5.6.20
IRQP3	\$14	IRQ Pending Register 3	5.6.21
IRQP4	\$15	IRQ Pending Register 4	5.6.22
IRQP5	\$16	IRQ Pending Register 5	5.6.23
		Reserved	
ICTL	\$1D	Interrupt Control Register	5.6.30

Table 5-3 ITCN Register Summary (ITCN_BASE = \$00F1A0)

Add. Offset	Register Name		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
\$0	IPR0	R	0	0	BKPT	U0 IPL	STPC	NT IPL	0	0	0	0	0	0	0	0	0	0
		W	0	0	0	0	0	0	0	0	0	0						
\$1	IPR1	W	0				0						RX_RE	g ipl	TX_RI	EG IPL	TRB	JF IPL
\$2	IPR2	R W	FMCE	BE IPL	FMC	C IPL	FME	RR IPL	LOC	K IPL	LVI	IPL	0	0 0 IRQB IPL		IRQA IPL		
\$3	IPR3	R W	GP IF	IOD PL	GP If	IOE PL	GP II	PIOF PL	FCMSG	BUF IPL	FCWK	UP IPL	FCERR	IPL	FCBO	FF IPL	0	0
\$4	IPR4	R W	SPI0. IF	_RCV PL	SPI1_ IF	_XMIT PL	SPI1 II	_RCV PL	0	0	0	0	GPIOA	IPL	GPIC	B IPL	GPIC	OC IPL
\$5	IPR5	R W	DEC1_>	(IRQ IPL	DEC1_H	HRQ IPL	SCI1 II	_RCV PL	SCI1_ IF	_RERR PL	0	0	SCI1_1 IPL	TIDL	SCI1_ IF	_XMIT PL	SPI0 I	_XMIT PL
\$6	IPR6	R W	TMRC	C0 IPL	TMRI	D3 IPL	TMRI	D2 IPL	TMRI	D1 IPL	TMR	00 IPL	0	0	DEC0_>	(IRQ IPL	DECO	_HIRQ PL
\$7	IPR7	R W	TMR	A0 IPL	TMRI	33 IPL	TMR	B2 IPL	TMR	B1 IPL	TMRE	30 IPL	TMRC3	B IPL	TMR	C2 IPL	TMR	C1 IPL
\$8	IPR8	R W	SCI0_F	RCV IPL	SCI0_R	ERR IPL	0	0	SCI0_T	TIDL IPL	SCI0_X	MIT IPL	TMRA3	IPL	TMRA	A2 IPL	TMR	A1 IPL
\$9	IPR9	R W	PWMA	_F IPL	PWME	3_F IPL	PWN II	IA_RL PL	PWMB	_RL IPL	ADCA_	ZC IPL	ABCB_Z	CIPL	ADCA_	CC IPL	ADCB	_CC IPL
\$A	VBA	R W	0	0	0						VECTOR	R BASE /	ADDRESS					
\$B	FIM0	R W	0	0	0	0	0	0	0	0	0			FAST	INTERRI	JPT 0		
\$C	FIVAL0	R W							VE	FAST INT CTOR AD	ERRUPT	T 0 LOW						
\$D	FIVAH0	R W	0	0	0	0	0	0	0	0	0	0	0		FAST VECTOF	INTERR R ADDRE	UPT 0 SS HIG	н
\$E	FIM1	R W	0	0	0	0	0	0	0	0	0			FAST	INTERRI	JPT 1		
\$F	FIVAL1	R W							VE	FAST INT CTOR AE	ERRUPT	T 1 LOW						
\$10	FIVAH1	R W	0 0	0	0 0	0 0	0 0	0 0	0	0	0	0	0		FAST VECTOF	INTERR R ADDRE	UPT 1 SS HIG	н
\$11	IRQP0	R							PE	NDING [16:2]							1
		vv R								PENDIN	G [32:17	1						
\$12	IRQP1	W																
\$13	IRQP2	R W								PENDIN	iG [48:33]						
\$14	IROP3	R								PENDIN	I IG [64:49]						
Ψ14	inter 5	W									10 190-65							
\$15	IRQP4	W								PENDIN	10.05							
\$16	IRQP5	R	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
	Reserved	W																
	reserveu		INIT											4	IRQB	IRQA		
\$1D	ICTL	W							VAB				INT_DIS		STATE	STATE	IRQB EDG	IRQA EDG
				= Rese	rved													

5.6.3 Interrupt Priority Register 2 (IPR2)

Base + \$2	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	EMCE		EMC		EMED				1.1/1	IDI	0	0				
Write			FIVIC				LUCI	V IF L	LVI	IFL			INQE		INQA	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Figure 5-5 Interrupt Priority Register 2 (IPR2)

5.6.3.1 Flash Memory Command, Data, Address Buffers Empty Interrupt Priority Level (FMCBE IPL)—Bits 15–14

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.2 Flash Memory Command Complete Priority Level (FMCC IPL)— Bits 13–12

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.3 Flash Memory Error Interrupt Priority Level (FMERR IPL)—Bits 11–10

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

5.6.3.4 PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8

This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default.

- 00 = IRQ disabled (default)
- 01 = IRQ is priority level 0
- 10 = IRQ is priority level 1
- 11 = IRQ is priority level 2

• 1 = No IRQ pending for this vector number

5.6.23 IRQ Pending 5 Register (IRQP5)

Base + \$16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Read	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	PEND- ING [81]
Write																
RESET	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Figure 5-25 IRQ Pending Register 5 (IRQP5)

5.6.23.1 Reserved—Bits 96-82

This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing.

5.6.23.2 IRQ Pending (PENDING)—Bit 81

This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81.

- 0 = IRQ pending for this vector number
- 1 = No IRQ pending for this vector number
- 5.6.24 Reserved—Base + 17
- 5.6.25 Reserved—Base + 18
- 5.6.26 Reserved—Base + 19
- 5.6.27 Reserved—Base + 1A
- 5.6.28 Reserved—Base + 1B
- 5.6.29 Reserved—Base + 1C

10.5 External Clock Operation Timing

Table 10-13 External Clock Operation Timing Requirements¹

Characteristic	Symbol	Min	Тур	Max	Unit
Frequency of operation (external clock driver) ²	f _{osc}	0	_	120	MHz
Clock Pulse Width ³	t _{PW}	3.0	—	—	ns
External clock input rise time ⁴	t _{rise}	_	—	10	ns
External clock input fall time ⁵	t _{fall}		_	10	ns

1. Parameters listed are guaranteed by design.

2. See Figure 10-3 for details on using the recommended connection of an external clock driver.

3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function.

4. External clock input rise time is measured from 10% to 90%.

5. External clock input fall time is measured from 90% to 10%.

Note: The midpoint is $V_{IL} + (V_{IH} - V_{IL})/2$.

Figure 10-3 External Clock Timing

10.6 Phase Locked Loop Timing

Table 10-14 PLL Timing

Characteristic	Symbol	Min	Тур	Max	Unit
External reference crystal frequency for the PLL ¹	f _{osc}	4	8	8.4	MHz
PLL output frequency ² (f _{OUT})	f _{op}	160	_	260	MHz
PLL stabilization time ³ -40° to +125°C	t _{plls}	_	1	10	ms

1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8MHz input crystal.

 ZCLK may not exceed 60MHz. For additional information on ZCLK and (f_{OUT}/2), please refer to the OCCS chapter in the 56F8300 Peripheral User Manual.

3. This is the minimum time required after the PLL set up is changed to ensure reliable operation.

10.7 Crystal Oscillator Timing

Characteristic	Symbol	Min	Тур	Max	Unit
Crystal Start-up time	T _{CS}	4	5	10	ms
Resonator Start-up time	T _{RS}	0.1	0.18	1	ms
Crystal ESR	R _{ESR}	—	—	120	ohms
Crystal Peak-to-Peak Jitter	Τ _D	70	—	250	ps
Crystal Min-Max Period Variation	T _{PV}	0.12	—	1.5	ns
Resonator Peak-to-Peak Jitter	T _{RJ}	—	—	300	ps
Resonator Min-Max Period Variation	T _{RP}	—	—	300	ps
Bias Current, high-drive mode	I _{BIASH}	—	250	290	μΑ
Bias Current, low-drive mode	I _{BIASL}	—	80	110	μΑ
Quiescent Current, power-down mode	I _{PD}	_	0	1	μA

Table 10-15 Crystal Oscillator Parameters

10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing

Table 10-16 Reset, S	Stop, Wait,	Mode Select,	and Interrup	ot Timing ^{1,2}
----------------------	-------------	--------------	--------------	--------------------------

Characteristic	Symbol	Typical Min	Typical Max	Unit	See Figure
Minimum RESET Assertion Duration	t _{RA}	16T	_	ns	10-4
Edge-sensitive Interrupt Request Width	t _{IRW}	1.5T	_	ns	10-5
IRQA, IRQB Assertion to General Purpose Output Valid, caused by first instruction	t _{IG}	18T	_	ns	10-6
execution in the interrupt service routine	t _{IG} - FAST	14T	_		
IRQA Width Assertion to Recover from Stop State ³	t _{IW}	1.5T		ns	10-8

1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and Stop modes), T = 125ns.

2. Parameters listed are guaranteed by design.

3. The interrupt instruction fetch is visible on the pins only in Mode 3.

Figure 10-14 Quadrature Decoder Timing

10.12 Serial Communication Interface (SCI) Timing

Characteristic	Symbol	Min	Max	Unit	See Figure
Baud Rate ²	BR	_	(f _{MAX} /16)	Mbps	_
RXD ³ Pulse Width	RXD _{PW}	0.965/BR	1.04/BR	ns	10-15
TXD ⁴ Pulse Width	TXD _{PW}	0.965/BR	1.04/BR	ns	10-16

Table 10-20 SCI Timing¹

1. Parameters listed are guaranteed by design.

 f_{MAX} is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8335 device and 40MHz for the 56F8135 device.

3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.

4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.

Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name	Pin No.	Signal Name
3	V _{SS}	35	V _{SS}	67	NC	99	ANB3
4	V _{DD_IO}	36	V _{DD_IO}	68	NC	100	ANB4
5	V _{PP} 2	37	PWMB3	69	NC	101	ANB5
6	CLKO	38	PWMB4	70	NC	102	ANB6
7	TXD0	39	PWMB5	71	OCR_DIS	103	ANB7
8	RXD0	40	TXD1	72	V _{DDA_OSC_PLL}	104	GPIOC8
9	SCLK1	41	RXD1	73	XTAL	105	GPIOC9
10	MOSI1	42	GPIOD0	74	EXTAL	106	GPIOC10
11	MISO1	43	GPIOD1	75	V _{CAP} 3	107	GPIOE10
12	SS1	44	GPIOD2	76	V _{DD_IO}	108	GPIOE11
13	V _{CAP} 4	45	GPIOD3	77	RSTO	109	GPIOE12
14	V _{DD_IO}	46	GPIOD4	78	RESET	110	GPIOE13
15	GPIOA0 ¹	47	GPIOD5	79	CLKMODE	111	TC0
16	GPIOA1 ¹	48	ISB0	80	ANA0	112	V _{DD_IO}
17	GPIOA2 ¹	49	V _{CAP} 1	81	ANA1	113	TC1
18	GPIOA3 ¹	50	ISB1	82	ANA2	114	TRST
19	GPIOA4 ¹	51	ISB2	83	ANA3	115	ТСК
20	GPIOA5 ¹	52	IRQA	84	ANA4	116	TMS
21	V _{SS}	53	IRQB	85	ANA5	117	TDI
22	GPIOF0 ¹	54	FAULTB0	86	ANA6	118	TDO
23	GPIOF1 ¹	55	FAULTB1	87	ANA7	119	V _{PP} 1
24	GPIOF2 ¹	56	FAULTB2	88	NC	120	NC
25	V _{DD_IO}	57	FAULTB3	89	V _{REFLO}	121	NC
1. Primary	/ function is not ava	ailable in thi	s package configura	ation; GPIO	function must be us	ed instead	
26	GPIOF31	58	NC	90	V _{REFN}	122	V _{CAP} 2
27	GPIOB0	59	V _{SS}	91	V _{REFMID}	123	SS0

Table 11-2 56F8135 128-Pin LQFP Package Identification by Pin Number (Continued)