Welcome to **E-XFL.COM** **Understanding Embedded - CPLDs (Complex Programmable Logic Devices)** Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware. ## **Applications of Embedded - CPLDs** | Details | | |---------------------------------|--| | Product Status | Obsolete | | Programmable Type | In System Programmable | | Delay Time tpd(1) Max | 7.5 ns | | Voltage Supply - Internal | 3V ~ 3.6V | | Number of Logic Elements/Blocks | 16 | | Number of Macrocells | 256 | | Number of Gates | 5000 | | Number of I/O | 158 | | Operating Temperature | 0°C ~ 70°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 208-BFQFP | | Supplier Device Package | 208-PQFP (28x28) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/epm3256aqc208-7 | | | | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Table 2. MAX 3000A Speed Grades | | | | | | | | | | |---------------------------------|----|-------------|----|----|-----|--|--|--|--| | Device | | Speed Grade | | | | | | | | | | -4 | -5 | -6 | -7 | -10 | | | | | | EPM3032A | ✓ | | | ✓ | ✓ | | | | | | EPM3064A | ✓ | | | ✓ | ✓ | | | | | | EPM3128A | | ✓ | | ✓ | ✓ | | | | | | EPM3256A | | | | ✓ | ✓ | | | | | | EPM3512A | | | | ✓ | ✓ | | | | | The MAX 3000A architecture supports 100% transistor-to-transistor logic (TTL) emulation and high–density small-scale integration (SSI), medium-scale integration (MSI), and large-scale integration (LSI) logic functions. The MAX 3000A architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 3000A devices are available in a wide range of packages, including PLCC, PQFP, and TQFP packages. See Table 3. | Table 3. MAX | 3000A Max | Note (1) |) | | | | |--------------|----------------|----------------|-----------------|-----------------|-----------------|----------------------------| | Device | 44-Pin
PLCC | 44-Pin
TQFP | 100-Pin
TQFP | 144-Pin
TQFP | 208-Pin
PQFP | 256-Pin
FineLine
BGA | | EPM3032A | 34 | 34 | | | | | | EPM3064A | 34 | 34 | 66 | | | | | EPM3128A | | | 80 | 96 | | 98 | | EPM3256A | | | | 116 | 158 | 161 | | EPM3512A | | | | | 172 | 208 | #### Note: (1) When the IEEE Std. 1149.1 (JTAG) interface is used for in–system programming or boundary–scan testing, four I/O pins become JTAG pins. MAX 3000A devices use CMOS EEPROM cells to implement logic functions. The user–configurable MAX 3000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debugging cycles, and can be programmed and erased up to 100 times. ## **Expander Product Terms** Although most logic functions can be implemented with the five product terms available in each macrocell, highly complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 3000A architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed. ## Shareable Expanders Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. Shareable expanders incur a small delay (t_{SFXP}) . Figure 3 shows how shareable expanders can feed multiple macrocells. Figure 3. MAX 3000A Shareable Expanders Shareable expanders can be shared by any or all macrocells in an LAB. Figure 4. MAX 3000A Parallel Expanders Unused product terms in a macrocell can be allocated to a neighboring macrocell. ## **Programmable Interconnect Array** Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 3000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB. Figure 6. I/O Control Block of MAX 3000A Devices #### Note: (1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have 10 output enables. When the tri–state buffer control is connected to ground, the output is tri-stated (high impedance), and the $\rm I/O$ pin can be used as a dedicated input. When the tri–state buffer control is connected to $\rm V_{CC}$, the output is enabled. The MAX 3000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic. By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device. ## Programming a Single MAX 3000A Device The time required to program a single MAX 3000A device in-system can be calculated from the following formula: $$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$ where: $t_{PROG} = Programming time$ $t_{PPULSE} = Sum of the fixed times to erase, program, and$ verify the EEPROM cells $Cycle_{PTCK}$ = Number of TCK cycles to program a device = TCK frequency The ISP times for a stand-alone verification of a single MAX 3000A device can be calculated from the following formula: $$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$ where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm. | Table 4. MAX 3000A t _{PULSE} & Cycle _{TCK} Values | | | | | | | | | | | |---|-------------------------|-----------------------|-------------------------|-----------------------|--|--|--|--|--|--| | Device | Progra | ımming | Stand-Alone | Verification | | | | | | | | | t _{PPULSE} (s) | Cycle _{PTCK} | t _{VPULSE} (s) | Cycle _{VTCK} | | | | | | | | EPM3032A | 2.00 | 55,000 | 0.002 | 18,000 | | | | | | | | EPM3064A | 2.00 | 105,000 | 0.002 | 35,000 | | | | | | | | EPM3128A | 2.00 | 205,000 | 0.002 | 68,000 | | | | | | | | EPM3256A | 2.00 | 447,000 | 0.002 | 149,000 | | | | | | | | EPM3512A | 2.00 | 890,000 | 0.002 | 297,000 | | | | | | | Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies. | Table 5. MAX 3000A In-System Programming Times for Different Test Clock Frequencies | | | | | | | | | | | | | |---|--------|------------------|-------|-------|---------|---------|---------|--------|---|--|--|--| | Device | | f _{TCK} | | | | | | | | | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | | | EPM3032A | 2.01 | 2.01 | 2.03 | 2.06 | 2.11 | 2.28 | 2.55 | 3.10 | S | | | | | EPM3064A | 2.01 | 2.02 | 2.05 | 2.11 | 2.21 | 2.53 | 3.05 | 4.10 | S | | | | | EPM3128A | 2.02 | 2.04 | 2.10 | 2.21 | 2.41 | 3.03 | 4.05 | 6.10 | S | | | | | EPM3256A | 2.05 | 2.09 | 2.23 | 2.45 | 2.90 | 4.24 | 6.47 | 10.94 | S | | | | | EPM3512A | 2.09 | 2.18 | 2.45 | 2.89 | 3.78 | 6.45 | 10.90 | 19.80 | s | | | | | Table 6. MAX 3000A Stand-Alone Verification Times for Different Test Clock Frequencies | | | | | | | | | | | | |--|--------|------------------|-------|-------|---------|---------|---------|--------|---|--|--| | Device | | f _{TCK} | | | | | | | | | | | | 10 MHz | 5 MHz | 2 MHz | 1 MHz | 500 kHz | 200 kHz | 100 kHz | 50 kHz | | | | | EPM3032A | 0.00 | 0.01 | 0.01 | 0.02 | 0.04 | 0.09 | 0.18 | 0.36 | S | | | | EPM3064A | 0.01 | 0.01 | 0.02 | 0.04 | 0.07 | 0.18 | 0.35 | 0.70 | S | | | | EPM3128A | 0.01 | 0.02 | 0.04 | 0.07 | 0.14 | 0.34 | 0.68 | 1.36 | S | | | | EPM3256A | 0.02 | 0.03 | 0.08 | 0.15 | 0.30 | 0.75 | 1.49 | 2.98 | S | | | | EPM3512A | 0.03 | 0.06 | 0.15 | 0.30 | 0.60 | 1.49 | 2.97 | 5.94 | S | | | The instruction register length of MAX 3000A devices is 10 bits. The IDCODE and USERCODE register length is 32 bits. Tables 8 and 9 show the boundary–scan register length and device IDCODE information for MAX 3000A devices. | Table 8. MAX 3000A Boundary–Scan Register Length | | | | | | | | |--|-----|--|--|--|--|--|--| | Device Boundary–Scan Register Length | | | | | | | | | EPM3032A 96 | | | | | | | | | EPM3064A | 192 | | | | | | | | EPM3128A | 288 | | | | | | | | EPM3256A | 480 | | | | | | | | EPM3512A | 624 | | | | | | | | Table 9. 32-Bit MAX 3000A Device IDCODE ValueNote (1) | | | | | | | | | | |---|---------------------|---|-------------|---|--|--|--|--|--| | Device | | IDCODE (32 bits) | | | | | | | | | | Version
(4 Bits) | Part Number (16 Bits) Manufacturer's 1 (1 Bit 1 1 1 1 1 1 1 1 1 | | | | | | | | | EPM3032A | 0001 | 0111 0000 0011 0010 | 00001101110 | 1 | | | | | | | EPM3064A | 0001 | 0111 0000 0110 0100 | 00001101110 | 1 | | | | | | | EPM3128A | 0001 | 0111 0001 0010 1000 | 00001101110 | 1 | | | | | | | EPM3256A | 0001 | 0111 0010 0101 0110 | 00001101110 | 1 | | | | | | | EPM3512A | 0001 | 0111 0101 0001 0010 | 00001101110 | 1 | | | | | | #### Notes: - (1) The most significant bit (MSB) is on the left. - (2) The least significant bit (LSB) for all JTAG IDCODEs is 1. See Application Note 39 (IEEE 1149.1 (JTAG) Boundary–Scan Testing in Altera Devices) for more information on JTAG BST. Figure 7 shows the timing information for the JTAG signals. Table 10 shows the JTAG timing parameters and values for MAX 3000A devices. | Table 1 | Table 10. JTAG Timing Parameters & Values for MAX 3000A Devices | | | | | | | | | | | |-------------------|---|-----|-----|------|--|--|--|--|--|--|--| | Symbol | Parameter | Min | Max | Unit | | | | | | | | | t _{JCP} | TCK clock period | 100 | | ns | | | | | | | | | t _{JCH} | TCK clock high time | 50 | | ns | | | | | | | | | t _{JCL} | TCK clock low time | 50 | | ns | | | | | | | | | t _{JPSU} | JTAG port setup time | 20 | | ns | | | | | | | | | t _{JPH} | JTAG port hold time | 45 | | ns | | | | | | | | | t _{JPCO} | JTAG port clock to output | | 25 | ns | | | | | | | | | t _{JPZX} | JTAG port high impedance to valid output | | 25 | ns | | | | | | | | | t _{JPXZ} | JTAG port valid output to high impedance | | 25 | ns | | | | | | | | | t _{JSSU} | Capture register setup time | 20 | | ns | | | | | | | | | t _{JSH} | Capture register hold time | 45 | | ns | | | | | | | | | t _{JSCO} | Update register clock to output | | 25 | ns | | | | | | | | | t _{JSZX} | Update register high impedance to valid output | | 25 | ns | | | | | | | | | t _{JSXZ} | Update register valid output to high impedance | | 25 | ns | | | | | | | | # Programmable Speed/Power Control MAX 3000A devices offer a power–saving mode that supports low-power operation across user–defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency. The designer can program each individual macrocell in a MAX 3000A device for either high–speed or low–power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{ACI} , t_{EN} , t_{CPPW} and t_{SEXP} parameters. # Output Configuration MAX 3000A device outputs can be programmed to meet a variety of system–level requirements. ### MultiVolt I/O Interface The MAX 3000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 3000A devices to connect to systems with differing supply voltages. MAX 3000A devices in all packages can be set for 2.5–V, 3.3–V, or 5.0–V I/O pin operation. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO). The VCCIO pins can be connected to either a 3.3–V or 2.5–V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5–V power supply, the output levels are compatible with 2.5–V systems. When the VCCIO pins are connected to a 3.3–V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0–V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5–V, 3.3–V, or 5.0–V signals. | 1 | able I | 1 summarizes | the MA | X 3000A | Multi V | olt I/C |) supp | ort. | |---|--------|--------------|--------|---------|---------|---------|--------|------| |---|--------|--------------|--------|---------|---------|---------|--------|------| | Table 11. MAX 3000A MultiVolt I/O Support | | | | | | | | | | | |--|----------|----------|----------|----------|-----|-----|--|--|--|--| | V _{CCIO} Voltage Input Signal (V) Output Signal (V) | | | | | | | | | | | | | 2.5 | 3.3 | 5.0 | 2.5 | 3.3 | 5.0 | | | | | | 2.5 | ✓ | ✓ | ✓ | ✓ | | | | | | | | 3.3 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | | | | #### Note: (1) When $V_{\rm CCIO}$ is 3.3 V, a MAX 3000A device can drive a 2.5–V device that has 3.3–V tolerant inputs. ## Figure 8. MAX 3000A AC Test Conditions Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fastground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V devices or outputs. # Operating Conditions Tables 12 through 15 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for MAX 3000A devices. | Table 1 | Table 12. MAX 3000A Device Absolute Maximum Ratings Note (1) | | | | | | | | | | | |------------------|--|------------------------------------|------|------|------|--|--|--|--|--|--| | Symbol | Parameter | Conditions | Min | Max | Unit | | | | | | | | V _{CC} | Supply voltage | With respect to ground (2) | -0.5 | 4.6 | V | | | | | | | | VI | DC input voltage | 1 | -2.0 | 5.75 | V | | | | | | | | I _{OUT} | DC output current, per pin | | -25 | 25 | mA | | | | | | | | T _{STG} | Storage temperature | No bias | -65 | 150 | ° C | | | | | | | | T_A | Ambient temperature | Under bias | -65 | 135 | ° C | | | | | | | | T_{J} | Junction temperature | PQFP and TQFP packages, under bias | | 135 | ° C | | | | | | | | Table 1 | 5. MAX 3000A Device Capacita | nce Note (9) | | | | | | | |------------------|------------------------------|-------------------------------------|--|---|----|--|--|--| | Symbol | Parameter | Parameter Conditions Min Max Unit | | | | | | | | C _{IN} | Input pin capacitance | V _{IN} = 0 V, f = 1.0 MHz | | 8 | pF | | | | | C _{I/O} | I/O pin capacitance | V _{OUT} = 0 V, f = 1.0 MHz | | 8 | pF | | | | #### Notes to tables: - (1) See the Operating Requirements for Altera Devices Data Sheet. - (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns. - (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered. - (4) These values are specified under the recommended operating conditions, as shown in Table 13 on page 23. - (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high–level TTL or CMOS output current. - (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low–level TTL, PCI, or CMOS output current. - (7) This value is specified during normal device operation. During power-up, the maximum leakage current is ±300 µA. - (8) This pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up. - (9) Capacitance is measured at 25° C and is sample–tested only. The OE1 pin (high–voltage pin during programming) has a maximum capacitance of 20 pF. - (10) The POR time for all MAX 3000A devices does not exceed 100 μ s. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level. - (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications. Figure 9 shows the typical output drive characteristics of MAX 3000A devices. $V_{CCINT} = 3.3 V$ V_{CCIO} = 2.5 V Temperature = 25 °C 150 I_{OL} 100 Typical I_O $V_{CCINT} = 3.3 V$ Output $V_{CCIO} = 3.3 V$ Current (mA) Temperature = 25 °C 50 I_{OH} 2 V_O Output Voltage (V) 2.5 V 150 I_{OL} Figure 9. Output Drive Characteristics of MAX 3000A Devices 3.3 V # Power Sequencing & Hot-Socketing Because MAX 3000A devices can be used in a mixed–voltage environment, they have been designed specifically to tolerate any possible power–up sequence. The $\rm V_{CCIO}$ and $\rm V_{CCINT}$ power planes can be powered in any order. V_O Output Voltage (V) Signals can be driven into MAX 3000A devices before and during power-up without damaging the device. In addition, MAX 3000A devices do not drive out during power-up. Once operating conditions are reached, MAX 3000A devices operate as specified by the user. Altera Corporation 25 100 50 Typical I_O Current (mA) Output ## **Timing Model** MAX 3000A device timing can be analyzed with the Altera software, with a variety of popular industry–standard EDA simulators and timing analyzers, or with the timing model shown in Figure 10. MAX 3000A devices have predictable internal delays that enable the designer to determine the worst–case timing of any design. The software provides timing simulation, point–to–point delay prediction, and detailed timing analysis for device–wide performance evaluation. Figure 10. MAX 3000A Timing Model The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin–to–pin timing delays, can be calculated as the sum of internal parameters. Figure 11 shows the timing relationship between internal and external delay parameters. | Table 17 | Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | |------------------|--|-----|-----|-------------------------|--|-----|--|-----|----|--| | Symbol | Symbol Parameter Conditions Speed Grade Unit | | | | | | | | | | | | | | _ | -4 -7 -10 | | | | | | | | | | | Min | Min Max Min Max Min Max | | | | | | | | t _{PIA} | PIA delay | (2) | | 0.9 | | 1.5 | | 2.1 | ns | | | t_{LPA} | Low-power adder | (5) | | 2.5 | | 4.0 | | 5.0 | ns | | | Table 18 | 3. EPM3064A External Timin | g Parameters | Note (| 1) | | | | | | |-------------------|--|-----------------------|--------|-----|-------|-------|-------|------|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | _ | 4 | _ | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | Min | Max | | | t _{PD1} | Input to non–registered output | C1 = 35 pF (2) | | 4.5 | | 7.5 | | 10.0 | ns | | t _{PD2} | I/O input to non–registered output | C1 = 35 pF <i>(2)</i> | | 4.5 | | 7.5 | | 10.0 | ns | | t _{SU} | Global clock setup time | (2) | 2.8 | | 4.7 | | 6.2 | | ns | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | 0.0 | | ns | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 3.1 | 1.0 | 5.1 | 1.0 | 7.0 | ns | | t _{CH} | Global clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CL} | Global clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ASU} | Array clock setup time | (2) | 1.6 | | 2.6 | | 3.6 | | ns | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.4 | | 0.6 | | ns | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 4.3 | 1.0 | 7.2 | 1.0 | 9.6 | ns | | t _{ACH} | Array clock high time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{ACL} | Array clock low time | | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 2.0 | | 3.0 | | 4.0 | | ns | | t _{CNT} | Minimum global clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 4.5 | | 7.4 | | 10.0 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 222.2 | | 135.1 | | 100.0 | | MHz | | Table 20 | Table 20. EPM3128A External Timing Parameters Note (1) | | | | | | | | | | | |-------------------|--|------------|-----|-------------------------|-------|-------|--|--|------|--|--| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | | | - | -5 -7 -10 | | | | | | | | | | | | Min | Min Max Min Max Min Max | | | | | | | | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | | | | | | | | | | | Table 2 | 1. EPM3128A Internal Timing | g Parameters (I | Part 1 of | 2) N | ote (1) | | | | | |-------------------|---|-----------------|-----------|------------------|---------|-------|-----|------|------| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | _ | -5 -7 -10 | | -10 | | | | | | | | Min | Max | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.7 | | 1.0 | | 1.4 | ns | | t _{SEXP} | Shared expander delay | | | 2.0 | | 2.9 | | 3.8 | ns | | t _{PEXP} | Parallel expander delay | | | 0.4 | | 0.7 | | 0.9 | ns | | t_{LAD} | Logic array delay | | | 1.6 | | 2.4 | | 3.1 | ns | | t_{LAC} | Logic control array delay | | | 0.7 | | 1.0 | | 1.3 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 0.8 | | 1.2 | | 1.6 | ns | | t _{OD2} | Output buffer and pad
delay, slow slew rate = off
V _{CCIO} = 2.5 V | C1 = 35 pF | | 1.3 | | 1.7 | | 2.1 | ns | | t _{OD3} | Output buffer and pad
delay, slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 5.8 | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$ | C1 = 35 pF | | 4.0 | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay,
slow slew rate = off
V _{CCIO} = 2.5 V | C1 = 35 pF | | 4.5 | | 4.5 | | 5.5 | ns | | t _{ZX3} | Output buffer enable delay,
slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 9.0 | | 9.0 | | 10.0 | ns | | t_{XZ} | Output buffer disable delay | C1 = 5 pF | | 4.0 | | 4.0 | | 5.0 | ns | | Table 21 | Table 21. EPM3128A Internal Timing Parameters (Part 2 of 2) Note (1) | | | | | | | | | | |-------------------|--|------------|-------|-----|-------|-------|-----|-----|------|--| | Symbol | Parameter | Conditions | | | Speed | Grade | | | Unit | | | | | | -5 -7 | | | _ | 10 | | | | | | | | Min | Max | Min | Max | Min | Max | | | | t _{SU} | Register setup time | | 1.4 | | 2.1 | | 2.9 | | ns | | | t _H | Register hold time | | 0.6 | | 1.0 | | 1.3 | | ns | | | t _{RD} | Register delay | | | 0.8 | | 1.2 | | 1.6 | ns | | | t _{COMB} | Combinatorial delay | | | 0.5 | | 0.9 | | 1.3 | ns | | | t _{IC} | Array clock delay | | | 1.2 | | 1.7 | | 2.2 | ns | | | t _{EN} | Register enable time | | | 0.7 | | 1.0 | | 1.3 | ns | | | t _{GLOB} | Global control delay | | | 1.1 | | 1.6 | | 2.0 | ns | | | t _{PRE} | Register preset time | | | 1.4 | | 2.0 | | 2.7 | ns | | | t _{CLR} | Register clear time | | | 1.4 | | 2.0 | | 2.7 | ns | | | t _{PIA} | PIA delay | (2) | | 1.4 | | 2.0 | | 2.6 | ns | | | t _{LPA} | Low-power adder | (5) | | 4.0 | | 4.0 | | 5.0 | ns | | | Table 22. | EPM3256A External Timing | Parameters | Note (1) | | | | | | | |-------------------|--|----------------|----------|-------|-------|-----|------|--|--| | Symbol | Parameter | Conditions | | Speed | Grade | | Unit | | | | | | | = | -7 | | 10 | | | | | | | | Min | Max | Min | Max | | | | | t _{PD1} | Input to non–registered output | C1 = 35 pF (2) | | 7.5 | | 10 | ns | | | | t _{PD2} | I/O input to non–registered output | C1 = 35 pF (2) | | 7.5 | | 10 | ns | | | | t _{SU} | Global clock setup time | (2) | 5.2 | | 6.9 | | ns | | | | t _H | Global clock hold time | (2) | 0.0 | | 0.0 | | ns | | | | t _{CO1} | Global clock to output delay | C1 = 35 pF | 1.0 | 4.8 | 1.0 | 6.4 | ns | | | | t _{CH} | Global clock high time | | 3.0 | | 4.0 | | ns | | | | t _{CL} | Global clock low time | | 3.0 | | 4.0 | | ns | | | | t _{ASU} | Array clock setup time | (2) | 2.7 | | 3.6 | | ns | | | | t _{AH} | Array clock hold time | (2) | 0.3 | | 0.5 | | ns | | | | t _{ACO1} | Array clock to output delay | C1 = 35 pF (2) | 1.0 | 7.3 | 1.0 | 9.7 | ns | | | | t _{ACH} | Array clock high time | | 3.0 | | 4.0 | | ns | | | | t _{ACL} | Array clock low time | | 3.0 | | 4.0 | | ns | | | | t _{CPPW} | Minimum pulse width for clear and preset | (3) | 3.0 | | 4.0 | | ns | | | | Symbol | Parameter | Conditions | | Speed | Grade | | Unit | |-------------------|---|------------|-------|-------|-------|------|------| | | | | _ | 7 | -1 | 10 | | | | | | Min | Max | Min | Max | ns | | t _{CNT} | Minimum global clock period | (2) | | 7.9 | | 10.5 | ns | | f _{CNT} | Maximum internal global clock frequency | (2), (4) | 126.6 | | 95.2 | | MHz | | t _{ACNT} | Minimum array clock period | (2) | | 7.9 | | 10.5 | ns | | f _{ACNT} | Maximum internal array clock frequency | (2), (4) | 126.6 | | 95.2 | | MHz | | Symbol | Parameter | Conditions | | Speed | Grade | | Unit | |-------------------|---|------------|-----|-------|-------|-----|------| | | | | - | -7 | _ | 10 | | | | | | Min | Max | Min | Max | | | t _{IN} | Input pad and buffer delay | | | 0.9 | | 1.2 | ns | | t _{IO} | I/O input pad and buffer delay | | | 0.9 | | 1.2 | ns | | t _{SEXP} | Shared expander delay | | | 2.8 | | 3.7 | ns | | t _{PEXP} | Parallel expander delay | | | 0.5 | | 0.6 | ns | | t_{LAD} | Logic array delay | | | 2.2 | | 2.8 | ns | | t_{LAC} | Logic control array delay | | | 1.0 | | 1.3 | ns | | t _{IOE} | Internal output enable delay | | | 0.0 | | 0.0 | ns | | t _{OD1} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 1.2 | | 1.6 | ns | | t _{OD2} | Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V | C1 = 35 pF | | 1.7 | | 2.1 | ns | | t _{OD3} | Output buffer and pad delay,
slow slew rate = on
V _{CCIO} = 2.5 V or 3.3 V | C1 = 35 pF | | 6.2 | | 6.6 | ns | | t _{ZX1} | Output buffer enable delay, slow slew rate = off V _{CCIO} = 3.3 V | C1 = 35 pF | | 4.0 | | 5.0 | ns | | t _{ZX2} | Output buffer enable delay, slow slew rate = off V _{CCIO} = 2.5 V | C1 = 35 pF | | 4.5 | | 5.5 | ns | Figure 13. I_{CC} vs. Frequency for MAX 3000A Devices # Device Pin-Outs See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin–out information. Figures 14 through 18 show the package pin-out diagrams for MAX 3000A devices. Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram Package outlines not drawn to scale. Figure 15. 100-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale. Figure 16. 144-Pin TQFP Package Pin-Out Diagram Package outline not drawn to scale.