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MAX 3000A Programmable Logic Device Family Data Sheet
MAX 3000A devices contain 32 to 512 macrocells, combined into groups 
of 16 macrocells called logic array blocks (LABs). Each macrocell has a 
programmable–AND/fixed–OR array and a configurable register with 
independently programmable clock, clock enable, clear, and preset 
functions. To build complex logic functions, each macrocell can be 
supplemented with shareable expander and high–speed parallel 
expander product terms to provide up to 32 product terms per macrocell.

MAX 3000A devices provide programmable speed/power optimization. 
Speed–critical portions of a design can run at high speed/full power, 
while the remaining portions run at reduced speed/low power. This 
speed/power optimization feature enables the designer to configure one 
or more macrocells to operate at 50% or lower power while adding only a 
nominal timing delay. MAX 3000A devices also provide an option that 
reduces the slew rate of the output buffers, minimizing noise transients 
when non–speed–critical signals are switching. The output drivers of all 
MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are 
2.5–V, 3.3–V, and 5.0-V tolerant, allowing MAX 3000A devices to be used 
in mixed–voltage systems.

MAX 3000A devices are supported by Altera development systems, 
which are integrated packages that offer schematic, text—including 
VHDL, Verilog HDL, and the Altera Hardware Description Language 
(AHDL)—and waveform design entry, compilation and logic synthesis, 
simulation and timing analysis, and device programming. The software 
provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other 
interfaces for additional design entry and simulation support from other 
industry–standard PC– and UNIX–workstation–based EDA tools. The 
software runs on Windows–based PCs, as well as Sun SPARCstation, and 
HP 9000 Series 700/800 workstations.

f For more information on development tools, see the MAX+PLUS II 
Programmable Logic Development System & Software Data Sheet and the 
Quartus Programmable Logic Development System & Software Data Sheet.

Functional 
Description

The MAX 3000A architecture includes the following elements: 

■ Logic array blocks (LABs)
■ Macrocells
■ Expander product terms (shareable and parallel)
■ Programmable interconnect array (PIA)
■ I/O control blocks

The MAX 3000A architecture includes four dedicated inputs that can be 
used as general–purpose inputs or as high–speed, global control signals 
(clock, clear, and two output enable signals) for each macrocell and I/O 
pin. Figure 1 shows the architecture of MAX 3000A devices.
4 Altera Corporation
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MAX 3000A Programmable Logic Device Family Data Sheet
Figure 1. MAX 3000A Device Block Diagram

Note:
(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have 

10 output enables.

Logic Array Blocks

The MAX 3000A device architecture is based on the linking of 
high–performance LABs. LABs consist of 16–macrocell arrays, as shown 
in Figure 1. Multiple LABs are linked together via the PIA, a global bus 
that is fed by all dedicated input pins, I/O pins, and macrocells. 

Each LAB is fed by the following signals:

■ 36 signals from the PIA that are used for general logic inputs
■ Global controls that are used for secondary register functions
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Macrocells

MAX 3000A macrocells can be individually configured for either 
sequential or combinatorial logic operation. Macrocells consist of three 
functional blocks: logic array, product–term select matrix, and 
programmable register. Figure 2 shows a MAX 3000A macrocell.

Figure 2. MAX 3000A Macrocell

Combinatorial logic is implemented in the logic array, which provides 
five product terms per macrocell. The product–term select matrix 
allocates these product terms for use as either primary logic inputs (to the 
OR and XOR gates) to implement combinatorial functions, or as secondary 
inputs to the macrocell’s register preset, clock, and clock enable control 
functions. 

Two kinds of expander product terms (“expanders”) are available to 
supplement macrocell logic resources:

■ Shareable expanders, which are inverted product terms that are fed 
back into the logic array

■ Parallel expanders, which are product terms borrowed from adjacent 
macrocells

The Altera development system automatically optimizes product–term 
allocation according to the logic requirements of the design.
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For registered functions, each macrocell flipflop can be individually 
programmed to implement D, T, JK, or SR operation with programmable 
clock control. The flipflop can be bypassed for combinatorial operation. 
During design entry, the designer specifies the desired flipflop type; the 
Altera development system software then selects the most efficient 
flipflop operation for each registered function to optimize resource 
utilization.

Each programmable register can be clocked in three different modes:

■ Global clock signal mode, which achieves the fastest clock–to–output 
performance.

■ Global clock signal enabled by an active–high clock enable. A clock 
enable is generated by a product term. This mode provides an enable 
on each flipflop while still achieving the fast clock–to–output 
performance of the global clock.

■ Array clock implemented with a product term. In this mode, the 
flipflop can be clocked by signals from buried macrocells or I/O pins.

Two global clock signals are available in MAX 3000A devices. As shown 
in Figure 1, these global clock signals can be the true or the complement of 
either of the two global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As 
shown in Figure 2, the product–term select matrix allocates product terms 
to control these operations. Although the product–term–driven preset 
and clear from the register are active high, active–low control can be 
obtained by inverting the signal within the logic array. In addition, each 
register clear function can be individually driven by the active–low 
dedicated global clear pin (GCLRn).

All registers are cleared upon power-up. By default, all registered outputs 
drive low when the device is powered up. You can set the registered 
outputs to drive high upon power-up through the Quartus® II software. 
Quartus II software uses the NOT Gate Push-Back method, which uses an 
additional macrocell to set the output high. To set this in the Quartus II 
software, go to the Assignment Editor and set the Power-Up Level 
assignment for the register to High. 
Altera Corporation  7
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Figure 4. MAX 3000A Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a 
programmable path that connects any signal source to any destination on 
the device. All MAX 3000A dedicated inputs, I/O pins, and macrocell 
outputs feed the PIA, which makes the signals available throughout the 
entire device. Only the signals required by each LAB are actually routed 
from the PIA into the LAB. Figure 5 shows how the PIA signals are routed 
into the LAB. An EEPROM cell controls one input to a two-input AND gate, 
which selects a PIA signal to drive into the LAB.
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In–System 
Programma-
bility

MAX 3000A devices can be programmed in–system via an industry–
standard four–pin IEEE Std. 1149.1-1990 (JTAG) interface. In-system 
programmability (ISP) offers quick, efficient iterations during design 
development and debugging cycles. The MAX 3000A architecture 
internally generates the high programming voltages required to program 
its EEPROM cells, allowing in–system programming with only a single 
3.3–V power supply. During in–system programming, the I/O pins are 
tri–stated and weakly pulled–up to eliminate board conflicts. The pull–up 
value is nominally 50 kΩ.

MAX 3000A devices have an enhanced ISP algorithm for faster 
programming. These devices also offer an ISP_Done bit that ensures safe 
operation when in–system programming is interrupted. This ISP_Done 
bit, which is the last bit programmed, prevents all I/O pins from driving 
until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted 
on a printed circuit board (PCB) with standard pick–and–place equipment 
before they are programmed. MAX 3000A devices can be programmed by 
downloading the information via in–circuit testers, embedded processors, 
the MasterBlaster communications cable, the ByteBlasterMV parallel port 
download cable, and the BitBlaster serial download cable. Programming 
the devices after they are placed on the board eliminates lead damage on 
high–pin–count packages (e.g., QFP packages) due to device handling. 
MAX 3000A devices can be reprogrammed after a system has already 
shipped to the field. For example, product upgrades can be performed in 
the field via software or modem. 

The Jam STAPL programming and test language can be used to program 
MAX 3000A devices with in–circuit testers, PCs, or embedded processors.

f For more information on using the Jam STAPL programming and test 
language, see Application Note 88 (Using the Jam Language for ISP & ICR via 
an Embedded Processor), Application Note 122 (Using Jam STAPL for ISP & 
ICR via an Embedded Processor) and AN 111 (Embedded Programming Using 
the 8051 and Jam Byte-Code).

The ISP circuitry in MAX 3000A devices is compliant with the IEEE Std. 
1532 specification. The IEEE Std. 1532 is a standard developed to allow 
concurrent ISP between multiple PLD vendors.
Altera Corporation  13
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By combining the pulse and shift times for each of the programming 
stages, the program or verify time can be derived as a function of the TCK 
frequency, the number of devices, and specific target device(s). Because 
different ISP-capable devices have a different number of EEPROM cells, 
both the total fixed and total variable times are unique for a single device. 

Programming a Single MAX 3000A Device

The time required to program a single MAX 3000A device in-system can 
be calculated from the following formula:

where: tPROG = Programming time
tPPULSE = Sum of the fixed times to erase, program, and 

verify the EEPROM cells
CyclePTCK = Number of TCK cycles to program a device
fTCK = TCK frequency

The ISP times for a stand-alone verification of a single MAX 3000A device 
can be calculated from the following formula:

where: tVER = Verify time
tVPULSE = Sum of the fixed times to verify the EEPROM cells
CycleVTCK = Number of TCK cycles to verify a device

tPROG tPPULSE

CyclePTCK
fTCK

--------------------------------+=

tVER tVPULSE

CycleVTCK
fTCK

--------------------------------+=
Altera Corporation  15
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The programming times described in Tables 4 through 6 are associated 
with the worst-case method using the enhanced ISP algorithm.

Tables 5 and 6 show the in-system programming and stand alone 
verification times for several common test clock frequencies.  

Table 4. MAX 3000A tPULSE & CycleTCK Values

Device Programming Stand-Alone Verification

tPPULSE (s) CyclePTCK tVPULSE (s) CycleVTCK

EPM3032A 2.00 55,000 0.002 18,000

EPM3064A 2.00 105,000 0.002 35,000

EPM3128A 2.00 205,000 0.002 68,000

EPM3256A 2.00 447,000 0.002 149,000

EPM3512A 2.00 890,000 0.002 297,000

Table 5. MAX 3000A In-System Programming Times for Different Test Clock Frequencies

Device fTCK Units

10 MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz

EPM3032A 2.01 2.01 2.03 2.06 2.11 2.28 2.55 3.10 s

EPM3064A 2.01 2.02 2.05 2.11 2.21 2.53 3.05 4.10 s

EPM3128A 2.02 2.04 2.10 2.21 2.41 3.03 4.05 6.10 s

EPM3256A 2.05 2.09 2.23 2.45 2.90 4.24 6.47 10.94 s

EPM3512A 2.09 2.18 2.45 2.89 3.78 6.45 10.90 19.80 s

Table 6. MAX 3000A Stand-Alone Verification Times for Different Test Clock Frequencies

Device fTCK Units

10 MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz

EPM3032A 0.00 0.01 0.01 0.02 0.04 0.09 0.18 0.36 s

EPM3064A 0.01 0.01 0.02 0.04 0.07 0.18 0.35 0.70 s

EPM3128A 0.01 0.02 0.04 0.07 0.14 0.34 0.68 1.36 s

EPM3256A 0.02 0.03 0.08 0.15 0.30 0.75 1.49 2.98 s

EPM3512A 0.03 0.06 0.15 0.30 0.60 1.49 2.97 5.94 s
16 Altera Corporation
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Programmable 
Speed/Power 
Control

MAX 3000A devices offer a power–saving mode that supports low-power 
operation across user–defined signal paths or the entire device. This 
feature allows total power dissipation to be reduced by 50% or more 
because most logic applications require only a small fraction of all gates to 
operate at maximum frequency.

The designer can program each individual macrocell in a MAX 3000A 
device for either high–speed or low–power operation. As a result, 
speed-critical paths in the design can run at high speed, while the 
remaining paths can operate at reduced power. Macrocells that run at low 
power incur a nominal timing delay adder (tLPA) for the tLAD, tLAC, tIC, 
tACL, tEN, tCPPW and tSEXP parameters. 

Output 
Configuration

MAX 3000A device outputs can be programmed to meet a variety of 
system–level requirements.

MultiVolt I/O Interface

The MAX 3000A device architecture supports the MultiVolt I/O interface 
feature, which allows MAX 3000A devices to connect to systems with 
differing supply voltages. MAX 3000A devices in all packages can be set 
for 2.5–V, 3.3–V, or 5.0–V I/O pin operation. These devices have one set of 
VCC pins for internal operation and input buffers (VCCINT), and another 
set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3–V or 2.5–V power supply, 
depending on the output requirements. When the VCCIO pins are 
connected to a 2.5–V power supply, the output levels are compatible with 
2.5–V systems. When the VCCIO pins are connected to a 3.3–V power 
supply, the output high is at 3.3 V and is therefore compatible with 3.3-V 
or 5.0–V systems. Devices operating with VCCIO levels lower than 3.0 V 
incur a nominally greater timing delay of tOD2 instead of tOD1. Inputs can 
always be driven by 2.5–V, 3.3–V, or 5.0–V signals. 

Table 11 summarizes the MAX 3000A MultiVolt I/O support.

Note:
(1) When VCCIO is 3.3 V, a MAX 3000A device can drive a 2.5–V device that has 3.3–V 

tolerant inputs.

Table 11. MAX 3000A MultiVolt I/O Support

VCCIO Voltage Input Signal (V) Output Signal (V)

2.5 3.3 5.0 2.5 3.3 5.0

2.5 v v v v

3.3 v v v v v v
20 Altera Corporation
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Notes to tables:
(1) See the Operating Requirements for Altera Devices Data Sheet. 
(2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 

5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
(3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before VCCINT and VCCIO are 

powered.
(4) These values are specified under the recommended operating conditions, as shown in Table 13 on page 23.
(5) The parameter is measured with 50% of the outputs each sourcing the specified current. The IOH parameter refers 

to high–level TTL or CMOS output current.
(6) The parameter is measured with 50% of the outputs each sinking the specified current. The IOL parameter refers to 

low–level TTL, PCI, or CMOS output current.
(7) This value is specified during normal device operation. During power-up, the maximum leakage current is 

±300 μA.
(8) This pull–up exists while devices are programmed in–system and in unprogrammed devices during power–up.
(9) Capacitance is measured at 25°  C and is sample–tested only. The OE1 pin (high–voltage pin during programming) 

has a maximum capacitance of 20 pF.
(10) The POR time for all MAX 3000A devices does not exceed 100 μs. The sufficient VCCINT voltage level for POR is 

3.0 V. The device is fully initialized within the POR time after VCCINT reaches the sufficient POR voltage level.
(11) These devices support in-system programming for –40° to 100° C. For in-system programming support between –40° 

and 0° C, contact Altera Applications.

Figure 9 shows the typical output drive characteristics of MAX 3000A 
devices. 

Table 15. MAX 3000A Device Capacitance Note (9)

Symbol Parameter Conditions Min Max Unit
CIN Input pin capacitance VIN = 0 V, f = 1.0 MHz 8 pF

CI/O I/O pin capacitance VOUT = 0 V, f = 1.0 MHz 8 pF

http://www.altera.com/literature/ds/dsoprq.pdf
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Figure 9. Output Drive Characteristics of MAX 3000A Devices

Power 
Sequencing & 
Hot–Socketing

Because MAX 3000A devices can be used in a mixed–voltage 
environment, they have been designed specifically to tolerate any possible 
power–up sequence. The VCCIO and VCCINT power planes can be 
powered in any order.

Signals can be driven into MAX 3000A devices before and during 
power-up without damaging the device. In addition, MAX 3000A devices 
do not drive out during power-up. Once operating conditions are 
reached, MAX 3000A devices operate as specified by the user.
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Timing Model MAX 3000A device timing can be analyzed with the Altera software, with 
a variety of popular industry–standard EDA simulators and timing 
analyzers, or with the timing model shown in Figure 10. MAX 3000A 
devices have predictable internal delays that enable the designer to 
determine the worst–case timing of any design. The software provides 
timing simulation, point–to–point delay prediction, and detailed timing 
analysis for device–wide performance evaluation. 

Figure 10. MAX 3000A Timing Model

The timing characteristics of any signal path can be derived from the 
timing model and parameters of a particular device. External timing 
parameters, which represent pin–to–pin timing delays, can be calculated 
as the sum of internal parameters. Figure 11 shows the timing relationship 
between internal and external delay parameters. 
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fACNT Maximum internal 
array clock frequency

(2), (4) 192.3 129.9 98.0 MHz

Table 21. EPM3128A Internal Timing Parameters  (Part 1 of 2) Note (1)

Symbol Parameter Conditions Speed Grade Unit

–5 –7 –10

Min Max Min Max Min Max

tIN Input pad and buffer delay 0.7 1.0 1.4 ns

tIO I/O input pad and buffer 
delay

0.7 1.0 1.4 ns

tSEXP Shared expander delay 2.0 2.9 3.8 ns

tPEXP Parallel expander delay 0.4 0.7 0.9 ns

tLAD Logic array delay 1.6 2.4 3.1 ns

tLAC Logic control array delay 0.7 1.0 1.3 ns

tIOE Internal output enable delay 0.0 0.0 0.0 ns

tOD1 Output buffer and pad 
delay, slow slew rate = off
VCCIO = 3.3 V

C1 = 35 pF 0.8 1.2 1.6 ns

tOD2 Output buffer and pad 
delay, slow slew rate = off
VCCIO = 2.5 V

C1 = 35 pF 1.3 1.7 2.1 ns

tOD3 Output buffer and pad 
delay, slow slew rate = on 
VCCIO = 2.5 V or 3.3 V

C1 = 35 pF 5.8 6.2 6.6 ns

tZX1 Output buffer enable delay, 
slow slew rate = off 
VCCIO = 3.3 V

C1 = 35 pF 4.0 4.0 5.0 ns

tZX2 Output buffer enable delay, 
slow slew rate = off 
VCCIO = 2.5 V

C1 = 35 pF 4.5 4.5 5.5 ns

tZX3 Output buffer enable delay, 
slow slew rate = on 
VCCIO = 2.5 V or 3.3 V

C1 = 35 pF 9.0 9.0 10.0 ns

tXZ Output buffer disable delay C1 = 5 pF 4.0 4.0 5.0 ns

Table 20. EPM3128A External Timing Parameters Note (1)

Symbol Parameter Conditions Speed Grade Unit

–5 –7 –10

Min Max Min Max Min Max
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tZX3 Output buffer enable delay, slow 
slew rate = on 
VCCIO = 2.5 V or 3.3 V

C1 = 35 pF 9.0 10.0 ns

tXZ Output buffer disable delay C1 = 5 pF 4.0 5.0 ns

tSU Register setup time 2.1 2.9 ns

tH Register hold time 0.9 1.2 ns

tRD Register delay 1.2 1.6 ns

tCOMB Combinatorial delay 0.8 1.2 ns

tIC Array clock delay 1.6 2.1 ns

tEN Register enable time 1.0 1.3 ns

tGLOB Global control delay 1.5 2.0 ns

tPRE Register preset time 2.3 3.0 ns

tCLR Register clear time 2.3 3.0 ns

tPIA PIA delay (2) 2.4 3.2 ns

tLPA Low–power adder (5) 4.0 5.0 ns

Table 24. EPM3512A External Timing Parameters Note (1)

Symbol Parameter Conditions Speed Grade Unit

-7 -10

Min Max Min Max

tPD1 Input to non-registered output C1 = 35 pF (2) 7.5 10.0 ns

tPD2 I/O input to non-registered 
output

C1 = 35 pF (2) 7.5 10.0 ns

tSU Global clock setup time (2) 5.6 7.6 ns

tH Global clock hold time (2) 0.0 0.0 ns

tFSU Global clock setup time of fast 
input

3.0 3.0 ns

tFH Global clock hold time of fast 
input

0.0 0.0 ns

tCO1 Global clock to output delay C1 = 35 pF 1.0 4.7 1.0 6.3 ns

tCH Global clock high time 3.0 4.0 ns

tCL Global clock low time 3.0 4.0 ns

tASU Array clock setup time (2) 2.5 3.5 ns

Table 23. EPM3256A Internal Timing Parameters  (Part 2 of 2) Note (1)

Symbol Parameter Conditions Speed Grade Unit

–7 –10

Min Max Min Max
36 Altera Corporation
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Power 
Consumption

Supply power (P) versus frequency (fMAX, in MHz) for MAX 3000A 
devices is calculated with the following equation:

P = PINT + PIO = ICCINT ×  VCC + PIO

The PIO value, which depends on the device output load characteristics 
and switching frequency, can be calculated using the guidelines given in 
Application Note 74 (Evaluating Power for Altera Devices). 

The ICCINT value depends on the switching frequency and the application 
logic. The ICCINT value is calculated with the following equation:

ICCINT = 

(A ×  MCTON) + [B ×  (MCDEV – MCTON)] + (C ×  MCUSED ×  fMAX ×  togLC)

The parameters in the ICCINT equation are:

MCTON = Number of macrocells with the Turbo BitTM option turned 
on, as reported in the Quartus II or MAX+PLUS II Report
File (.rpt)

MCDEV = Number of macrocells in the device
MCUSED = Total number of macrocells in the design, as reported in 

the RPT File
fMAX = Highest clock frequency to the device
togLC = Average percentage of logic cells toggling at each clock 

(typically 12.5%)
A, B, C = Constants (shown in Table 26)

The ICCINT calculation provides an ICC estimate based on typical 
conditions using a pattern of a 16–bit, loadable, enabled, up/down 
counter in each LAB with no output load. Actual ICC should be verified 
during operation because this measurement is sensitive to the actual 
pattern in the device and the environmental operating conditions. 

Figures 12 and 13 show the typical supply current versus frequency for 
MAX 3000A devices.

Table 26. MAX 3000A ICC Equation Constants

Device A B C

EPM3032A 0.71 0.30 0.014

EPM3064A 0.71 0.30 0.014

EPM3128A 0.71 0.30 0.014

EPM3256A 0.71 0.30 0.014

EPM3512A 0.71 0.30 0.014
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Figure 12. ICC vs. Frequency for MAX 3000A Devices
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Figure 13. ICC vs. Frequency for MAX 3000A Devices
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Figure 15. 100–Pin TQFP Package Pin–Out Diagram

Package outline not drawn to scale.

Figure 16. 144–Pin TQFP Package Pin–Out Diagram

Package outline not drawn to scale.
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Figure 17. 208–Pin PQFP Package Pin–Out Diagram

Package outline not drawn to scale.
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Figure 18. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Revision 
History

The information contained in the MAX 3000A Programmable Logic Device 
Data Sheet version 3.5 supersedes information published in previous 
versions. The following changes were made in the MAX 3000A 
Programmable Logic Device Data Sheet version 3.5:

Version 3.5

The following changes were made in the MAX 3000A Programmable Logic 
Device Data Sheet version 3.5:

■ New paragraph added before “Expander Product Terms”.

Version 3.4

The following changes were made in the MAX 3000A Programmable Logic 
Device Data Sheet version 3.4:

■ Updated Table 1.
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