

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorSTM8	
Core Processor STM8	
Core Size 8-Bit	
Speed 16MHz	
Connectivity I ² C, IrDA, LINb	us, SPI, UART/USART
Peripherals Brown-out De	tect/Reset, POR, PWM, WDT
Number of I/O 25	
Program Memory Size 32KB (32K x 8)
Program Memory Type FLASH	
EEPROM Size 128 x 8	
RAM Size 2K x 8	
Voltage - Supply (Vcc/Vdd) 2.95V ~ 5.5V	
Data Converters A/D 7x10b	
Oscillator Type Internal	
Operating Temperature -40°C ~ 85°C	(TA)
Mounting Type Surface Mount	t
Package / Case 32-LQFP	
Supplier Device Package32-LQFP (7x7)	
Purchase URL https://www.e	-xfl.com/product-detail/stmicroelectronics/stm8s005k6t6c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	LQFP32 marking example (package top view)	. 90
Figure 50.	STM8S005C6/K6 value line ordering information scheme ⁽¹⁾	. 93

4.5 Clock controller

The clock controller distributes the system clock (f_{MASTER}) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- **Clock prescaler:** To get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching:** Clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management:** To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- *Master clock sources*: Four different clock sources can be used to drive the master clock:
 - 1-16 MHz high-speed external crystal (HSE)
 - Up to 16 MHz high-speed user-external clock (HSE user-ext)
 - 16 MHz high-speed internal RC oscillator (HSI)
 - 128 kHz low-speed internal RC (LSI)
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): This feature can be enabled by software. If an HSE clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock
PCKEN17	TIM1	PCKEN13	UART2	PCKEN27	Reserved	PCKEN23	ADC
PCKEN16	TIM3	PCKEN12	Reserved	PCKEN26	Reserved	PCKEN22	AWU
PCKEN15	TIM2	PCKEN11	SPI	PCKEN25	Reserved	PCKEN21	Reserved
PCKEN14	TIM4	PCKEN10	l ² C	PCKEN24	Reserved	PCKEN20	Reserved

Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers

4.6 **Power management**

For efficent power management, the application can be put in one of four different lowpower modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

- *Wait mode*: In this mode, the CPU is stopped, but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset.
- Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
- Active halt mode with regulator off: This mode is the same as active halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.
- *Halt mode*: In this mode the microcontroller uses the least power. The CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

4.7 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application perfectly.

The application software must refresh the counter before time-out and during a limited time window.

A reset is generated in two situations:

- 1. Timeout: at 16 MHz CPU clock the time-out period can be adjusted between 75 μs up to 64 ms.
- 2. Refresh out of window: The downcounter is refreshed before its value is lower than the one stored in the window register.

Pin nu	umber				Inpu	t		Out	Output		-		
LQFP48	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	NRST	I/O		<u>X</u>						Reset		
2	2	PA1/OSCIN	I/O	X	х			01	х	х	Port A1	Resonator/ crystal in	
3	3	PA2/OSCOUT	I/O	<u>x</u>	х	Х		01	Х	х	Port A2	Resonator/ crystal out	
4	-	V _{SSIO_1}	S								I/O groun	d	
5	4	V _{SS}	S								Digital gro	ound	
6	5	VCAP	S								1.8 V reg	ulator capacitor	
7	6	V _{DD}	S								Digital po	wer supply	
8	7	V _{DDIO_1}	S								I/O powe	r supply	
9	-	PA3/TIM2_CH3	I/O	X	х	Х		01	Х	х	Port A3	Timer 2 - channel3	TIM3_CH1 [AFR1]
10	-	PA4	I/O	X	Х	Х	HS	O3	Х	Х	Port A4		
11	-	PA5	I/O	X	Х	Х	HS	O3	Х	Х	Port A5		
12	-	PA6	I/O	X	Х	Х	HS	O3	Х	Х	Port A6		
-	8	PF4/AIN12 ⁽¹⁾	I/O	X	х			01	х	х	Port F4	Analog input 12 ⁽²⁾	
13	9	V _{DDA}	S								Analog po	ower supply	
14	10	V _{SSA}	S								Analog gi	round	
15	-	PB7/AIN7	I/O	<u>X</u>	х	х		01	х	х	Port B7	Analog input 7	
16	-	PB6/AIN6	I/O	X	х	Х		01	х	х	Port B6	Analog input 6	
17	11	PB5/AIN5 [I ² C_SDA]	I/O	X	х	Х		01	х	х	Port B5	Analog input 5	I ² C_SDA [AFR6]
18	12	PB4/AIN4 [I ² C_SCL]	I/O	X	х	Х		01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]
19	13	PB3/AIN3 [TIM1_ETR]	I/O	X	х	Х		01	х	х	Port B3	Analog input 3	TIM1_ETR [AFR5]
20	14	PB2/AIN2 [TIM1_CH3N]	I/O	X	x	х		01	Х	х	Port B2	Analog input 2	TIM1_ CH3N [AFR5]
21	15	PB1/AIN1 [TIM1_CH2N]	I/O	X	Х	Х		O1	х	х	Port B1	Analog input 1	TIM1_ CH2N [AFR5]

Table 5. STM8S005C6 and STM8S005K6 pin descriptions

			e register map (continued)	Reset		
Address	Block	Register label	Register name	status		
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF		
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF		
0x00 532D	ТІМЗ	TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00		
0x00 532E		TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00		
0x00 532F		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00		
0x00 5330		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00		
0x00 5331 to 0x00 533F		Reserved area (15 bytes)				
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00		
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00		
0x00 5342		TIM4_SR	TIM4 status register	0x00		
0x00 5343	TIM4	TIM4_EGR	TIM4 event generation register	0x00		
0x00 5344		TIM4_CNTR	TIM4 counter	0x00		
0x00 5345		TIM4_PSCR	TIM4 prescaler register	0x00		
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF		
0x00 5347 to 0x00 53FF		I	Reserved area (185 bytes)			
0x00 5400		ADC _CSR	ADC control/status register	0x00		
0x00 5401		ADC_CR1	ADC configuration register 1	0x00		
0x00 5402		ADC_CR2	ADC configuration register 2	0x00		
0x00 5403		ADC_CR3	ADC configuration register 3	0x00		
0x00 5404		ADC_DRH	ADC data register high	0xXX		
0x00 5405		ADC_DRL	ADC data register low	0xXX		
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00		
0x00 5407	4004	ADC_TDRL	ADC Schmitt trigger disable register low	0x00		
0x00 5408	ADC1	ADC_HTRH	ADC high threshold register high	0x03		
0x00 5409	1	ADC_HTRL	ADC high threshold register low	0xFF		
0x00 540A	1	ADC_LTRH	ADC low threshold register high	0x00		
0x00 540B	1	ADC_LTRL	ADC low threshold register low	0x00		
0x00 540C	1	ADC_AWSRH	ADC analog watchdog status register high	0x00		
0x00 540D	1	ADC_AWSRL	ADC analog watchdog status register low	0x00		
0x00 540E	1	ADC_AWCRH	ADC analog watchdog control register high	0x00		
0x00 540F	1	ADC_AWCRL	ADC analog watchdog control register low	0x00		
0x00 5410 to 0x00 57FF		R	Reserved area (1008 bytes)			

T		• .	/ / N
Table 8. Ge	neral hardware	e register ma	p (continued)

34/97

7 Interrupt vector mapping

	Table 10. Interrupt mapping									
IRQ no.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Vector address					
-	RESET	Reset	Yes	Yes	0x00 8000					
-	TRAP	Software interrupt	-	-	0x00 8004					
0	TLI	External top level interrupt	-	-	0x00 8008					
1	AWU	Auto wake up from halt	-	Yes	0x00 800C					
2	CLK	Clock controller	-	-	0x00 8010					
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014					
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018					
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C					
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020					
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024					
8		Reserved		•	0x00 8028					
9		Reserved			0x00 802C					
10	SPI	End of transfer	Yes	Yes	0x00 8030					
11	TIM1	TIM1 update/overflow/underflow/ trigger/break	-	-	0x00 8034					
12	TIM1	TIM1 capture/compare	-	-	0x00 8038					
13	TIM2	TIM2 update /overflow	-	-	0x00 803C					
14	TIM2	TIM2 capture/compare	-	-	0x00 8040					
15	TIM3	Update/overflow	-	-	0x00 8044					
16	TIM3	Capture/compare	-	-	0x00 8048					
17	-	Reserved	-	-	0x00 804C					
18	-	Reserved	-	-	0x00 8050					
19	I ² C	I ² C interrupt	Yes	Yes	0x00 8054					
20	UART2	Tx complete	-	-	0x00 8058					
21	UART2	Receive register DATA FULL	-	-	0x00 805C					
22	ADC1	ADC1 end of conversion/analog watchdog interrupt	-	-	0x00 8060					
23	TIM4	TIM4 update/overflow	-	-	0x00 8064					
24	Flash	EOP/WR_PG_DIS	-	-	0x00 8068					
		Reserved	1		0x00 806C to 0x00 807C					

Table 10. Interrupt mapping

1. Except PA1

Option byte number	Description ⁽¹⁾
	 AFR7Alternate function remapping option 7 0: AFR7 remapping option inactive: default alternate function⁽²⁾ 1: Port D4 alternate function = BEEP AFR6 Alternate function remapping option 6
	0: AFR6 remapping option inactive: default alternate function ⁽²⁾ 1: Port B5 alternate function = I^2C_SDA ; port B4 alternate function = I^2C_SCL
	AFR5 Alternate function remapping option 5
	0: AFR5 remapping option inactive: default alternate function ⁽²⁾ 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH1N
	AFR4 Alternate function remapping option 4
OPT2	 0: AFR4 remapping option inactive: default alternate function⁽²⁾ 1: Port D alternate function = TIM1_CH4
	AFR3 Alternate function remapping option 3
	 0: AFR3 remapping option inactive: default alternate function⁽²⁾ 1: Port D0 alternate function = TIM1_BKIN
	AFR2 Alternate function remapping option 2
	 0: AFR2 remapping option inactive: default alternate function⁽²⁾ 1: Port D0 alternate function = CLK_CCO
	Note: AFR2 option has priority over AFR3 if both are activated
	AFR1 Alternate function remapping option 1
	0: AFR1 remapping option inactive: default alternate function ⁽²⁾ 1: Port A3 alternate function = TIM3_CH1; port D2 alternate function TIM2_CH3
	AFR0 Alternate function remapping option 0
	 0: AFR0 remapping option inactive: default alternate function⁽²⁾ 1: Port D3 alternate function = ADC_ETR

1. Do not use more than one remapping option in the same port.

2. Refer to the pinout description.

9.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DDx} - V _{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	
V _{DDx} - V _{DD}	Variations between different power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	IIIV
V _{ESD}	Electrostatic discharge voltage	ratings (te maximum ´electrical on page 83	-

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Symbol	Parameter	Condi	Тур	Max ⁽¹⁾	Unit	
			HSE crystal osc. (16 MHz)	2.8	-	
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2.6	3.2	
	Supply current in		HSI RC osc. (16 MHz)	2.5	3.2	
	run mode,	un mode,	HSE user ext. clock (16 MHz)	1.6	2.2	
	code executed	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.3	2.0	
	from RAM	f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16MHz/8)	0.75	-	
1		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.55	-	mA
IDD(RUN)		f _{CPU} = f _{MASTER} = 16 MHz	HSE crystal osc. (16 MHz)	7.3	-	
			HSE user ext. clock (16 MHz)	7.0	8.0	
	Supply current in		HSI RC osc. (16 MHz)	7.0	8.0	
	run mode,	f _{CPU} = f _{MASTER} = 2 MHz	HSI RC osc. (16 MHz/8) ⁽²⁾	1.5	-	
	code executed	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.35	2.0	1
	from Flash	f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.75	-	
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.6	-	

Table 20. Total current consumption with code execution in run mode at V_{DD} = 3.3 V

1. Data based on characterization results, not tested in production.

2. Default clock configuration.

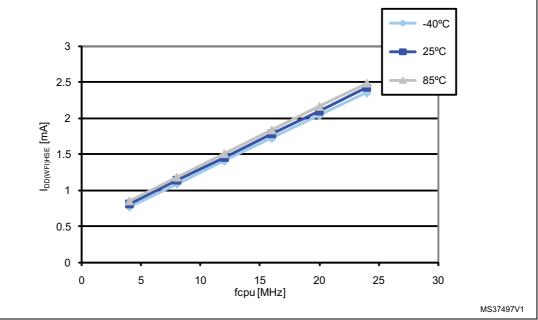



Figure 13. Typ. $I_{DD(WFI)}$ vs V_{DD}, HSE user external clock, f_{CPU} = 16 MHz

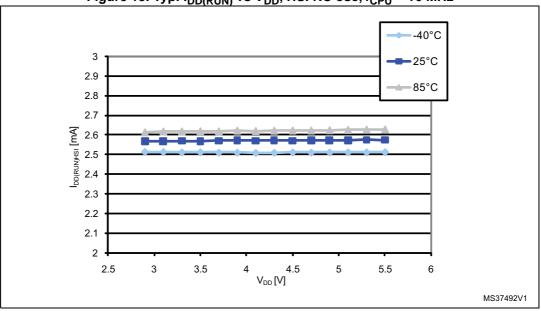
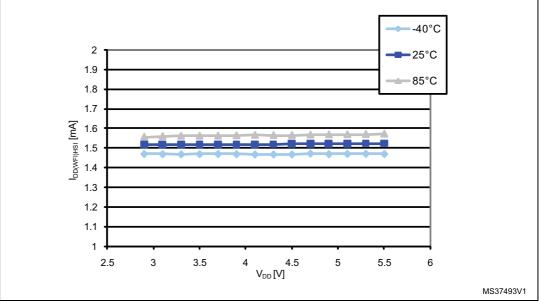



Figure 15. Typ. $I_{DD(RUN)}$ vs V_{DD} , HSI RC osc, f_{CPU} = 16 MHz

9.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.~f_{\text{HSE}}$

High speed internal RC oscillator (HSI)

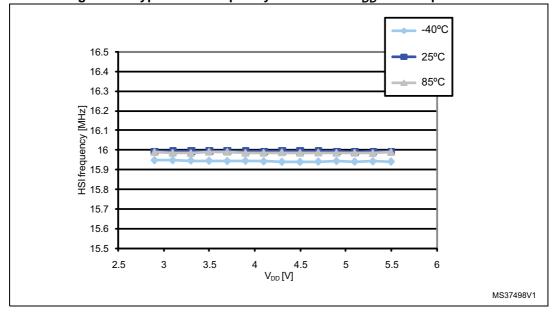

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
ACC _{HSI}	Accuracy of HSI oscillator	Trimmed by the CLK_HSITRIMR register for given V_{DD} and T_A conditions ⁽¹⁾			1.0 ⁽²⁾	%
	Accuracy of HSI oscillator (factory calibrated)	V _{DD} = 5 V, T _A = 25 °C	-	5	- //	
		$V_{DD} = 5 V,$ -40 °C $\leq T_A \leq 85 °C$	-5	-	5	
t _{su(HSI)}	HSI oscillator wakeup time including calibration	-	-	-	1.0 ⁽²⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption	-	-	170	250 ⁽³⁾	μΑ

Table 32. HSI oscillator characteristics

1. See the application note.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production

Figure 19. Typical HSI frequency variation vs V_{DD} at 3 temperatures

9.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

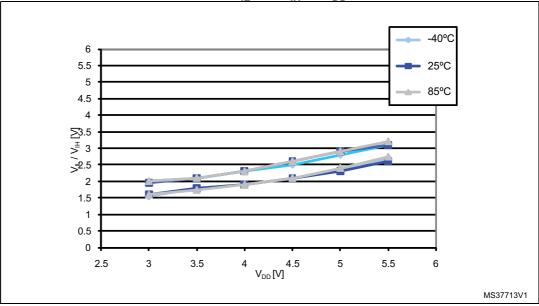

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit	
V _{IL(NRST)}	NRST input low level voltage ⁽¹⁾	-	-0.3 V	-	0.3 x V _{DD}		
V _{IH(NRST)}	NRST input high level voltage ⁽¹⁾	-	$0.7 ext{ x V}_{ ext{DD}}$	-	V _{DD} + 0.3	V	
V _{OL(NRST)}	NRST output low level voltage ⁽¹⁾	I _{OL} = 2 mA	-	-	0.5		
R _{PU(NRST)}	NRST pull-up resistor ⁽²⁾	-	30	55	80	kΩ	
t _{IFP(NRST)}	NRST input filtered pulse ⁽³⁾	-	-	-	75	ns	
t _{INFP(NRST)}	NRST Input not filtered pulse ⁽³⁾	-	500	-	-	ns	
t _{OP(NRST)}	NRST output pulse ⁽¹⁾	-	15	-	-	μs	

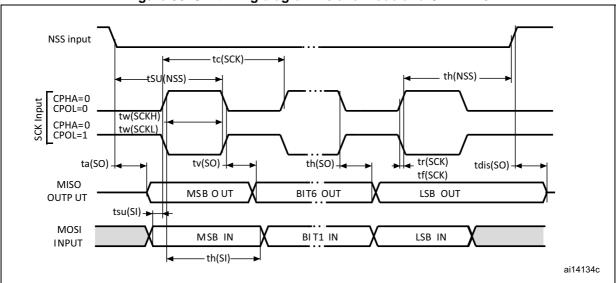
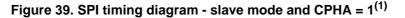
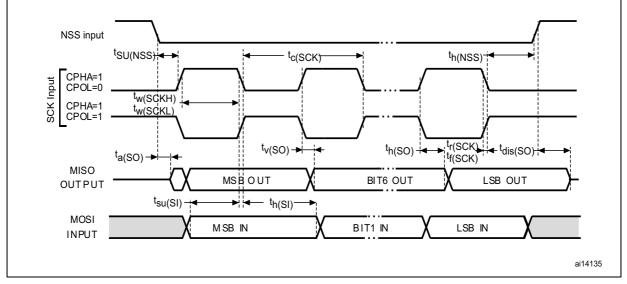
Table 40. NRST pin characteristics

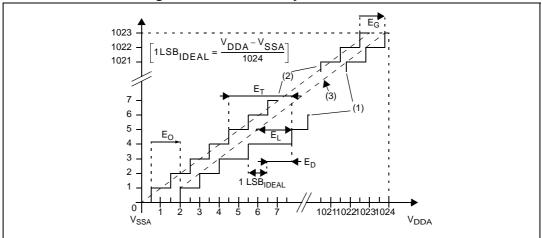
1. Data based on characterization results, not tested in production.

2. The $\rm R_{PU}$ pull-up equivalent resistor is based on a resistive transistor

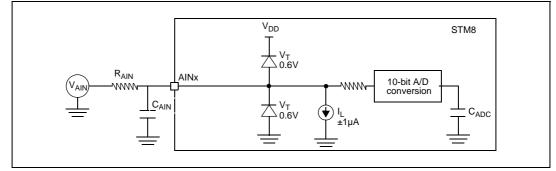
3. Data guaranteed by design, not tested in production.

Figure 34. Typical NRST V_{IL} and V_{IH} vs V_{DD} @ 3 temperatures


Figure 38. SPI timing diagram - slave mode and CPHA = 0

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}



1. Example of an actual transfer curve.

- 2. The ideal transfer curve
- 3.

End point correlation line E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_0 = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one. E_D = Differential linearity error: maximum deviation between actual steps and the ideal one. E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation between any actual transition and the end point correlation line.

Electromagnetic interference (EMI)

Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout and pin loading.

Symbol	Parameter	Conditions				
		General conditions	Monitored frequency band	Max f _{HSE} /f _{CPU} ⁽¹⁾		Unit
				8 MHz/ 8 MHz	8 MHz/ 16 MHz	
S _{EMI}	Peak level	$V_{DD} = 5 V$ $T_A = 25 °C$ LQFP48 package conforming to SAE	0.1 MHz to 30 MHz	13	14	dBµV
			30 MHz to 130 MHz	23	19	
			130 MHz to 1 GHz	-4.0	-4.0	
	SAE EMI level	IEC 61967-2	-	2.0	1.5	

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

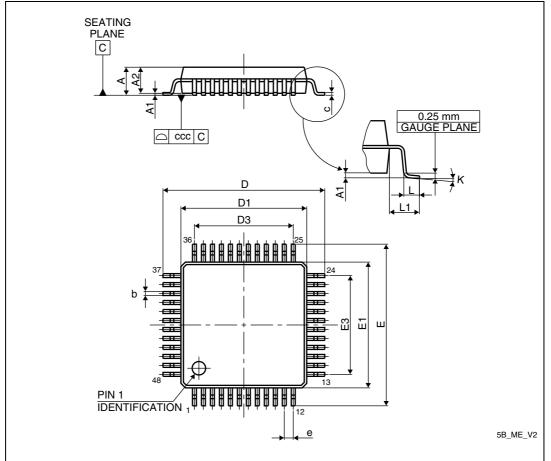
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

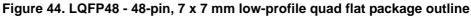
Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	IV	1000	V

Table 48	. ESD	absolute	maximum	ratings
----------	-------	----------	---------	---------


1. Data based on characterization results, not tested in production.



10 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at *www.st.com*. ECOPACK® is an ST trademark.

10.1 LQFP48 package information

1. Drawing is not to scale.

DocID022186 Rev 4

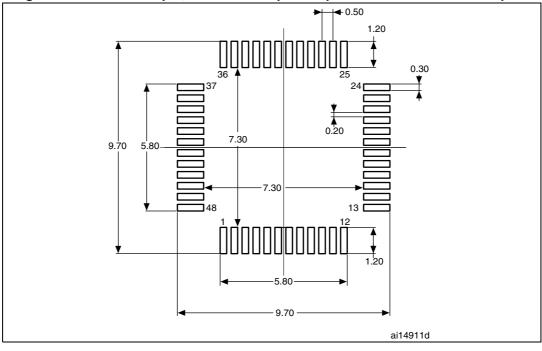
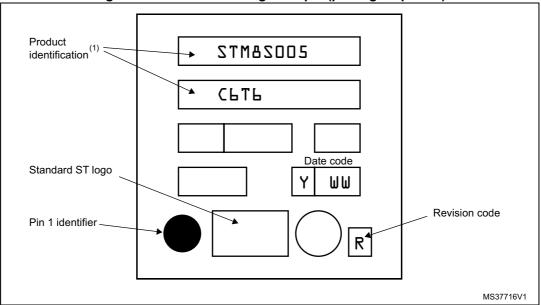


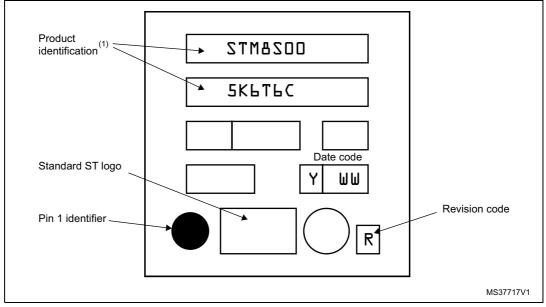
Figure 45. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint

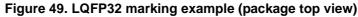
1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.




Figure 46. LQFP48 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

10.3 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 17: General operating conditions*.

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

 $T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- P_{I/Omax} represents the maximum power dissipation on output pins, where: P_{I/Omax} = Σ (V_{OL}*I_{OL}) + Σ((V_{DD}-V_{OH})*I_{OH}), and taking account of the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
0	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ _{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	60	°C/W

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

10.3.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

