

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorSTM8Core Size8-BitSpeed16MHzConnectivityPC, IrDA, LINbus, SPI, UART/USARTProipheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O38Program Memory Size32KB (32K × 8)Program Memory TypeFLASHEEPROM Size128 × 8Valdage - Supply (Vcc/Vdd)295 ∨ 5.5∨National ConvertersAD 10x10bOperating Temperature40°C ~ 85°C (TA)Mounting TypeSuface MountProkage / Case48-LQFP (XCC)Prokage / Case48-LQFP (XCC)Prokage / Case48-LQFP (XCC)Prokage Num48-LQFP (XCC)Prokage Num48-LQFP (XCC)Prokage NumHutps://www.exfl.com/product-detail/stmicroelectronics/stm805056tbf	Details	
Core Size8-BitSpeed16MHzConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O38Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size128 x 8RAM Size2x X 8Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPAll LQFP (7x7)18-100000000000000000000000000000000000	Product Status	Active
Speed16MHzConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O38Program Memory Size32KB (32K × 8)Program Memory TypeFLASHEEPROM Size128 × 8RAM Size2K × 8Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature4.0°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFP (7x7)	Core Processor	STM8
ConnectivityPC, IrDA, LINbus, SPI, UART/USARTPeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O38Program Memory Size32KB (32K × 8)Program Memory TypeFLASHEEPROM Size128 × 8RAM Size2K × 8Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFP (7x7)	Core Size	8-Bit
PeripheralsBrown-out Detect/Reset, POR, PWM, WDTNumber of I/O38Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size128 x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2,95V ~ 5.5VData ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFP (7x7)	Speed	16MHz
Number of I/O38Program Memory Size32KB (32K × 8)Program Memory TypeFLASHEEPROM Size128 × 8RAM Size2K × 8Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Program Memory Size32KB (32K x 8)Program Memory TypeFLASHEEPROM Size128 x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature4.0°C ~ 85°C (TA)Mounting Type8L-QFPSuppler Device Package48-LQFP (7x7)	Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size128 x 8RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	Number of I/O	38
EEPROM Size128 × 8RAM Size2K × 8Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	Program Memory Size	32KB (32K x 8)
RAM Size2K x 8Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2.95V ~ 5.5VData ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	EEPROM Size	128 x 8
Data ConvertersA/D 10x10bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	RAM Size	2K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	Data Converters	A/D 10x10b
Mounting TypeSurface MountPackage / Case48-LQFPSupplier Device Package48-LQFP (7x7)	Oscillator Type	Internal
Package / Case 48-LQFP Supplier Device Package 48-LQFP (7x7)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 48-LQFP (7x7)	Mounting Type	Surface Mount
	Package / Case	48-LQFP
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s005c6t6tr	Supplier Device Package	48-LQFP (7x7)
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s005c6t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

13

12.2	Software tools	95
	12.2.1 STM8 toolset	<i>)</i> 5
	12.2.2 C and assembly toolchains) 5
12.3	Programming tools	95
Revis	on history9	6

Figure 49.	LQFP32 marking example (package top view)	. 90
Figure 50.	STM8S005C6/K6 value line ordering information scheme ⁽¹⁾	. 93

4 **Product overview**

The following section intends to give an overview of the basic features of the STM8S005C6/K6 value line functional modules and peripherals.

For more detailed information please refer to the corresponding family reference manual (RM0016).

4.1 Central processing unit STM8

The 8-bit STM8 core is designed for code efficiency and performance.

It contains six internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching for most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16-Mbyte linear memory space
- 16-bit stack pointer access to a 64 K-level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

4.14.1 UART2

Main features

- 1 Mbit/s full duplex SCI
- SPI emulation
- High precision baud rate generator
- Smartcard emulation
- IrDA SIR encoder decoder
- LIN master mode
- Single wire half duplex mode

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f_{CPU}/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

Synchronous communication

- Full duplex synchronous transfers
- SPI master operation
- 8-bit data communication
- Maximum speed: 1 Mbit/s at 16 MHz (f_{CPU}/16)

LIN master mode

- Emission: generates 13-bit synch. break frame
- Reception: detects 11-bit break frame

LIN slave mode

- Autonomous header handling one-single interrupt per valid message header
- Automatic baud rate synchronization maximum tolerated initial clock deviation ± 15%
- Synch. delimiter checking
- 11-bit LIN synch. break detection break detection always active
- Parity check on the LIN identifier field
- LIN error management
- Hot plugging support

4.14.2 SPI

- Maximum speed: 8 Mbit/s (f_{MASTER}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave/master selection input pin

4.14.3 I²C

- I²C master features
 - Clock generation
 - Start and stop generation
- I²C slave features
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds
 - Standard speed (up to 100 kHz)
 - Fast speed (up to 400 kHz)

Table 8. General hardware register map (continued)						
Address	Block	Register label	Register name	Reset status		
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00		
0x00 50CD	CLK	CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0		
0x00 50CE to 0x00 50D0			Reserved area (3 bytes)			
0x00 50D1	WWDG	WWDG_CR	WWDG control register	0x7F		
0x00 50D2	- WWDG	WWDG_WR	WWDR window register	0x7F		
0x00 50D3 to 0x00 50DF			Reserved area (13 bytes)			
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾		
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00		
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF		
0x00 50E3 to 0x00 50EF			Reserved area (13 bytes)			
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00		
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F		
0x00 50F2		AWU_TBR	R AWU timebase selection register			
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F		
0x00 50F4 to 0x00 50FF			Reserved area (12 bytes)			
0x00 5200		SPI_CR1	SPI_CR1 SPI control register 1			
0x00 5201		SPI_CR2	SPI control register 2	0x00		
0x00 5202		SPI_ICR	SPI interrupt control register	0x00		
0x00 5203	SPI	SPI_SR	SPI status register	0x02		
0x00 5204	351	SPI_DR	SPI data register	0x00		
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07		
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF		
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF		
0x00 5208 to 0x00 520F			Reserved area (8 bytes)			
0x00 5210		I2C_CR1	I ² C control register 1	0x00		
0x00 5211		I2C_CR2	I ² C control register 2	0x00		
0x00 5212	I ² C	I2C_FREQR	I ² C frequency register	0x00		
0x00 5213		I2C_OARL I ² C own address register low 0x00				
0x00 5214		I2C_OARH I ² C own address register high 0x00				
0x00 5215		Reserved				

Table 8. General hardware register map (continued)

DocID022186 Rev 4

Table 8. General nardware register map (continued) Reset				
Address	Block	Register label	Register label Register name	
0x00 5300		TIM2_CR1	TIM2 control register 1	0x00
0x00 5301		TIM2_IER	TIM2 interrupt enable register	0x00
0x00 5302		TIM2_SR1	TIM2 status register 1	0x00
0x00 5303	-	TIM2_SR2	TIM2 status register 2	0x00
0x00 5304		TIM2_EGR	TIM2 event generation register	0x00
0x00 5305		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00
0x00 5306		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00
0x00 5307		TIM2_CCMR3	TIM2 capture/compare mode register 3	0x00
0x00 5308		TIM2_CCER1	TIM2 capture/compare enable register 1	0x00
0x00 5309		TIM2_CCER2	TIM2 capture/compare enable register 2	0x00
0x00 530A	TIM2	TIM2_CNTRH	TIM2 counter high	0x00
0x00 530B		TIM2_CNTRL	TIM2 counter low	0x00
00 530C0x		TIM2_PSCR	TIM2 prescaler register	0x00
0x00 530D		TIM2_ARRH	TIM2 auto-reload register high	0xFF
0x00 530E		TIM2_ARRL	TIM2_ARRL TIM2 auto-reload register low	
0x00 530F		TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00
0x00 5310		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5311		TIM2_CCR2H	TIM2 capture/compare reg. 2 high	0x00
0x00 5312		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00
0x00 5313		TIM2_CCR3H	TIM2 capture/compare register 3 high	0x00
0x00 5314		TIM2_CCR3L TIM2 capture/compare register 3 low		0x00
0x00 5315 to 0x00 531F		I	Reserved area (11 bytes)	·
0x00 5320		TIM3_CR1	TIM3 control register 1	0x00
0x00 5321		TIM3_IER	TIM3 interrupt enable register	0x00
0x00 5322		TIM3_SR1	TIM3 status register 1	0x00
0x00 5323		TIM3_SR2	TIM3 status register 2	0x00
0x00 5324		TIM3_EGR	TIM3 event generation register	0x00
0x00 5325	ТІМЗ	TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00
0x00 5326		TIM3_CCMR2 TIM3 capture/compare mode register 2		0x00
0x00 5327		TIM3_CCER1 TIM3 capture/compare enable register 1		0x00
0x00 5328	-	TIM3_CNTRH	NTRH TIM3 counter high	
0x00 5329		TIM3_CNTRL	TIM3 counter low	0x00
0x00 532A	-	TIM3_PSCR	TIM3 prescaler register	0x00

Table 8	General	hardware	register	man	(continued)	1
	Concrai	inal a wai c	regioter	map	loonanaca	,

STM8S005C6 STM8S005K6

- 1. Depends on the previous reset source.
- 2. Write only register.

Address	Block	Register Label	Register Name	Reset Status	
0x00 7F00		A	Accumulator	0x00	
0x00 7F01		PCE	Program counter extended	0x00	
0x00 7F02		PCH	Program counter high	0x00	
0x00 7F03		PCL	Program counter low	0x00	
0x00 7F04		ХН	X index register high	0x00	
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00	
0x00 7F06		YH	Y index register high	0x00	
0x00 7F07		YL	Y index register low	0x00	
0x00 7F08		SPH	Stack pointer high	0x17	
0x00 7F09		SPL Stack pointer low		0xFF	
0x00 7F0A		CCR Condition code register		0x28	
0x00 7F0B to 0x00 7F5F	Reserved area (85 bytes)				
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00	
0x00 7F70		ITC_SPR1 Interrupt software priority register 1		0xFF	
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF	
0x00 7F72		ITC_SPR3			
0x00 7F73	ITC	ITC_SPR4	Interrupt software priority register 4	0xFF	
0x00 7F74	ne	ITC_SPR5	Interrupt software priority register 5	0xFF	
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF	
0x00 7F76		ITC_SPR7	Interrupt software priority register 7	0xFF	
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF	
0x00 7F78 to 0x00 7F79	Reserved area (2 bytes)				
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00	
0x00 7F81 to 0x00 7F8F	Reserved area (15 bytes)				

Table 9. CPU/SWIM/debug module/interrupt controller registers

Option byte no.	Description
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time. 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles
OPT6	Reserved
OPT7	Reserved
OPTBL	 BL[7:0] Bootloader option byte For STM8S products, this option is checked by the boot ROM code after reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000 (reset vector), the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 (STM8L/S bootloader manual) for more details. For STM8L products, the bootloader option bytes are on addresses 0xXXXX and 0xXXXX+1 (2 bytes). These option bytes control whether the bootloader is active or not. For more details, refer to the UM0560 (STM8L/S bootloader to to to the UM0560 (STM8L/S bootloader to to to to to the UM0560 (STM8L/S bootloader to to

Table 12. Option byte description (continued)

Option byte number	Description ⁽¹⁾
	 AFR7Alternate function remapping option 7 0: AFR7 remapping option inactive: default alternate function⁽²⁾ 1: Port D4 alternate function = BEEP AFR6 Alternate function remapping option 6
	0: AFR6 remapping option inactive: default alternate function ⁽²⁾ 1: Port B5 alternate function = I^2C_SDA ; port B4 alternate function = I^2C_SCL
	AFR5 Alternate function remapping option 5
	0: AFR5 remapping option inactive: default alternate function ⁽²⁾ 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH1N
	AFR4 Alternate function remapping option 4
OPT2	 0: AFR4 remapping option inactive: default alternate function⁽²⁾ 1: Port D alternate function = TIM1_CH4
	AFR3 Alternate function remapping option 3
	 0: AFR3 remapping option inactive: default alternate function⁽²⁾ 1: Port D0 alternate function = TIM1_BKIN
	AFR2 Alternate function remapping option 2
	 0: AFR2 remapping option inactive: default alternate function⁽²⁾ 1: Port D0 alternate function = CLK_CCO
	Note: AFR2 option has priority over AFR3 if both are activated
	AFR1 Alternate function remapping option 1
	0: AFR1 remapping option inactive: default alternate function ⁽²⁾ 1: Port A3 alternate function = TIM3_CH1; port D2 alternate function TIM2_CH3
	AFR0 Alternate function remapping option 0
	 0: AFR0 remapping option inactive: default alternate function⁽²⁾ 1: Port D3 alternate function = ADC_ETR

1. Do not use more than one remapping option in the same port.

2. Refer to the pinout description.

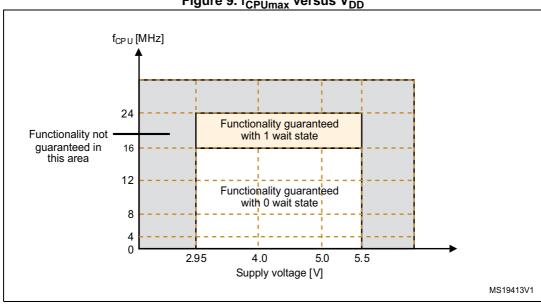


Figure 9. f_{CPUmax} versus V_{DD}

Table 18. Operating conditions at power-up/power-o	lown
--	------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
+	V _{DD} rise time rate	-	2 ⁽¹⁾	-	x	μs/V
t _{VDD}	V _{DD} fall time rate	-	2 ⁽¹⁾	-	8	μ5/ ν
t _{TEMP}	Reset release delay	V _{DD} rising	-	-	1.7 ⁽¹⁾	ms
V _{IT+}	Power-on reset threshold ⁽²⁾	-	2.65	2.8	2.95	V
V _{IT-}	Brown-out reset threshold	-	2.58	2.73	2.88	V
V _{HYS(BOR)}	Brown-out reset hysteresis	-	-	70	-	mV

1. Guaranteed by design, not tested in production.

-

If V_{DD} is below 2.95 V, the code execution is guaranteed above the V_{IT} and _{VIT+} thresholds. RAM content is kept. The EEPROM programming sequence must not be initiated. 2.

Symbol	Parameter	Condi	Тур	Max $^{(1)}$	Unit	
			HSE crystal osc. (16 MHz)	3.2	-	
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2.6 3.2		
	Supply current in		HSI RC osc. (16 MHz)	2.5	3.2	
	run mode,	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSE user ext. clock (16 MHz)	1.6	2.2	
	code executed from RAM		HSI RC osc. (16 MHz)	1.3	2.0	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)		-	
1		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.55	-	س ۸
IDD(RUN)		f _{CPU} = f _{MASTER} = 16 MHz	HSE crystal osc. (16 MHz)	7.7	-	- mA - -
			HSE user ext. clock (16 MHz)	7.0	8.0	
	Supply current in		HSI RC osc.(16 MHz)	7.0	8.0	
	run mode,	f _{CPU} = f _{MASTER} = 2 MHz	HSI RC osc. (16 MHz/8) ⁽²⁾	1.5	-	
	code executed	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.35	2.0	
	from Flash	f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)		-	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.6	-	

Table 19. Total current consum	ntion with code executio	n in run mode at Vaa – 5 V
Table 13. Total current consum	plion with code executio	m m m u m u m u u m u u u u u u u u u u

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

Total current consumption in wait mode

Symbol	Parameter	Condit	Тур	Max ⁽¹⁾	Unit	
I _{DD(WFI)}		f _{CPU} = f _{MASTER} = 16 MHz	HSE crystal osc. (16 MHz)	2.15	-	
			HSE user ext. clock (16 MHz)	1.55	2.0	
	Supply current in wait mode		HSI RC osc. (16 MHz)	1.5	1.9	
		f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.3	-	mA
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.7	-	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.5	-	

Table 21. Total current consumption	n in wait mode at V _{DD} = 5 V
-------------------------------------	---

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

Table 22. Total current consumption in wait mode at V_{DD} = 3.3 V

Symbol	Parameter	Condit	Тур	Max ⁽¹⁾	Unit		
			HSE crystal osc. (16 MHz)	1.75	-		
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	1.55	2.0		
	-		HSI RC osc. (16 MHz)	1.5	1.9		
I _{DD(WFI)}		f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.3	-	mA	
		wait mode $f_{CPU} = f_{MASTER}/128 =$ 15.625 kHz		HSI RC osc. (16 MHz/8) ⁽²⁾	0.7	-	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	LSI RC osc. (128 kHz)	0.5	-		

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

Total current consumption in active halt mode

			Conditions	S				
Symbol	Parameter	Main voltage regulator (MVR) ⁽²⁾	Flash mode ⁽³⁾	Clock source	Тур	Max ⁽¹⁾	Unit	
			Operating mode	HSE crystal oscillator (16 MHz)	1080	-		
		On		LSI RC oscillator (128 kHz)	200	320		
I _{DD(AH)}	Supply current in active halt mode	Supply current in	Dower down mode	HSE crystal oscillator (16 MHz)	1030	-	μA	
			T Ower-down mode	LSI RC oscillator (128 kHz)	140	270		
		Off	Operating mode	LSI RC oscillator	68	120		
			Power-down mode	(128 kHz)	12	60		

1. Data based on characterization results, not tested in production.

2. Configured by the REGAH bit in the CLK_ICKR register.

3. Configured by the AHALT bit in the FLASH_CR1 register.

Table 24. Total current consumption in active halt mode at V_{DD} = 3.3 V

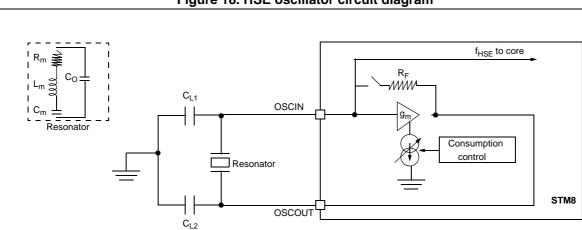
Symbol			Conditio	ns		Max	
	Parameter	Main voltage regulator (MVR) ⁽²⁾	Flash mode ⁽³⁾	Clock source	Тур	at 85° C (1)	Unit
			Operating mode	HSE crystal osc. (16 MHz)	680	-	
		On		LSI RC osc. (128 kHz)	200	- 320 -	
	Supply current in active halt	On		HSE crystal osc. (16 MHz)	630	-	
IDD(AH)	mode		Fower-down mode	LSI RC osc. (128 kHz)	140	270	μA
		Off	Operating mode	LSI RC osc. (128 kHz)	66	120	
			Power-down mode		10	60	

1. Data based on characterization results, not tested in production.

2. Configured by the REGAH bit in the CLK_ICKR register.

3. Configured by the AHALT bit in the FLASH_CR1 register.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{HSE}	External high speed oscillator frequency	-	1	-	16	MHz	
R _F	Feedback resistor	-	-	220	-	kΩ	
C ⁽¹⁾	Recommended load capacitance (2)	-	-	-	20	pF	
	HSE oscillator power consumption	C = 20 pF, f _{OSC} = 16 MHz	-	-	6 (startup) 1.6 (stabilized) ⁽³⁾	mA	
IDD(HSE)		C = 10 pF, f _{OSC} = 16 MHz	-	-	6 (startup) 1.2 (stabilized) ⁽³⁾	mA	
9 _m	Oscillator transconductance	-	5	-	-	mA/V	
t _{SU(HSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized	-	1	-	ms	


Table 31. HSE oscillator characteristics

1. C is approximately equivalent to 2 x crystal Cload.

The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. 2. Refer to crystal manufacturer for more details

3. Data based on characterization results, not tested in production.

t_{SU(HSE)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 24 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. 4.

Figure 18. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

R_m: Notional resistance (see crystal specification) L_m: Notional inductance (see crystal specification) C_m: Notional capacitance (see crystal specification) Co: Shunt capacitance (see crystal specification) C_{L1}=C_{L2}=C: Grounded external capacitance g_m >> g_{mcrit}

DocID022186 Rev 4

9.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage		-0.3	-	0.3 x V _{DD}	V
V _{IH}	Input high level voltage	$V_{DD} = 5 V$	0.7 x V _{DD}	-	V _{DD} + 0.3 V	V
V _{hys}	Hysteresis ⁽¹⁾		-	700	-	mV
R_{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ
t _R , t _F	Rise and fall time	Fast I/Os Load = 50 pF	-	-	35 ⁽²⁾	ns
	(10% - 90%)	Standard and high sink I/Os Load = 50 pF	-	-	125 ⁽²⁾	ns
I _{lkg}	Input leakage current, analog and digital	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1 ⁽³⁾	μA
I _{lkg ana}	Analog input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±250 ⁽³⁾	nA
l _{lkg(inj)}	Leakage current in adjacent I/O	Injection current ±4 mA	-	-	±1 ⁽³⁾	μA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

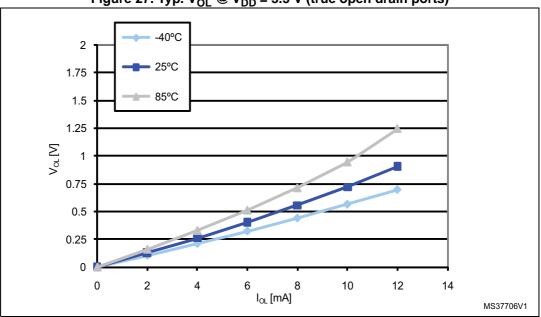


Figure 27. Typ. V_{OL} @ V_{DD} = 3.3 V (true open drain ports)

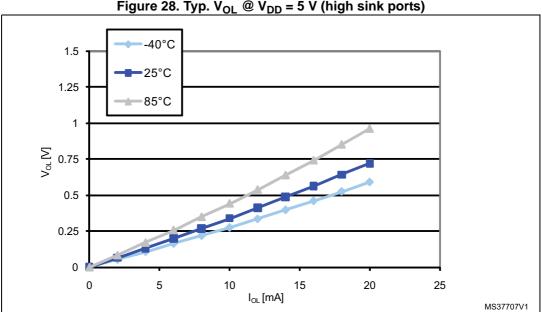


Figure 28. Typ. $V_{OL} @ V_{DD} = 5 V$ (high sink ports)

9.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

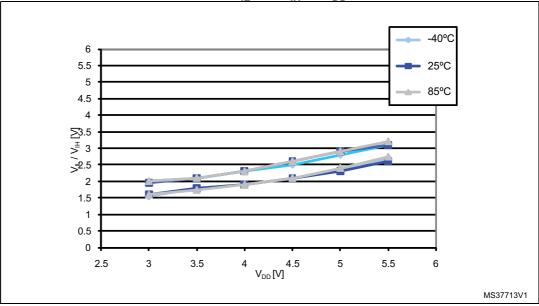
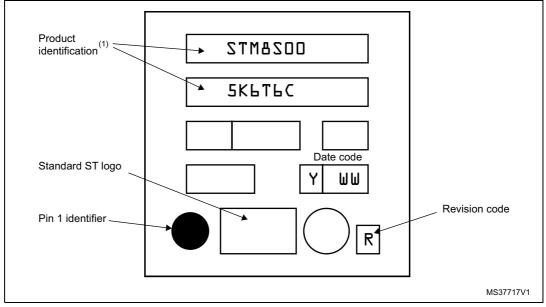

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit				
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	-0.3 V	-	0.3 x V _{DD}					
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	$0.7 ext{ x V}_{ ext{DD}}$	-	V _{DD} + 0.3	V				
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	I _{OL} = 2 mA	-	-	0.5					
R _{PU(NRST)}	NRST pull-up resistor ⁽²⁾	-	30	55	80	kΩ				
t _{IFP(NRST)}	NRST input filtered pulse ⁽³⁾	-	-	-	75	ns				
t _{INFP(NRST)}	NRST Input not filtered pulse ⁽³⁾	-	500	-	-	ns				
t _{OP(NRST)}	NRST output pulse ⁽¹⁾	-	15	-	-	μs				

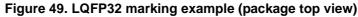
Table 40. NRST pin characteristics

1. Data based on characterization results, not tested in production.

2. The $\rm R_{PU}$ pull-up equivalent resistor is based on a resistive transistor

3. Data guaranteed by design, not tested in production.




Figure 34. Typical NRST V_{IL} and V_{IH} vs V_{DD} @ 3 temperatures

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

13 Revision history

Date	Revision	Changes
14-Oct-2011	1	Initial release.
09-Jan-2012	2	 Updated: t_{RET} in <i>Table 35: Flash program memory/data</i> <i>EEPROM memory</i>, R_{PU} in <i>Table 40: NRST pin characteristics</i> and <i>Table 36: I/O static characteristics</i>, the notes related to V_{CAP} in <i>Section 9.3: Operating</i> <i>conditions</i>.
13-Jun-2012	3	Updated the temperature condition for factory calibrated ACC _{HSI} in <i>Table 32: HSI oscillator characteristics</i> . Changed SCK input to SCK output in <i>Figure 40: SPI timing diagram - master mode(1)</i> .
26-Mar-2015	4	 Updated: the buffer size in Section 4.13: Analog-to-digital converter (ADC1), the disclaimer. Added: the note to Power-on reset threshold in Table 18: Operating conditions at power-up/power-down, Figure 46: LQFP48 marking example (package top view), Figure 49: LQFP32 marking example (package top view).

Table 53. Document revision history

