

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	8
Number of Macrocells	128
Number of Gates	2500
Number of I/O	96
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm3128atc144-5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- PCI compatible
- Bus-friendly architecture including programmable slew-rate control
- Open–drain output option
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power–saving mode for a power reduction of over 50% in each macrocell
- Configurable expander product–term distribution, allowing up to 32 product terms per macrocell
- Programmable security bit for protection of proprietary designs
- Enhanced architectural features, including:
 - 6 or 10 pin– or logic–driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Programmable output slew–rate control
- Software design support and automatic place—and—route provided by Altera's development systems for Windows—based PCs and Sun SPARCstations, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from third–party manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with the Altera master programming unit (MPU), MasterBlasterTM communications cable, ByteBlasterMVTM parallel port download cable, BitBlasterTM serial download cable as well as programming hardware from third–party manufacturers and any in–circuit tester that supports JamTM Standard Test and Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), or Serial Vector Format Files (.svf)

General Description

MAX 3000A devices are low–cost, high–performance devices based on the Altera MAX architecture. Fabricated with advanced CMOS technology, the EEPROM–based MAX 3000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices in the -4, -5, -6, -7, and -10 speed grades are compatible with the timing requirements of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

Table 2. MAX 3000A Speed Grades									
Device		Speed Grade							
	-4	-5	-6	-7	-10				
EPM3032A	✓			✓	✓				
EPM3064A	✓			✓	✓				
EPM3128A		✓		✓	✓				
EPM3256A				✓	✓				
EPM3512A				✓	✓				

The MAX 3000A architecture supports 100% transistor-to-transistor logic (TTL) emulation and high–density small-scale integration (SSI), medium-scale integration (MSI), and large-scale integration (LSI) logic functions. The MAX 3000A architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 3000A devices are available in a wide range of packages, including PLCC, PQFP, and TQFP packages. See Table 3.

Table 3. MAX	3000A Max	Note (1))			
Device	44-Pin PLCC	144-Pin TQFP	208-Pin PQFP	256-Pin FineLine BGA		
EPM3032A	34	34				
EPM3064A	34	34	66			
EPM3128A			80	96		98
EPM3256A				116	158	161
EPM3512A					172	208

Note:

(1) When the IEEE Std. 1149.1 (JTAG) interface is used for in–system programming or boundary–scan testing, four I/O pins become JTAG pins.

MAX 3000A devices use CMOS EEPROM cells to implement logic functions. The user–configurable MAX 3000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debugging cycles, and can be programmed and erased up to 100 times.

MAX 3000A devices contain 32 to 512 macrocells, combined into groups of 16 macrocells called logic array blocks (LABs). Each macrocell has a programmable—AND/fixed—OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with shareable expander and high—speed parallel expander product terms to provide up to 32 product terms per macrocell.

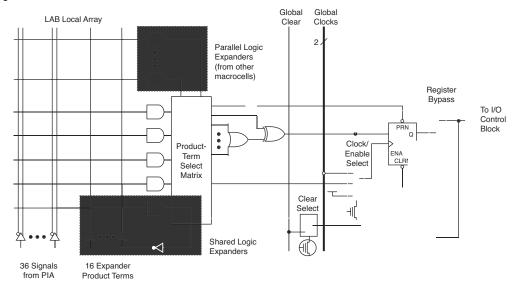
MAX 3000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 3000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5–V, 3.3–V, and 5.0-V tolerant, allowing MAX 3000A devices to be used in mixed-voltage systems.

MAX 3000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry–standard PC– and UNIX–workstation–based EDA tools. The software runs on Windows–based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

The MAX 3000A architecture includes the following elements:


- Logic array blocks (LABs)
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array (PIA)
- I/O control blocks

The MAX 3000A architecture includes four dedicated inputs that can be used as general–purpose inputs or as high–speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 3000A devices.

Macrocells

MAX 3000A macrocells can be individually configured for either sequential or combinatorial logic operation. Macrocells consist of three functional blocks: logic array, product–term select matrix, and programmable register. Figure 2 shows a MAX 3000A macrocell.

Figure 2. MAX 3000A Macrocell

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product–term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product–term allocation according to the logic requirements of the design.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development system software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:

- Global clock signal mode, which achieves the fastest clock–to–output performance.
- Global clock signal enabled by an active—high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock—to—output performance of the global clock.
- Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

Two global clock signals are available in MAX 3000A devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the two global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product–term select matrix allocates product terms to control these operations. Although the product–term–driven preset and clear from the register are active high, active–low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active–low dedicated global clear pin (GCLRn).

All registers are cleared upon power-up. By default, all registered outputs drive low when the device is powered up. You can set the registered outputs to drive high upon power-up through the Quartus[®] II software. Quartus II software uses the NOT Gate Push-Back method, which uses an additional macrocell to set the output high. To set this in the Quartus II software, go to the Assignment Editor and set the **Power-Up Level** assignment for the register to **High**.

Figure 4. MAX 3000A Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 3000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 3000A Device

The time required to program a single MAX 3000A device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$

where: $t_{PROG} = Programming time$ $t_{PPULSE} = Sum of the fixed times to erase, program, and$

verify the EEPROM cells

 $Cycle_{PTCK}$ = Number of TCK cycles to program a device

= TCK frequency

The ISP times for a stand-alone verification of a single MAX 3000A device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$

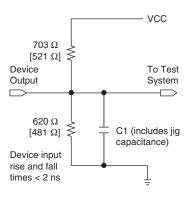
where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

The instruction register length of MAX 3000A devices is 10 bits. The IDCODE and USERCODE register length is 32 bits. Tables 8 and 9 show the boundary–scan register length and device IDCODE information for MAX 3000A devices.

Table 8. MAX 3000A Boundary–Scan Register Length						
Device	Boundary–Scan Register Length					
EPM3032A	96					
EPM3064A	192					
EPM3128A	288					
EPM3256A	480					
EPM3512A	624					

Table 9. 32-Bit MAX 3000A Device IDCODE ValueNote (1)										
Device		IDCODE (32 bits)								
	Version (4 Bits)	(10 = 110)								
EPM3032A	0001	0111 0000 0011 0010	00001101110	1						
EPM3064A	0001	0111 0000 0110 0100	00001101110	1						
EPM3128A	0001	0111 0001 0010 1000	00001101110	1						
EPM3256A	0001	0111 0010 0101 0110	00001101110	1						
EPM3512A	0001	0111 0101 0001 0010	00001101110	1						

Notes:


- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See Application Note 39 (IEEE 1149.1 (JTAG) Boundary–Scan Testing in Altera Devices) for more information on JTAG BST.

Figure 8. MAX 3000A AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fastground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V devices or outputs.

Operating Conditions

Tables 12 through 15 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for MAX 3000A devices.

Table 12. MAX 3000A Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V				
VI	DC input voltage		-2.0	5.75	V				
I _{OUT}	DC output current, per pin		-25	25	mA				
T _{STG}	Storage temperature	No bias	-65	150	° C				
T _A	Ambient temperature	Under bias	-65	135	° C				
T_{J}	Junction temperature	PQFP and TQFP packages, under bias		135	° C				

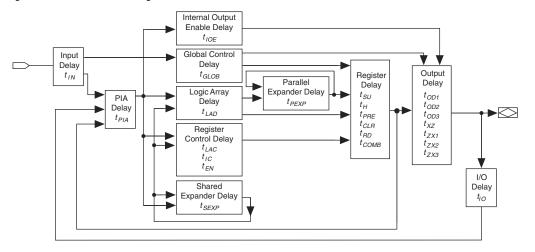

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(10)	3.0	3.6	V
V _{CCIO}	Supply voltage for output drivers, 3.3–V operation		3.0	3.6	V
	Supply voltage for output drivers, 2.5–V operation		2.3	2.7	V
V _{CCISP}	Supply voltage during ISP		3.0	3.6	V
V _I	Input voltage	(3)	-0.5	5.75	V
V _O	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	Commercial range	0	70	° C
		Industrial range	-40	85	° C
T _J	Junction temperature	Commercial range	0	90	° C
		Industrial range (11)	-40	105	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 1	Table 14. MAX 3000A Device DC Operating Conditions Note (4)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{IH}	High-level input voltage		1.7	5.75	V					
V _{IL}	Low-level input voltage		-0.5	0.8	V					
V _{OH}	3.3–V high–level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (5)$	2.4		V					
	3.3–V high–level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (5)$	V _{CCIO} - 0.2		V					
	2.5-V high-level output voltage	$I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V (5)$	2.1		٧					
		$I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (5)$	2.0		V					
		$I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (5)$	1.7		٧					
V_{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC, V _{CCIO} = 3.00 V <i>(6)</i>		0.4	V					
	3.3–V low–level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (6)$		0.2	V					
	2.5-V low-level output voltage	I _{OL} = 100 μA DC, V _{CCIO} = 2.30 V <i>(6)</i>		0.2	V					
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (6)		0.4	V					
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (6)		0.7	٧					
II	Input leakage current	V _I = -0.5 to 5.5 V (7)	-10	10	μА					
I _{OZ}	Tri-state output off-state current	V _I = -0.5 to 5.5 V (7)	-10	10	μА					
R _{ISP}	Value of I/O pin pull–up resistor when programming in–system or during power–up	V _{CCIO} = 2.3 to 3.6 V (8)	20	74	kΩ					

Timing Model

MAX 3000A device timing can be analyzed with the Altera software, with a variety of popular industry–standard EDA simulators and timing analyzers, or with the timing model shown in Figure 10. MAX 3000A devices have predictable internal delays that enable the designer to determine the worst–case timing of any design. The software provides timing simulation, point–to–point delay prediction, and detailed timing analysis for device–wide performance evaluation.

Figure 10. MAX 3000A Timing Model

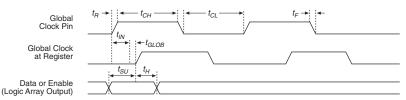
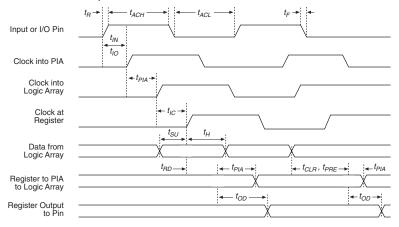

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin–to–pin timing delays, can be calculated as the sum of internal parameters. Figure 11 shows the timing relationship between internal and external delay parameters.

Figure 11. MAX 3000A Switching Waveforms


 t_R & t_F < 2 ns. Inputs are driven at 3 V for a logic high and 0 V for a logic low. All timing characteristics are measured at 1.5 V.

Global Clock Mode

Array Clock Mode

Table 17	Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2) Note (1)								
Symbol Parameter Conditions Speed Grade Unit									
			_	-4		-7		-10	
			Min	Max	Min	Max	Min	Max	
t _{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns
t_{LPA}	Low-power adder	(5)		2.5		4.0		5.0	ns

Table 18	3. EPM3064A External Timin	g Parameters	Note (1)					
Symbol	Parameter	Conditions	Speed Grade					Unit	
			-4		-7		-10		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non–registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{PD2}	I/O input to non–registered output	C1 = 35 pF <i>(2)</i>		4.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.8		4.7		6.2		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.1	1.0	5.1	1.0	7.0	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.6		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.4		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.6	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.5		7.4		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	222.2		135.1		100.0		MHz
t _{ACNT}	Minimum array clock period	(2)		4.5		7.4		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	222.2		135.1		100.0		MHz

Table 20. EPM3128A External Timing Parameters Note (1)									
Symbol	Parameter	Conditions		Speed Grade					
			-	5	_	7	-10		
			Min	Max	Min	Max	Min	Max	
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	192.3		129.9		98.0		MHz

Table 2	1. EPM3128A Internal Timing	g Parameters (I	Part 1 of	2) N	ote (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit	
			_	·5	-	-7		10		
			Min	Max	Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.7		1.0		1.4	ns	
t _{IO}	I/O input pad and buffer delay			0.7		1.0		1.4	ns	
t _{SEXP}	Shared expander delay			2.0		2.9		3.8	ns	
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns	
t_{LAD}	Logic array delay			1.6		2.4		3.1	ns	
t_{LAC}	Logic control array delay			0.7		1.0		1.3	ns	
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns	
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		0.8		1.2		1.6	ns	
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		1.3		1.7		2.1	ns	
t _{OD3}	Output buffer and pad delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.8		6.2		6.6	ns	
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns	
t _{ZX2}	Output buffer enable delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		4.5		4.5		5.5	ns	
t _{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0	ns	
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns	

Symbol	Parameter	Conditions		Speed	Grade		Unit
			_	-7		10	
			Min	Max	Min	Max	1
t _{CNT}	Minimum global clock period	(2)		7.9		10.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	126.6		95.2		MHz
t _{ACNT}	Minimum array clock period	(2)		7.9		10.5	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	126.6		95.2		MHz

Symbol	Parameter	Conditions		Unit			
			-7		-10		
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.9		1.2	ns
t _{IO}	I/O input pad and buffer delay			0.9		1.2	ns
t _{SEXP}	Shared expander delay			2.8		3.7	ns
t _{PEXP}	Parallel expander delay			0.5		0.6	ns
t_{LAD}	Logic array delay			2.2		2.8	ns
t_{LAC}	Logic control array delay			1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		1.2		1.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		1.7		2.1	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		4.5		5.5	ns

Table 23. EPM3256A Internal Timing Parameters (Part 2 of 2) Note (1)								
Symbol	Parameter	Conditions		Speed	Grade	Unit		
			-7		-10		1	
			Min	Max	Min	Max		
t_{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		10.0	ns	
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0	ns	
t _{SU}	Register setup time		2.1		2.9		ns	
t_H	Register hold time		0.9		1.2		ns	
t _{RD}	Register delay			1.2		1.6	ns	
t _{COMB}	Combinatorial delay			0.8		1.2	ns	
t _{IC}	Array clock delay			1.6		2.1	ns	
t _{EN}	Register enable time			1.0		1.3	ns	
t _{GLOB}	Global control delay			1.5		2.0	ns	
t _{PRE}	Register preset time			2.3		3.0	ns	
t _{CLR}	Register clear time			2.3		3.0	ns	
t _{PIA}	PIA delay	(2)		2.4		3.2	ns	
t_{LPA}	Low-power adder	(5)		4.0		5.0	ns	

Table 24. EPM3512A External Timing Parameters Note (1)									
Symbol	Parameter	Conditions		Speed		Unit			
			-7		-10				
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		7.5		10.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		7.5		10.0	ns		
t _{SU}	Global clock setup time	(2)	5.6		7.6		ns		
t _H	Global clock hold time	(2)	0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.7	1.0	6.3	ns		
t _{CH}	Global clock high time		3.0		4.0		ns		
t _{CL}	Global clock low time		3.0		4.0		ns		
t _{ASU}	Array clock setup time	(2)	2.5		3.5		ns		

Symbol	Parameter	Conditions			Unit		
			-7			-10	
			Min	Max	Min	Max	
t _{AH}	Array clock hold time	(2)	0.2		0.3		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	ns
t _{ACH}	Array clock high time		3.0		4.0		ns
t _{ACL}	Array clock low time		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		8.6		11.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		MHz
t _{ACNT}	Minimum array clock period	(2)		8.6		11.5	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		MHz

Table 25. EPM3512A Internal Timing Parameters (Part 1 of 2)Note (1)								
Symbol	Parameter	Conditions		Speed		Unit		
			-7		-10			
			Min	Max	Min	Max		
t _{IN}	Input pad and buffer delay			0.7		0.9	ns	
t _{IO}	I/O input pad and buffer delay			0.7		0.9	ns	
t _{FIN}	Fast input delay			3.1		3.6	ns	
t _{SEXP}	Shared expander delay			2.7		3.5	ns	
t _{PEXP}	Parallel expander delay			0.4		0.5	ns	
t_{LAD}	Logic array delay			2.2		2.8	ns	
t _{LAC}	Logic control array delay			1.0		1.3	ns	
t _{IOE}	Internal output enable delay			0.0		0.0	ns	
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		1.0		1.5	ns	
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		1.5		2.0	ns	

Figure 17. 208-Pin PQFP Package Pin-Out Diagram

Package outline not drawn to scale.

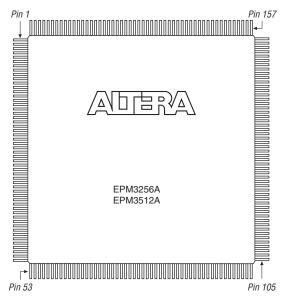
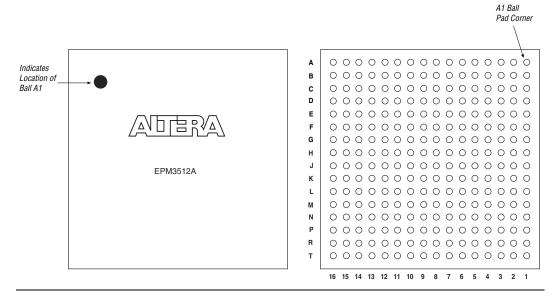



Figure 18. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Revision History

The information contained in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5 supersedes information published in previous versions. The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5:

Version 3.5

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.5:

■ New paragraph added before "Expander Product Terms".

Version 3.4

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.4:

■ Updated Table 1.

Version 3.3

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.3:

- Updated Tables 3, 13, and 26.
- Added Tables 4 through 6.
- Updated Figures 12 and 13.
- Added "Programming Sequence" on page 14 and "Programming Times" on page 14

Version 3.2

The following change were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.2:

■ Updated the EPM3512 I_{CC} versus frequency graph in Figure 13.

Version 3.1

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.1:

- Updated timing information in Table 1 for the EPM3256A device.
- Updated *Note (10)* of Table 15.

Version 3.0

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.0:

- Added EPM3512A device.
- Updated Tables 2 and 3.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_reg@altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services

LS. EN ISO 9001