

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	4
Number of Macrocells	64
Number of Gates	1250
Number of I/O	34
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm3064alc44-7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- PCI compatible
- Bus-friendly architecture including programmable slew-rate control
- Open–drain output option
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power–saving mode for a power reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- Programmable security bit for protection of proprietary designs
- Enhanced architectural features, including:
 - 6 or 10 pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstations, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from third-party manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with the Altera master programming unit (MPU), MasterBlasterTM communications cable, ByteBlasterMVTM parallel port download cable, BitBlasterTM serial download cable as well as programming hardware from third-party manufacturers and any in-circuit tester that supports JamTM Standard Test and Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), or Serial Vector Format Files (.svf)

General Description

MAX 3000A devices are low–cost, high–performance devices based on the Altera MAX architecture. Fabricated with advanced CMOS technology, the EEPROM–based MAX 3000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices in the –4, –5, –6, –7, and –10 speed grades are compatible with the timing requirements of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

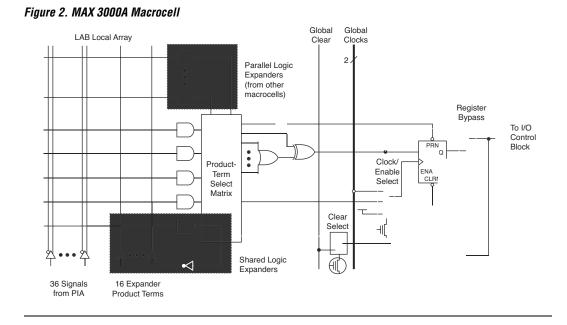
MAX 3000A devices contain 32 to 512 macrocells, combined into groups of 16 macrocells called logic array blocks (LABs). Each macrocell has a programmable–AND/fixed–OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with shareable expander and high–speed parallel expander product terms to provide up to 32 product terms per macrocell.

MAX 3000A devices provide programmable speed/power optimization. Speed–critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 3000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non–speed–critical signals are switching. The output drivers of all MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5–V, 3.3–V, and 5.0-V tolerant, allowing MAX 3000A devices to be used in mixed–voltage systems.

MAX 3000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry–standard PC– and UNIX–workstation–based EDA tools. The software runs on Windows–based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

The MAX 3000A architecture includes the following elements:


- Logic array blocks (LABs)
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array (PIA)
- I/O control blocks

The MAX 3000A architecture includes four dedicated inputs that can be used as general–purpose inputs or as high–speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 3000A devices.

Functional Description

Macrocells

MAX 3000A macrocells can be individually configured for either sequential or combinatorial logic operation. Macrocells consist of three functional blocks: logic array, product–term select matrix, and programmable register. Figure 2 shows a MAX 3000A macrocell.

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product–term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development system software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:

- Global clock signal mode, which achieves the fastest clock-to-output performance.
- Global clock signal enabled by an active-high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock-to-output performance of the global clock.
- Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

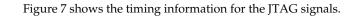
Two global clock signals are available in MAX 3000A devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the two global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product–term select matrix allocates product terms to control these operations. Although the product–term–driven preset and clear from the register are active high, active–low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active–low dedicated global clear pin (GCLRn).

All registers are cleared upon power-up. By default, all registered outputs drive low when the device is powered up. You can set the registered outputs to drive high upon power-up through the Quartus[®] II software. Quartus II software uses the NOT Gate Push-Back method, which uses an additional macrocell to set the output high. To set this in the Quartus II software, go to the Assignment Editor and set the **Power-Up Level** assignment for the register to **High**.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 3000A device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.


Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- 1. *Enter ISP*. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- 2. *Check ID*. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase.* Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- 4. *Program*. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- 5. *Verify.* Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. *Exit ISP*. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

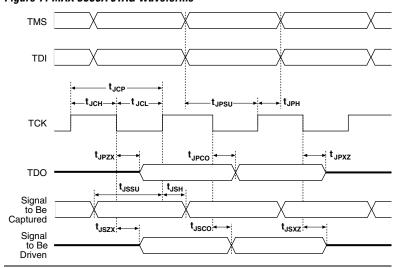
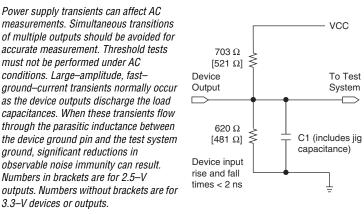



Figure 7. MAX 3000A JTAG Waveforms

Table 10 shows the JTAG timing parameters and values for MAX 3000A devices.

Table 1	0. JTAG Timing Parameters & Values for MAX 30	IOOA De	vices	
Symbol	Parameter	Min	Мах	Unit
t _{JCP}	TCK clock period	100		ns
t _{JCH}	TCK clock high time	50		ns
t _{JCL}	TCK clock low time	50		ns
t _{JPSU}	JTAG port setup time	20		ns
t _{JPH}	JTAG port hold time	45		ns
t _{JPCO}	JTAG port clock to output		25	ns
t _{JPZX}	JTAG port high impedance to valid output		25	ns
t _{JPXZ}	JTAG port valid output to high impedance		25	ns
t _{JSSU}	Capture register setup time	20		ns
t _{JSH}	Capture register hold time	45		ns
t _{JSCO}	Update register clock to output		25	ns
t _{JSZX}	Update register high impedance to valid output		25	ns
t _{JSXZ}	Update register valid output to high impedance		25	ns

Figure 8. MAX 3000A AC Test Conditions

Operating Conditions

Tables 12 through 15 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for MAX 3000A devices.

Table 1	2. MAX 3000A Device Abso	lute Maximum Ratings Note (1)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V
VI	DC input voltage		-2.0	5.75	V
I _{OUT}	DC output current, per pin		-25	25	mA
T _{STG}	Storage temperature	No bias	-65	150	°C
T _A	Ambient temperature	Under bias	-65	135	°C
TJ	Junction temperature	PQFP and TQFP packages, under bias		135	°C

Timing Model

MAX 3000A device timing can be analyzed with the Altera software, with a variety of popular industry–standard EDA simulators and timing analyzers, or with the timing model shown in Figure 10. MAX 3000A devices have predictable internal delays that enable the designer to determine the worst–case timing of any design. The software provides timing simulation, point–to–point delay prediction, and detailed timing analysis for device–wide performance evaluation.

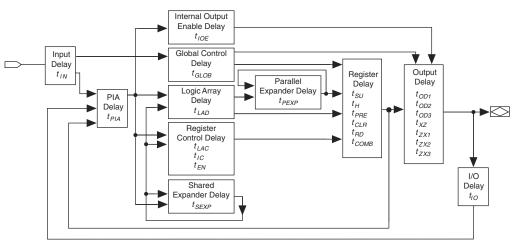


Figure 10. MAX 3000A Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin–to–pin timing delays, can be calculated as the sum of internal parameters. Figure 11 shows the timing relationship between internal and external delay parameters.

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	-4	-	-7	-	10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.2		1.5	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.2		1.5	ns
t _{SEXP}	Shared expander delay			1.9		3.1		4.0	ns
t _{PEXP}	Parallel expander delay			0.5		0.8		1.0	ns
t _{LAD}	Logic array delay			1.5		2.5		3.3	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.8		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{RD}	Register delay			0.7		1.2		1.5	ns
t _{COMB}	Combinatorial delay			0.6		1.0		1.3	ns
t _{IC}	Array clock delay			1.2		2.0		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			0.8		1.3		1.9	ns
t _{PRE}	Register preset time			1.2		1.9		2.6	ns
t _{CLR}	Register clear time			1.2		1.9		2.6	ns

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	4	-	-7		10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.6		1.1		1.4	ns
t _{IO}	I/O input pad and buffer delay			0.6		1.1		1.4	ns
t _{SEXP}	Shared expander delay			1.8		3.0		3.9	ns
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns
t _{LAD}	Logic array delay			1.5		2.5		3.2	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.9		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{RD}	Register delay			0.7		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.6		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.9		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			1.0		1.5		2.2	ns
t _{PRE}	Register preset time			1.3		2.1		2.9	ns

Table 20	D. EPM3128A External 1	Timing Param	eters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	-5 -7 -10					
			Min Max Min Max Min Max						
f _{acnt}	Maximum internal array clock frequency	(2), (4)	192.3		129.9		98.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5	-	-7	_	10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.0		1.4	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.0		1.4	ns
t _{SEXP}	Shared expander delay			2.0		2.9		3.8	ns
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns
t _{LAD}	Logic array delay			1.6		2.4		3.1	ns
t _{LAC}	Logic control array delay			0.7		1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.8		1.2		1.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF		1.3		1.7		2.1	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns

Table 21	1. EPM3128A Internal Tim	ning Parameters (F	Part 2 of	2) N	ote (1)				
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	5	-	-7	-	10	
			Min	Max	Min	Max	Min	Max	
t _{SU}	Register setup time		1.4		2.1		2.9		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{RD}	Register delay			0.8		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.5		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.7		2.2	ns
t _{EN}	Register enable time			0.7		1.0		1.3	ns
t _{GLOB}	Global control delay			1.1		1.6		2.0	ns
t _{PRE}	Register preset time			1.4		2.0		2.7	ns
t _{CLR}	Register clear time			1.4		2.0		2.7	ns
t _{PIA}	PIA delay	(2)		1.4		2.0		2.6	ns
t _{LPA}	Low-power adder	(5)		4.0		4.0		5.0	ns

Table 22.	EPM3256A External Timing	Parameters	Vote (1)						
Symbol	Parameter	Conditions	Speed Grade						
			-	-7	-	10			
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF <i>(2)</i>		7.5		10	ns		
t _{PD2}	I/O input to non–registered output	C1 = 35 pF <i>(2)</i>		7.5		10	ns		
t _{SU}	Global clock setup time	(2)	5.2		6.9		ns		
t _H	Global clock hold time	(2)	0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.8	1.0	6.4	ns		
t _{CH}	Global clock high time		3.0		4.0		ns		
t _{CL}	Global clock low time		3.0		4.0		ns		
t _{ASU}	Array clock setup time	(2)	2.7		3.6		ns		
t _{AH}	Array clock hold time	(2)	0.3		0.5		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF <i>(2)</i>	1.0	7.3	1.0	9.7	ns		
t _{ACH}	Array clock high time		3.0		4.0		ns		
t _{ACL}	Array clock low time		3.0		4.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		ns		

-

Symbol	Parameter	Conditions		Speed	Grade		Unit
			_	7		10	
			Min	Max	Min	Max	
t _{CNT}	Minimum global clock period	(2)		7.9		10.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	126.6		95.2		MHz
t _{acnt}	Minimum array clock period	(2)		7.9		10.5	ns
f _{acnt}	Maximum internal array clock frequency	(2), (4)	126.6		95.2		MHz

Symbol	Parameter	Conditions		Speed	Grade		Unit
			-7		-10		1
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.9		1.2	ns
t _{IO}	I/O input pad and buffer delay			0.9		1.2	ns
t _{SEXP}	Shared expander delay			2.8		3.7	ns
t _{PEXP}	Parallel expander delay			0.5		0.6	ns
t _{LAD}	Logic array delay			2.2		2.8	ns
t _{LAC}	Logic control array delay			1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V_{CCIO} = 3.3 V	C1 = 35 pF		1.2		1.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF		1.7		2.1	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off V_{CCIO} = 3.3 V	C1 = 35 pF		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off V_{CCIO} = 2.5 V	C1 = 35 pF		4.5		5.5	ns

Symbol	EPM3512A External Timing Par Parameter	Conditions	e (1)	Unit			
ey		Contractions	-7		Grade	10	-
			Min	Max	Min	Max	
t _{AH}	Array clock hold time	(2)	0.2		0.3		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	ns
t _{ACH}	Array clock high time		3.0		4.0		ns
t _{ACL}	Array clock low time		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		8.6		11.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		MHz
t _{ACNT}	Minimum array clock period	(2)		8.6		11.5	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		MHz

Table 25. EPM3512A Internal Timing Parameters (Part 1 of 2)	Note (1)

Symbol	Parameter	Conditions	Speed Grade				Unit
			-7		-10		
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		0.9	ns
t _{IO}	I/O input pad and buffer delay			0.7		0.9	ns
t _{FIN}	Fast input delay			3.1		3.6	ns
t _{SEXP}	Shared expander delay			2.7		3.5	ns
t _{PEXP}	Parallel expander delay			0.4		0.5	ns
t _{LAD}	Logic array delay			2.2		2.8	ns
t _{LAC}	Logic control array delay			1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off	C1 = 35 pF		1.0		1.5	ns
	$V_{CCIO} = 3.3 V$						
t _{OD2}	Output buffer and pad delay, slow slew rate = off	C1 = 35 pF		1.5		2.0	ns
	$V_{CCIO} = 2.5 V$						

Symbol	Parameter	Conditions	Speed Grade				Unit
			-7		-10		
			Min	Max	Min	Max	
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		6.0		6.5	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0	ns
t _{SU}	Register setup time		2.1		3.0		ns
t _H	Register hold time		0.6		0.8		ns
t _{FSU}	Register setup time of fast input		1.6		1.6		ns
t _{FH}	Register hold time of fast input		1.4		1.4		ns
t _{RD}	Register delay			1.3		1.7	ns
t _{COMB}	Combinatorial delay			0.6		0.8	ns
t _{IC}	Array clock delay			1.8		2.3	ns
t _{EN}	Register enable time			1.0		1.3	ns
t _{GLOB}	Global control delay			1.7		2.2	ns
t _{PRE}	Register preset time			1.0		1.4	ns
t _{CLR}	Register clear time			1.0		1.4	ns
t _{PIA}	PIA delay	(2)		3.0		4.0	ns
t _{LPA}	Low-power adder	(5)		4.5		5.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions, as shown in Table 13 on page 23. See Figure 11 on page 27 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(5) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in low–power mode.

Power Consumption	devices is $P = P_{INT} +$ The P_{IO} va and switch Application The I_{CCIN}	ower (P) versus fr calculated with t + $P_{IO} = I_{CCINT} \times N$ alue, which depending frequency, c <i>n Note 74 (Evaluat</i> T value depends of I _{CCINT} value is c	he following ec V _{CC} + P _{IO} nds on the devi an be calculate <i>ing Power for Al</i> on the switching	uation: ice output load o d using the guic <i>ltera Devices</i>). g frequency and	characteristics lelines given in the application	
	$I_{CCINT} =$ (A × MC _T	_{'ON}) + [B× (MC _{DI}	_{EV} – MC _{TON})] +	$(C \times MC_{USED})$	$(f_{MAX} \times tog_{LC})$	
		neters in the I _{CCII}				
	MC _{TON}	 Number of r on, as report File (.rpt) 		the Turbo Bit™ tus II or MAX+I	*	
	e device in the design, a	s reported in				
	<pre>f_{MAX} = Highest clock frequency to the device tog_{LC} = Average percentage of logic cells toggling at each clock (typically 12.5%)</pre>					
	A, B, C = Constants (shown in Table 26)					
	Table 26. MAX 3000A I _{CC} Equation Constants					
		Device	Α	В	C	

EPM3032A

EPM3064A

EPM3128A

EPM3256A

EPM3512A

The I_{CCINT} calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16–bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

0.71

0.71

0.71

0.71

0.71

0.30

0.30

0.30

0.30

0.30

Figures 12 and 13 show the typical supply current versus frequency for MAX 3000A devices.

0.014

0.014

0.014

0.014

0.014

Device Pin–Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin–out information.

Figures 14 through 18 show the package pin–out diagrams for MAX 3000A devices.

Package outlines not drawn to scale.

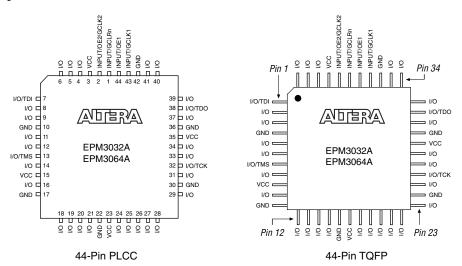
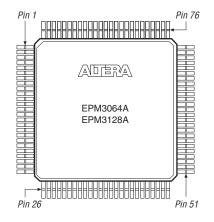
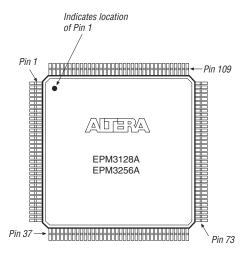
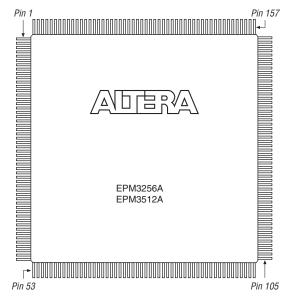


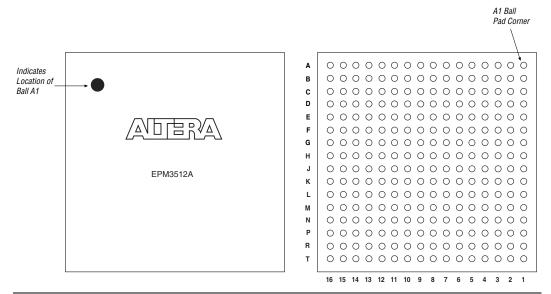
Figure 15. 100–Pin TQFP Package Pin–Out Diagram

Package outline not drawn to scale.


Figure 16. 144–Pin TQFP Package Pin–Out Diagram

Package outline not drawn to scale.


Figure 17. 208–Pin PQFP Package Pin–Out Diagram

Package outline not drawn to scale.

Figure 18. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Revision History

The information contained in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5 supersedes information published in previous versions. The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5:

Version 3.5

The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5:

■ New paragraph added before "Expander Product Terms".

Version 3.4

The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.4:

Updated Table 1.