




Welcome to E-XFL.COM

### Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

**Applications of Embedded - CPLDs** 

### Details

| 2014.10                         |                                                             |
|---------------------------------|-------------------------------------------------------------|
| Product Status                  | Obsolete                                                    |
| Programmable Type               | In System Programmable                                      |
| Delay Time tpd(1) Max           | 10 ns                                                       |
| Voltage Supply - Internal       | 3V ~ 3.6V                                                   |
| Number of Logic Elements/Blocks | 4                                                           |
| Number of Macrocells            | 64                                                          |
| Number of Gates                 | 1250                                                        |
| Number of I/O                   | 34                                                          |
| Operating Temperature           | -40°C ~ 85°C (TA)                                           |
| Mounting Type                   | Surface Mount                                               |
| Package / Case                  | 44-LCC (J-Lead)                                             |
| Supplier Device Package         | 44-PLCC (16.59x16.59)                                       |
| Purchase URL                    | https://www.e-xfl.com/product-detail/intel/epm3064ali44-10n |
|                                 |                                                             |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## ...and More Features

- PCI compatible
- Bus-friendly architecture including programmable slew-rate control
- Open–drain output option
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power–saving mode for a power reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- Programmable security bit for protection of proprietary designs
- Enhanced architectural features, including:
  - 6 or 10 pin- or logic-driven output enable signals
  - Two global clock signals with optional inversion
  - Enhanced interconnect resources for improved routability
  - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstations, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from third-party manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with the Altera master programming unit (MPU), MasterBlaster<sup>TM</sup> communications cable, ByteBlasterMV<sup>TM</sup> parallel port download cable, BitBlaster<sup>TM</sup> serial download cable as well as programming hardware from third-party manufacturers and any in-circuit tester that supports Jam<sup>TM</sup> Standard Test and Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), or Serial Vector Format Files (.svf)

# General Description

MAX 3000A devices are low–cost, high–performance devices based on the Altera MAX architecture. Fabricated with advanced CMOS technology, the EEPROM–based MAX 3000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices in the –4, –5, –6, –7, and –10 speed grades are compatible with the timing requirements of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

MAX 3000A devices contain 32 to 512 macrocells, combined into groups of 16 macrocells called logic array blocks (LABs). Each macrocell has a programmable–AND/fixed–OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with shareable expander and high–speed parallel expander product terms to provide up to 32 product terms per macrocell.

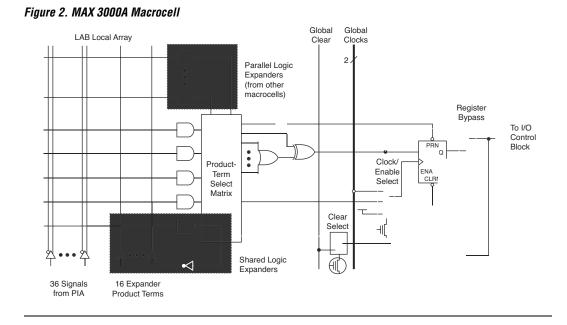
MAX 3000A devices provide programmable speed/power optimization. Speed–critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 3000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non–speed–critical signals are switching. The output drivers of all MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5–V, 3.3–V, and 5.0-V tolerant, allowing MAX 3000A devices to be used in mixed–voltage systems.

MAX 3000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry–standard PC– and UNIX–workstation–based EDA tools. The software runs on Windows–based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.



For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

The MAX 3000A architecture includes the following elements:


- Logic array blocks (LABs)
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array (PIA)
- I/O control blocks

The MAX 3000A architecture includes four dedicated inputs that can be used as general–purpose inputs or as high–speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 3000A devices.

# Functional Description

### Macrocells

MAX 3000A macrocells can be individually configured for either sequential or combinatorial logic operation. Macrocells consist of three functional blocks: logic array, product–term select matrix, and programmable register. Figure 2 shows a MAX 3000A macrocell.

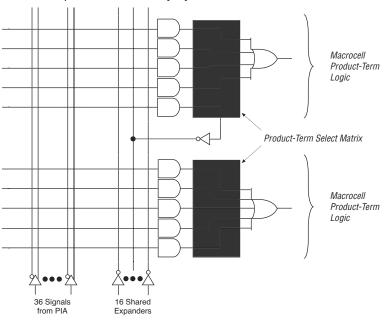


Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product–term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product-term allocation according to the logic requirements of the design.


## **Expander Product Terms**

Although most logic functions can be implemented with the five product terms available in each macrocell, highly complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 3000A architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

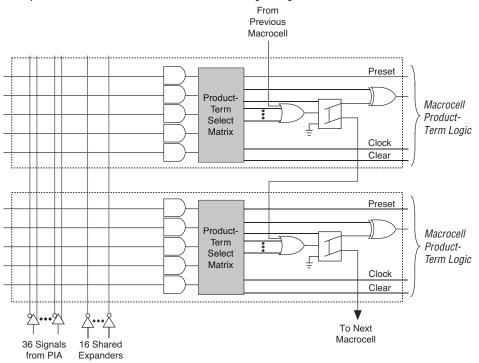
### Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. Shareable expanders incur a small delay ( $t_{SEXP}$ ). Figure 3 shows how shareable expanders can feed multiple macrocells.





Shareable expanders can be shared by any or all macrocells in an LAB.


### Parallel Expanders

Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

The Altera development system compiler can automatically allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay ( $t_{PEXP}$ ). For example, if a macrocell requires 14 product terms, the compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms, and the second set includes four product terms, increasing the total delay by  $2 \times t_{PEXP}$ .

Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower–numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest–numbered macrocell can only lend parallel expanders and the highest–numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell.

### Figure 4. MAX 3000A Parallel Expanders



Unused product terms in a macrocell can be allocated to a neighboring macrocell.

## **Programmable Interconnect Array**

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 3000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.

# In–System Programmability

MAX 3000A devices can be programmed in–system via an industry– standard four–pin IEEE Std. 1149.1-1990 (JTAG) interface. In-system programmability (ISP) offers quick, efficient iterations during design development and debugging cycles. The MAX 3000A architecture internally generates the high programming voltages required to program its EEPROM cells, allowing in–system programming with only a single 3.3–V power supply. During in–system programming, the I/O pins are tri–stated and weakly pulled–up to eliminate board conflicts. The pull–up value is nominally 50 kΩ

MAX 3000A devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP\_Done bit that ensures safe operation when in-system programming is interrupted. This ISP\_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board (PCB) with standard pick–and–place equipment before they are programmed. MAX 3000A devices can be programmed by downloading the information via in–circuit testers, embedded processors, the MasterBlaster communications cable, the ByteBlasterMV parallel port download cable, and the BitBlaster serial download cable. Programming the devices after they are placed on the board eliminates lead damage on high–pin–count packages (e.g., QFP packages) due to device handling. MAX 3000A devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

The Jam STAPL programming and test language can be used to program MAX 3000A devices with in–circuit testers, PCs, or embedded processors.



For more information on using the Jam STAPL programming and test language, see *Application Note 88 (Using the Jam Language for ISP & ICR via an Embedded Processor), Application Note 122 (Using Jam STAPL for ISP & ICR via an Embedded Processor)* and *AN 111 (Embedded Programming Using the 8051 and Jam Byte-Code).* 

The ISP circuitry in MAX 3000A devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

### Programming a Single MAX 3000A Device

The time required to program a single MAX 3000A device in-system can be calculated from the following formula:

| <sup>t</sup> PROG | = t <sub>PPULSE</sub> +                   | <sup>Cycle</sup> ртск<br>f <sub>TCK</sub>                                                                        |
|-------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| where:            | t <sub>PROG</sub><br>t <sub>PPULSE</sub>  | <ul><li>Programming time</li><li>Sum of the fixed times to erase, program, and verify the EEPROM cells</li></ul> |
|                   | Cycle <sub>PTCK</sub><br>f <sub>TCK</sub> | <ul><li>Number of TCK cycles to program a device</li><li>TCK frequency</li></ul>                                 |

The ISP times for a stand-alone verification of a single MAX 3000A device can be calculated from the following formula:

| $t_{VER} = t_{VPULSE} + \frac{C_2}{T}$             | <sup>JCle</sup> VTCK<br><sup>f</sup> TCK                                                                                                      |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| where: $t_{VER}$<br>$t_{VPULSE}$<br>$Cycle_{VTCK}$ | <ul><li>= Verify time</li><li>= Sum of the fixed times to verify the EEPROM cells</li><li>= Number of TCK cycles to verify a device</li></ul> |

The instruction register length of MAX 3000A devices is 10 bits. The IDCODE and USERCODE register length is 32 bits. Tables 8 and 9 show the boundary–scan register length and device IDCODE information for MAX 3000A devices.

| Table 8. MAX 3000A Boundary–Scan Register Length |                               |  |  |  |  |  |  |
|--------------------------------------------------|-------------------------------|--|--|--|--|--|--|
| Device                                           | Boundary–Scan Register Length |  |  |  |  |  |  |
| EPM3032A                                         | 96                            |  |  |  |  |  |  |
| EPM3064A                                         | 192                           |  |  |  |  |  |  |
| EPM3128A                                         | 288                           |  |  |  |  |  |  |
| EPM3256A                                         | 480                           |  |  |  |  |  |  |
| EPM3512A                                         | 624                           |  |  |  |  |  |  |

| Table 9. 32–Bit MAX 3000A Device IDCODE Value       Note (1) |                     |                       |                                      |                         |  |  |  |  |  |  |  |  |
|--------------------------------------------------------------|---------------------|-----------------------|--------------------------------------|-------------------------|--|--|--|--|--|--|--|--|
| Device                                                       |                     | IDCODE (32 bits)      |                                      |                         |  |  |  |  |  |  |  |  |
|                                                              | Version<br>(4 Bits) | Part Number (16 Bits) | Manufacturer's<br>Identity (11 Bits) | <b>1 (1 Bit)</b><br>(2) |  |  |  |  |  |  |  |  |
| EPM3032A                                                     | 0001                | 0111 0000 0011 0010   | 00001101110                          | 1                       |  |  |  |  |  |  |  |  |
| EPM3064A                                                     | 0001                | 0111 0000 0110 0100   | 00001101110                          | 1                       |  |  |  |  |  |  |  |  |
| EPM3128A                                                     | 0001                | 0111 0001 0010 1000   | 00001101110                          | 1                       |  |  |  |  |  |  |  |  |
| EPM3256A                                                     | 0001                | 0111 0010 0101 0110   | 00001101110                          | 1                       |  |  |  |  |  |  |  |  |
| EPM3512A                                                     | 0001                | 0111 0101 0001 0010   | 00001101110                          | 1                       |  |  |  |  |  |  |  |  |

Notes:

(1) The most significant bit (MSB) is on the left.

(2) The least significant bit (LSB) for all JTAG IDCODEs is 1.



See *Application Note* 39 (IEEE 1149.1 (JTAG) Boundary–Scan Testing in Altera Devices) for more information on JTAG BST.

# Programmable Speed/Power Control

MAX 3000A devices offer a power–saving mode that supports low-power operation across user–defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 3000A device for either high–speed or low–power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder ( $t_{LPA}$ ) for the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{ACL}$ ,  $t_{EN}$ ,  $t_{CPPW}$  and  $t_{SEXP}$  parameters.

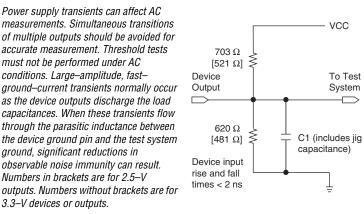
# Output Configuration

MAX 3000A device outputs can be programmed to meet a variety of system–level requirements.

## MultiVolt I/O Interface

The MAX 3000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 3000A devices to connect to systems with differing supply voltages. MAX 3000A devices in all packages can be set for 2.5–V, 3.3–V, or 5.0–V I/O pin operation. These devices have one set of  $V_{CC}$  pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3–V or 2.5–V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5–V power supply, the output levels are compatible with 2.5–V systems. When the VCCIO pins are connected to a 3.3–V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0–V systems. Devices operating with V<sub>CCIO</sub> levels lower than 3.0 V incur a nominally greater timing delay of  $t_{OD2}$  instead of  $t_{OD1}$ . Inputs can always be driven by 2.5–V, 3.3–V, or 5.0–V signals.


Table 11 summarizes the MAX 3000A MultiVolt I/O support.

| Table 11. MAX 3000A MultiVolt I/O Support                    |              |              |              |              |              |              |  |  |
|--------------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--|--|
| V <sub>CCIO</sub> Voltage Input Signal (V) Output Signal (V) |              |              |              |              |              |              |  |  |
|                                                              | 2.5          | 3.3          | 5.0          | 2.5          | 3.3          | 5.0          |  |  |
| 2.5                                                          | $\checkmark$ | ~            | ~            | ~            |              |              |  |  |
| 3.3                                                          | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |

#### Note:

When V<sub>CCIO</sub> is 3.3 V, a MAX 3000A device can drive a 2.5–V device that has 3.3–V tolerant inputs.

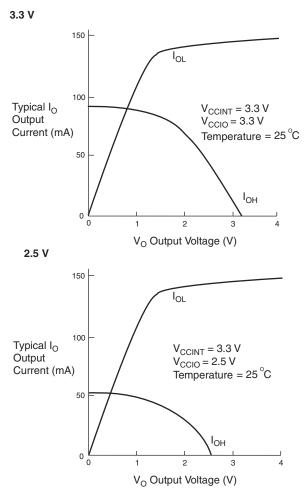
### Figure 8. MAX 3000A AC Test Conditions

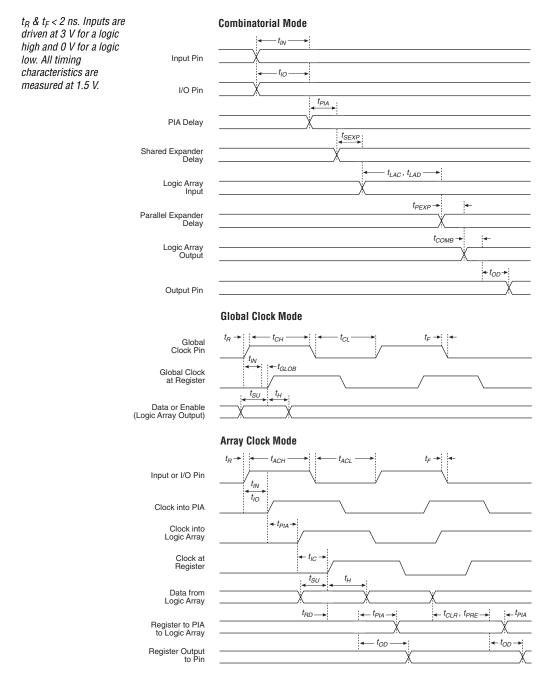


# Operating Conditions

Tables 12 through 15 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for MAX 3000A devices.

| Table 12. MAX 3000A Device Absolute Maximum Ratings         Note (1) |                            |                                    |      |      |      |  |  |  |  |
|----------------------------------------------------------------------|----------------------------|------------------------------------|------|------|------|--|--|--|--|
| Symbol                                                               | Parameter                  | Conditions                         | Min  | Max  | Unit |  |  |  |  |
| V <sub>CC</sub>                                                      | Supply voltage             | With respect to ground (2)         | -0.5 | 4.6  | V    |  |  |  |  |
| VI                                                                   | DC input voltage           |                                    | -2.0 | 5.75 | V    |  |  |  |  |
| I <sub>OUT</sub>                                                     | DC output current, per pin |                                    | -25  | 25   | mA   |  |  |  |  |
| T <sub>STG</sub>                                                     | Storage temperature        | No bias                            | -65  | 150  | °C   |  |  |  |  |
| T <sub>A</sub>                                                       | Ambient temperature        | Under bias                         | -65  | 135  | °C   |  |  |  |  |
| TJ                                                                   | Junction temperature       | PQFP and TQFP packages, under bias |      | 135  | °C   |  |  |  |  |





Figure 9. Output Drive Characteristics of MAX 3000A Devices

# Power Sequencing & Hot–Socketing

Because MAX 3000A devices can be used in a mixed–voltage environment, they have been designed specifically to tolerate any possible power–up sequence. The V<sub>CCIO</sub> and V<sub>CCINT</sub> power planes can be powered in any order.

Signals can be driven into MAX 3000A devices before and during power-up without damaging the device. In addition, MAX 3000A devices do not drive out during power-up. Once operating conditions are reached, MAX 3000A devices operate as specified by the user.

### Figure 11. MAX 3000A Switching Waveforms



| Symbol            | Parameter                                                                                   | Conditions |     |     | Speed | Grade |     |      | Unit |
|-------------------|---------------------------------------------------------------------------------------------|------------|-----|-----|-------|-------|-----|------|------|
|                   |                                                                                             |            | -   | -4  | -7    |       | -10 |      |      |
|                   |                                                                                             |            | Min | Max | Min   | Max   | Min | Max  |      |
| t <sub>IN</sub>   | Input pad and buffer delay                                                                  |            |     | 0.7 |       | 1.2   |     | 1.5  | ns   |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                              |            |     | 0.7 |       | 1.2   |     | 1.5  | ns   |
| t <sub>SEXP</sub> | Shared expander delay                                                                       |            |     | 1.9 |       | 3.1   |     | 4.0  | ns   |
| t <sub>PEXP</sub> | Parallel expander delay                                                                     |            |     | 0.5 |       | 0.8   |     | 1.0  | ns   |
| t <sub>LAD</sub>  | Logic array delay                                                                           |            |     | 1.5 |       | 2.5   |     | 3.3  | ns   |
| t <sub>LAC</sub>  | Logic control array delay                                                                   |            |     | 0.6 |       | 1.0   |     | 1.2  | ns   |
| t <sub>IOE</sub>  | Internal output enable delay                                                                |            |     | 0.0 |       | 0.0   |     | 0.0  | ns   |
| t <sub>OD1</sub>  | Output buffer and pad<br>delay, slow slew rate = off<br>$V_{CCIO} = 3.3 V$                  | C1 = 35 pF |     | 0.8 |       | 1.3   |     | 1.8  | ns   |
| t <sub>OD2</sub>  | Output buffer and pad<br>delay, slow slew rate = off<br>$V_{CCIO} = 2.5 V$                  | C1 = 35 pF |     | 1.3 |       | 1.8   |     | 2.3  | ns   |
| t <sub>OD3</sub>  | Output buffer and pad<br>delay, slow slew rate = on<br>$V_{CCIO} = 2.5 V \text{ or } 3.3 V$ | C1 = 35 pF |     | 5.8 |       | 6.3   |     | 6.8  | ns   |
| t <sub>ZX1</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 3.3 V$                   | C1 = 35 pF |     | 4.0 |       | 4.0   |     | 5.0  | ns   |
| t <sub>ZX2</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 2.5 V$                   | C1 = 35 pF |     | 4.5 |       | 4.5   |     | 5.5  | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay,<br>slow slew rate = on<br>$V_{CCIO} = 2.5 V \text{ or } 3.3 V$  | C1 = 35 pF |     | 9.0 |       | 9.0   |     | 10.0 | ns   |
| t <sub>XZ</sub>   | Output buffer disable delay                                                                 | C1 = 5 pF  |     | 4.0 |       | 4.0   |     | 5.0  | ns   |
| t <sub>SU</sub>   | Register setup time                                                                         |            | 1.3 |     | 2.0   |       | 2.8 |      | ns   |
| t <sub>H</sub>    | Register hold time                                                                          |            | 0.6 |     | 1.0   |       | 1.3 |      | ns   |
| t <sub>RD</sub>   | Register delay                                                                              |            |     | 0.7 |       | 1.2   |     | 1.5  | ns   |
| t <sub>COMB</sub> | Combinatorial delay                                                                         |            |     | 0.6 |       | 1.0   |     | 1.3  | ns   |
| t <sub>IC</sub>   | Array clock delay                                                                           |            |     | 1.2 |       | 2.0   |     | 2.5  | ns   |
| t <sub>EN</sub>   | Register enable time                                                                        |            |     | 0.6 |       | 1.0   |     | 1.2  | ns   |
| t <sub>GLOB</sub> | Global control delay                                                                        |            |     | 0.8 |       | 1.3   |     | 1.9  | ns   |
| t <sub>PRE</sub>  | Register preset time                                                                        |            |     | 1.2 |       | 1.9   |     | 2.6  | ns   |
| t <sub>CLR</sub>  | Register clear time                                                                         |            |     | 1.2 |       | 1.9   |     | 2.6  | ns   |

### MAX 3000A Programmable Logic Device Family Data Sheet

| Table 1          | Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2)       Note (1) |            |     |             |     |     |     |     |    |  |
|------------------|----------------------------------------------------------------------------|------------|-----|-------------|-----|-----|-----|-----|----|--|
| Symbol           | Parameter                                                                  | Conditions |     | Speed Grade |     |     |     |     |    |  |
|                  |                                                                            |            | _   | -4 -7       |     |     | 10  |     |    |  |
|                  |                                                                            |            | Min | Max         | Min | Max | Min | Max |    |  |
| t <sub>PIA</sub> | PIA delay                                                                  | (2)        |     | 0.9         |     | 1.5 |     | 2.1 | ns |  |
| t <sub>LPA</sub> | Low-power adder                                                            | (5)        |     | 2.5         |     | 4.0 |     | 5.0 | ns |  |

## Table 18. EPM3064A External Timing Parameters Note (1)

| Symbol            | Parameter                                   | Conditions            |       |     | Speed | Grade |       |      | Unit |
|-------------------|---------------------------------------------|-----------------------|-------|-----|-------|-------|-------|------|------|
|                   |                                             |                       | _     | 4   | -     | 7     | -10   |      |      |
|                   |                                             |                       | Min   | Max | Min   | Max   | Min   | Max  |      |
| t <sub>PD1</sub>  | Input to non–registered<br>output           | C1 = 35 pF <i>(2)</i> |       | 4.5 |       | 7.5   |       | 10.0 | ns   |
| t <sub>PD2</sub>  | I/O input to non–registered output          | C1 = 35 pF <i>(2)</i> |       | 4.5 |       | 7.5   |       | 10.0 | ns   |
| t <sub>SU</sub>   | Global clock setup time                     | (2)                   | 2.8   |     | 4.7   |       | 6.2   |      | ns   |
| t <sub>H</sub>    | Global clock hold time                      | (2)                   | 0.0   |     | 0.0   |       | 0.0   |      | ns   |
| t <sub>CO1</sub>  | Global clock to output delay                | C1 = 35 pF            | 1.0   | 3.1 | 1.0   | 5.1   | 1.0   | 7.0  | ns   |
| t <sub>CH</sub>   | Global clock high time                      |                       | 2.0   |     | 3.0   |       | 4.0   |      | ns   |
| t <sub>CL</sub>   | Global clock low time                       |                       | 2.0   |     | 3.0   |       | 4.0   |      | ns   |
| t <sub>ASU</sub>  | Array clock setup time                      | (2)                   | 1.6   |     | 2.6   |       | 3.6   |      | ns   |
| t <sub>AH</sub>   | Array clock hold time                       | (2)                   | 0.3   |     | 0.4   |       | 0.6   |      | ns   |
| t <sub>ACO1</sub> | Array clock to output delay                 | C1 = 35 pF <i>(2)</i> | 1.0   | 4.3 | 1.0   | 7.2   | 1.0   | 9.6  | ns   |
| t <sub>ACH</sub>  | Array clock high time                       |                       | 2.0   |     | 3.0   |       | 4.0   |      | ns   |
| t <sub>ACL</sub>  | Array clock low time                        |                       | 2.0   |     | 3.0   |       | 4.0   |      | ns   |
| t <sub>CPPW</sub> | Minimum pulse width for<br>clear and preset | (3)                   | 2.0   |     | 3.0   |       | 4.0   |      | ns   |
| t <sub>CNT</sub>  | Minimum global clock<br>period              | (2)                   |       | 4.5 |       | 7.4   |       | 10.0 | ns   |
| f <sub>CNT</sub>  | Maximum internal global clock frequency     | (2), (4)              | 222.2 |     | 135.1 |       | 100.0 |      | MHz  |
| t <sub>ACNT</sub> | Minimum array clock period                  | (2)                   |       | 4.5 |       | 7.4   |       | 10.0 | ns   |
| f <sub>ACNT</sub> | Maximum internal array clock frequency      | (2), (4)              | 222.2 |     | 135.1 |       | 100.0 |      | MHz  |

| Table 20          | Table 20. EPM3128A External Timing Parameters     Note (1) |            |       |             |       |     |      |     |     |  |
|-------------------|------------------------------------------------------------|------------|-------|-------------|-------|-----|------|-----|-----|--|
| Symbol            | Parameter                                                  | Conditions |       | Speed Grade |       |     |      |     |     |  |
|                   |                                                            |            | -     | -5 -7 -10   |       |     |      |     |     |  |
|                   |                                                            |            | Min   | Max         | Min   | Max | Min  | Max |     |  |
| f <sub>acnt</sub> | Maximum internal<br>array clock frequency                  | (2), (4)   | 192.3 |             | 129.9 |     | 98.0 |     | MHz |  |

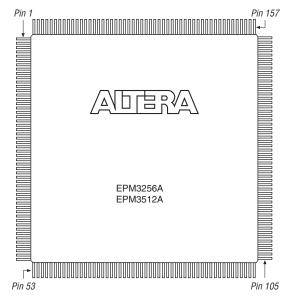
| Symbol            | Parameter                                                                                   | Conditions | Speed Grade |     |     |     |     |      | Unit |
|-------------------|---------------------------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|------|------|
|                   |                                                                                             |            | -5          |     | -7  |     | -10 |      |      |
|                   |                                                                                             |            | Min         | Max | Min | Max | Min | Max  |      |
| t <sub>IN</sub>   | Input pad and buffer delay                                                                  |            |             | 0.7 |     | 1.0 |     | 1.4  | ns   |
| t <sub>IO</sub>   | I/O input pad and buffer delay                                                              |            |             | 0.7 |     | 1.0 |     | 1.4  | ns   |
| t <sub>SEXP</sub> | Shared expander delay                                                                       |            |             | 2.0 |     | 2.9 |     | 3.8  | ns   |
| t <sub>PEXP</sub> | Parallel expander delay                                                                     |            |             | 0.4 |     | 0.7 |     | 0.9  | ns   |
| t <sub>LAD</sub>  | Logic array delay                                                                           |            |             | 1.6 |     | 2.4 |     | 3.1  | ns   |
| t <sub>LAC</sub>  | Logic control array delay                                                                   |            |             | 0.7 |     | 1.0 |     | 1.3  | ns   |
| t <sub>IOE</sub>  | Internal output enable delay                                                                |            |             | 0.0 |     | 0.0 |     | 0.0  | ns   |
| t <sub>OD1</sub>  | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$                        | C1 = 35 pF |             | 0.8 |     | 1.2 |     | 1.6  | ns   |
| t <sub>OD2</sub>  | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$                        | C1 = 35 pF |             | 1.3 |     | 1.7 |     | 2.1  | ns   |
| t <sub>OD3</sub>  | Output buffer and pad<br>delay, slow slew rate = on<br>$V_{CCIO} = 2.5 V \text{ or } 3.3 V$ | C1 = 35 pF |             | 5.8 |     | 6.2 |     | 6.6  | ns   |
| t <sub>ZX1</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 3.3 V$                   | C1 = 35 pF |             | 4.0 |     | 4.0 |     | 5.0  | ns   |
| t <sub>ZX2</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 2.5 V$                   | C1 = 35 pF |             | 4.5 |     | 4.5 |     | 5.5  | ns   |
| t <sub>ZX3</sub>  | Output buffer enable delay,<br>slow slew rate = on<br>$V_{CCIO} = 2.5 V \text{ or } 3.3 V$  | C1 = 35 pF |             | 9.0 |     | 9.0 |     | 10.0 | ns   |
| $t_{XZ}$          | Output buffer disable delay                                                                 | C1 = 5 pF  |             | 4.0 |     | 4.0 |     | 5.0  | ns   |

| Table 21          | Table 21. EPM3128A Internal Timing Parameters (Part 2 of 2)       Note (1) |            |             |     |     |     |     |     |    |
|-------------------|----------------------------------------------------------------------------|------------|-------------|-----|-----|-----|-----|-----|----|
| Symbol            | Parameter                                                                  | Conditions | Speed Grade |     |     |     |     |     |    |
|                   |                                                                            |            | -5          |     | -7  |     | -10 |     | 1  |
|                   |                                                                            |            | Min         | Max | Min | Max | Min | Max |    |
| t <sub>SU</sub>   | Register setup time                                                        |            | 1.4         |     | 2.1 |     | 2.9 |     | ns |
| t <sub>H</sub>    | Register hold time                                                         |            | 0.6         |     | 1.0 |     | 1.3 |     | ns |
| t <sub>RD</sub>   | Register delay                                                             |            |             | 0.8 |     | 1.2 |     | 1.6 | ns |
| t <sub>COMB</sub> | Combinatorial delay                                                        |            |             | 0.5 |     | 0.9 |     | 1.3 | ns |
| t <sub>IC</sub>   | Array clock delay                                                          |            |             | 1.2 |     | 1.7 |     | 2.2 | ns |
| t <sub>EN</sub>   | Register enable time                                                       |            |             | 0.7 |     | 1.0 |     | 1.3 | ns |
| t <sub>GLOB</sub> | Global control delay                                                       |            |             | 1.1 |     | 1.6 |     | 2.0 | ns |
| t <sub>PRE</sub>  | Register preset time                                                       |            |             | 1.4 |     | 2.0 |     | 2.7 | ns |
| t <sub>CLR</sub>  | Register clear time                                                        |            |             | 1.4 |     | 2.0 |     | 2.7 | ns |
| t <sub>PIA</sub>  | PIA delay                                                                  | (2)        |             | 1.4 |     | 2.0 |     | 2.6 | ns |
| t <sub>LPA</sub>  | Low-power adder                                                            | (5)        |             | 4.0 |     | 4.0 |     | 5.0 | ns |

| Table 22. EPM3256A External Timing Parameters       Note (1) |                                          |                       |     |      |     |     |    |  |
|--------------------------------------------------------------|------------------------------------------|-----------------------|-----|------|-----|-----|----|--|
| Symbol                                                       | Parameter                                | Conditions            |     | Unit |     |     |    |  |
|                                                              |                                          |                       | -7  |      | -10 |     |    |  |
|                                                              |                                          |                       | Min | Max  | Min | Max | 1  |  |
| t <sub>PD1</sub>                                             | Input to non-registered output           | C1 = 35 pF <i>(2)</i> |     | 7.5  |     | 10  | ns |  |
| t <sub>PD2</sub>                                             | I/O input to non–registered output       | C1 = 35 pF <i>(2)</i> |     | 7.5  |     | 10  | ns |  |
| t <sub>SU</sub>                                              | Global clock setup time                  | (2)                   | 5.2 |      | 6.9 |     | ns |  |
| t <sub>H</sub>                                               | Global clock hold time                   | (2)                   | 0.0 |      | 0.0 |     | ns |  |
| t <sub>CO1</sub>                                             | Global clock to output delay             | C1 = 35 pF            | 1.0 | 4.8  | 1.0 | 6.4 | ns |  |
| t <sub>CH</sub>                                              | Global clock high time                   |                       | 3.0 |      | 4.0 |     | ns |  |
| t <sub>CL</sub>                                              | Global clock low time                    |                       | 3.0 |      | 4.0 |     | ns |  |
| t <sub>ASU</sub>                                             | Array clock setup time                   | (2)                   | 2.7 |      | 3.6 |     | ns |  |
| t <sub>AH</sub>                                              | Array clock hold time                    | (2)                   | 0.3 |      | 0.5 |     | ns |  |
| t <sub>ACO1</sub>                                            | Array clock to output delay              | C1 = 35 pF <i>(2)</i> | 1.0 | 7.3  | 1.0 | 9.7 | ns |  |
| t <sub>ACH</sub>                                             | Array clock high time                    |                       | 3.0 |      | 4.0 |     | ns |  |
| t <sub>ACL</sub>                                             | Array clock low time                     |                       | 3.0 |      | 4.0 |     | ns |  |
| t <sub>CPPW</sub>                                            | Minimum pulse width for clear and preset | (3)                   | 3.0 |      | 4.0 |     | ns |  |

-

| Symbol            | Parameter                                                                          | Conditions |     | Unit |     |      |    |
|-------------------|------------------------------------------------------------------------------------|------------|-----|------|-----|------|----|
|                   |                                                                                    |            | -7  |      | -10 |      |    |
|                   |                                                                                    |            | Min | Max  | Min | Max  |    |
| t <sub>OD3</sub>  | Output buffer and pad delay,<br>slow slew rate = on<br>$V_{CCIO} = 2.5$ V or 3.3 V | C1 = 35 pF |     | 6.0  |     | 6.5  | ns |
| t <sub>ZX1</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>$V_{CCIO} = 3.3 V$          | C1 = 35 pF |     | 4.0  |     | 5.0  | ns |
| t <sub>ZX2</sub>  | Output buffer enable delay,<br>slow slew rate = off<br>V <sub>CCIO</sub> = 2.5 V   | C1 = 35 pF |     | 4.5  |     | 5.5  | ns |
| t <sub>ZX3</sub>  | Output buffer enable delay,<br>slow slew rate = on<br>$V_{CCIO} = 3.3 V$           | C1 = 35 pF |     | 9.0  |     | 10.0 | ns |
| $t_{XZ}$          | Output buffer disable delay                                                        | C1 = 5 pF  |     | 4.0  |     | 5.0  | ns |
| t <sub>SU</sub>   | Register setup time                                                                |            | 2.1 |      | 3.0 |      | ns |
| t <sub>H</sub>    | Register hold time                                                                 |            | 0.6 |      | 0.8 |      | ns |
| t <sub>FSU</sub>  | Register setup time of fast input                                                  |            | 1.6 |      | 1.6 |      | ns |
| t <sub>FH</sub>   | Register hold time of fast input                                                   |            | 1.4 |      | 1.4 |      | ns |
| t <sub>RD</sub>   | Register delay                                                                     |            |     | 1.3  |     | 1.7  | ns |
| t <sub>COMB</sub> | Combinatorial delay                                                                |            |     | 0.6  |     | 0.8  | ns |
| t <sub>IC</sub>   | Array clock delay                                                                  |            |     | 1.8  |     | 2.3  | ns |
| t <sub>EN</sub>   | Register enable time                                                               |            |     | 1.0  |     | 1.3  | ns |
| t <sub>GLOB</sub> | Global control delay                                                               |            |     | 1.7  |     | 2.2  | ns |
| t <sub>PRE</sub>  | Register preset time                                                               |            |     | 1.0  |     | 1.4  | ns |
| t <sub>CLR</sub>  | Register clear time                                                                |            |     | 1.0  |     | 1.4  | ns |
| t <sub>PIA</sub>  | PIA delay                                                                          | (2)        |     | 3.0  |     | 4.0  | ns |
| t <sub>LPA</sub>  | Low-power adder                                                                    | (5)        |     | 4.5  |     | 5.0  | ns |


#### Notes to tables:

- These values are specified under the recommended operating conditions, as shown in Table 13 on page 23. See Figure 11 on page 27 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The  $t_{LPA}$  parameter must be added to this minimum width if the clear or reset signal incorporates the  $t_{LAD}$  parameter into the signal path.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(5) The  $t_{LPA}$  parameter must be added to the  $t_{LAD}$ ,  $t_{LAC}$ ,  $t_{IC}$ ,  $t_{EN}$ ,  $t_{SEXP}$ ,  $t_{ACL}$ , and  $t_{CPPW}$  parameters for macrocells running in low–power mode.

### Figure 17. 208–Pin PQFP Package Pin–Out Diagram

Package outline not drawn to scale.



### Version 3.3

The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.3:

- Updated Tables 3, 13, and 26.
- Added Tables 4 through 6.
- Updated Figures 12 and 13.
- Added "Programming Sequence" on page 14 and "Programming Times" on page 14

## Version 3.2

The following change were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.2:

■ Updated the EPM3512 I<sub>CC</sub> versus frequency graph in Figure 13.

## Version 3.1

The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.1:

- Updated timing information in Table 1 for the EPM3256A device.
- Updated *Note (10)* of Table 15.

## Version 3.0

The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.0:

- Added EPM3512A device.
- Updated Tables 2 and 3.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit\_reg@altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no products of the area of any in the neuron of any integration and pending and the respective of the respective of the assumes no products of the area of any in the neuron of any integration and services at any time without notice. Altera assumes no products are to the pending the neuron of any integration and pending a

responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services

