E·XFL

Intel - EPM3256ATC144-10 Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	16
Number of Macrocells	256
Number of Gates	5000
Number of I/O	116
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-TQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm3256atc144-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- PCI compatible
- Bus-friendly architecture including programmable slew-rate control
- Open–drain output option
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power–saving mode for a power reduction of over 50% in each macrocell
- Configurable expander product-term distribution, allowing up to 32 product terms per macrocell
- Programmable security bit for protection of proprietary designs
- Enhanced architectural features, including:
 - 6 or 10 pin- or logic-driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Programmable output slew-rate control
- Software design support and automatic place-and-route provided by Altera's development systems for Windows-based PCs and Sun SPARCstations, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from third-party manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with the Altera master programming unit (MPU), MasterBlasterTM communications cable, ByteBlasterMVTM parallel port download cable, BitBlasterTM serial download cable as well as programming hardware from third-party manufacturers and any in-circuit tester that supports JamTM Standard Test and Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), or Serial Vector Format Files (.svf)

General Description

MAX 3000A devices are low–cost, high–performance devices based on the Altera MAX architecture. Fabricated with advanced CMOS technology, the EEPROM–based MAX 3000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices in the –4, –5, –6, –7, and –10 speed grades are compatible with the timing requirements of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

Table 2. MAX	3000A Spee	d Grades			
Device			Speed Grade		
	-4	-5	-6	-7	-10
EPM3032A	\checkmark			\checkmark	\checkmark
EPM3064A	\checkmark			\checkmark	\checkmark
EPM3128A		\checkmark		\checkmark	\checkmark
EPM3256A				\checkmark	\checkmark
EPM3512A				\checkmark	\checkmark

The MAX 3000A architecture supports 100% transistor-to-transistor logic (TTL) emulation and high–density small-scale integration (SSI), medium-scale integration (MSI), and large-scale integration (LSI) logic functions. The MAX 3000A architecture easily integrates multiple devices ranging from PALs, GALs, and 22V10s to MACH and pLSI devices. MAX 3000A devices are available in a wide range of packages, including PLCC, PQFP, and TQFP packages. See Table 3.

Table 3. MAX	3000A Max	kimum Use	er I/O Pins	Note (1))	
Device	44–Pin PLCC	44–Pin TQFP	100–Pin TQFP	144–Pin TQFP	208–Pin PQFP	256-Pin FineLine BGA
EPM3032A	34	34				
EPM3064A	34	34	66			
EPM3128A			80	96		98
EPM3256A				116	158	161
EPM3512A					172	208

Note:

(1) When the IEEE Std. 1149.1 (JTAG) interface is used for in–system programming or boundary–scan testing, four I/O pins become JTAG pins.

MAX 3000A devices use CMOS EEPROM cells to implement logic functions. The user–configurable MAX 3000A architecture accommodates a variety of independent combinatorial and sequential logic functions. The devices can be reprogrammed for quick and efficient iterations during design development and debugging cycles, and can be programmed and erased up to 100 times. MAX 3000A devices contain 32 to 512 macrocells, combined into groups of 16 macrocells called logic array blocks (LABs). Each macrocell has a programmable–AND/fixed–OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with shareable expander and high–speed parallel expander product terms to provide up to 32 product terms per macrocell.

MAX 3000A devices provide programmable speed/power optimization. Speed–critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 3000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non–speed–critical signals are switching. The output drivers of all MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5–V, 3.3–V, and 5.0-V tolerant, allowing MAX 3000A devices to be used in mixed–voltage systems.

MAX 3000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry–standard PC– and UNIX–workstation–based EDA tools. The software runs on Windows–based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

The MAX 3000A architecture includes the following elements:

- Logic array blocks (LABs)
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array (PIA)
- I/O control blocks

The MAX 3000A architecture includes four dedicated inputs that can be used as general–purpose inputs or as high–speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 3000A devices.

Functional Description

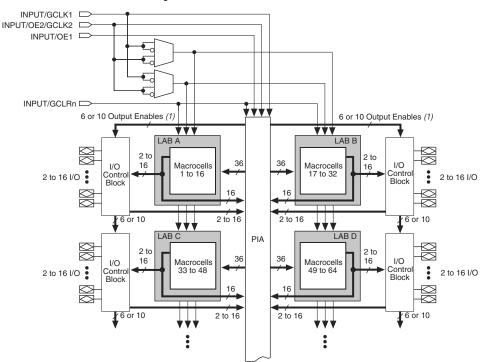
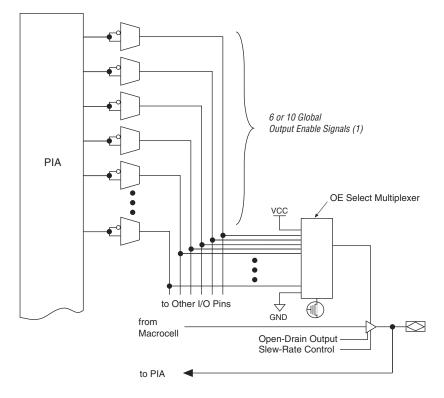


Figure 1. MAX 3000A Device Block Diagram

Note:

(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have 10 output enables.


Logic Array Blocks

The MAX 3000A device architecture is based on the linking of high–performance LABs. LABs consist of 16–macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions

Figure 6. I/O Control Block of MAX 3000A Devices

Note:

(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have 10 output enables.

When the tri–state buffer control is connected to ground, the output is tri-stated (high impedance), and the I/O pin can be used as a dedicated input. When the tri–state buffer control is connected to V_{CC} , the output is enabled.

The MAX 3000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

Table 4. MAX 3000A t _{PUL}	able 4. MAX 3000A t _{PULSE} & Cycle _{TCK} Values										
Device	Progra	rogramming Stand-Alone Verif									
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}							
EPM3032A	2.00	55,000	0.002	18,000							
EPM3064A	2.00	105,000	0.002	35,000							
EPM3128A	2.00	205,000	0.002	68,000							
EPM3256A	2.00	447,000	0.002	149,000							
EPM3512A	2.00	890,000	0.002	297,000							

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 3000A In-System Programming Times for Different Test Clock Frequencies										
Device				ť	тск				Units	
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EPM3032A	2.01	2.01	2.03	2.06	2.11	2.28	2.55	3.10	S	
EPM3064A	2.01	2.02	2.05	2.11	2.21	2.53	3.05	4.10	s	
EPM3128A	2.02	2.04	2.10	2.21	2.41	3.03	4.05	6.10	s	
EPM3256A	2.05	2.09	2.23	2.45	2.90	4.24	6.47	10.94	s	
EPM3512A	2.09	2.18	2.45	2.89	3.78	6.45	10.90	19.80	S	

Table 6. MAX 3000A Stand-Alone Verification Times for Different Test Clock Frequencies										
Device				1	тск				Units	
	10 MHz	5 MHz	2 MHz	1 MHz	500 kHz	200 kHz	100 kHz	50 kHz		
EPM3032A	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S	
EPM3064A	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S	
EPM3128A	0.01	0.02	0.04	0.07	0.14	0.34	0.68	1.36	S	
EPM3256A	0.02	0.03	0.08	0.15	0.30	0.75	1.49	2.98	S	
EPM3512A	0.03	0.06	0.15	0.30	0.60	1.49	2.97	5.94	S	

٦

Г

Programmable Speed/Power Control

MAX 3000A devices offer a power–saving mode that supports low-power operation across user–defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 3000A device for either high–speed or low–power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{ACL} , t_{EN} , t_{CPPW} and t_{SEXP} parameters.

Output Configuration

MAX 3000A device outputs can be programmed to meet a variety of system–level requirements.

MultiVolt I/O Interface

The MAX 3000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 3000A devices to connect to systems with differing supply voltages. MAX 3000A devices in all packages can be set for 2.5–V, 3.3–V, or 5.0–V I/O pin operation. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3–V or 2.5–V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5–V power supply, the output levels are compatible with 2.5–V systems. When the VCCIO pins are connected to a 3.3–V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0–V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5–V, 3.3–V, or 5.0–V signals.

Table 11 summarizes the MAX 3000A MultiVolt I/O support.

Table 11. MAX 300	Table 11. MAX 3000A MultiVolt I/O Support									
V _{CCIO} Voltage	age Input Signal (V) Output Signal (V)									
	2.5	3.3	5.0	2.5	3.3	5.0				
2.5	\checkmark	~	~	~						
3.3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark				

Note:

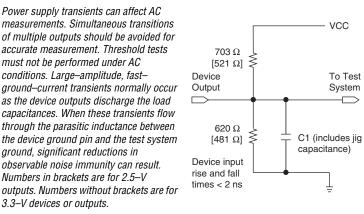
When V_{CCIO} is 3.3 V, a MAX 3000A device can drive a 2.5–V device that has 3.3–V tolerant inputs.

Open-Drain Output Option

MAX 3000A devices provide an optional open–drain (equivalent to open-collector) output for each I/O pin. This open–drain output enables the device to provide system–level control signals (e.g., interrupt and write enable signals) that can be asserted by any of several devices. It can also provide an additional wired–OR plane.

Open-drain output pins on MAX 3000A devices (with a pull-up resistor to the 5.0-V supply) can drive 5.0-V CMOS input pins that require a high V_{IH} . When the open-drain pin is active, it will drive low. When the pin is inactive, the resistor will pull up the trace to 5.0 V, thereby meeting CMOS requirements. The open-drain pin will only drive low or tri-state; it will never drive high. The rise time is dependent on the value of the pull-up resistor and load impedance. The I_{OL} current specification should be considered when selecting a pull-up resistor

Slew–Rate Control


The output buffer for each MAX 3000A I/O pin has an adjustable output slew rate that can be configured for low-noise or high-speed performance. A faster slew rate provides high-speed transitions for high-performance systems. However, these fast transitions may introduce noise transients into the system. A slow slew rate reduces system noise, but adds a nominal delay of 4 to 5 ns. When the configuration cell is turned off, the slew rate is set for low-noise performance. Each I/O pin has an individual EEPROM bit that controls the slew rate, allowing designers to specify the slew rate on a pin-by-pin basis. The slew rate control affects both the rising and falling edges of the output signal.

Design Security All MAX 3000A devices contain a programmable security bit that controls access to the data programmed into the device. When this bit is programmed, a design implemented in the device cannot be copied or retrieved. This feature provides a high level of design security because programmed data within EEPROM cells is invisible. The security bit that controls this function, as well as all other programmed data, is reset only when the device is reprogrammed.

Generic Testing

MAX 3000A devices are fully tested. Complete testing of each programmable EEPROM bit and all internal logic elements ensures 100% programming yield. AC test measurements are taken under conditions equivalent to those shown in Figure 8. Test patterns can be used and then erased during early stages of the production flow.

Figure 8. MAX 3000A AC Test Conditions

Operating Conditions

Tables 12 through 15 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for MAX 3000A devices.

Table 12. MAX 3000A Device Absolute Maximum RatingsNote (1)										
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V					
VI	DC input voltage		-2.0	5.75	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	°C					
T _A	Ambient temperature	Under bias	-65	135	°C					
TJ	Junction temperature	PQFP and TQFP packages, under bias		135	°C					

Table 1	Table 15. MAX 3000A Device Capacitance Note (9)									
Symbol	Parameter Conditions Min Max Unit									
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF					
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF					

Notes to tables:

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is -0.5 V. During transitions, the inputs may undershoot to -2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (4) These values are specified under the recommended operating conditions, as shown in Table 13 on page 23.
- (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high–level TTL or CMOS output current.
- (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low–level TTL, PCI, or CMOS output current.
- (7) This value is specified during normal device operation. During power-up, the maximum leakage current is ±300 μA.
- (8) This pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up.
- (9) Capacitance is measured at 25° C and is sample-tested only. The OE1 pin (high-voltage pin during programming) has a maximum capacitance of 20 pF.
- (10) The POR time for all MAX 3000A devices does not exceed 100 µs. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.
- (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.

Figure 9 shows the typical output drive characteristics of MAX 3000A devices.

Timing Model

MAX 3000A device timing can be analyzed with the Altera software, with a variety of popular industry–standard EDA simulators and timing analyzers, or with the timing model shown in Figure 10. MAX 3000A devices have predictable internal delays that enable the designer to determine the worst–case timing of any design. The software provides timing simulation, point–to–point delay prediction, and detailed timing analysis for device–wide performance evaluation.

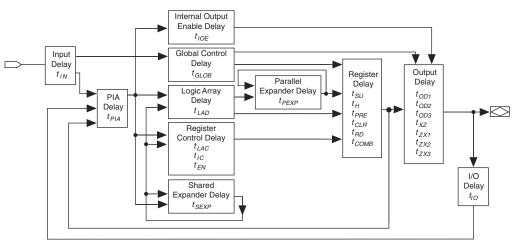


Figure 10. MAX 3000A Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin–to–pin timing delays, can be calculated as the sum of internal parameters. Figure 11 shows the timing relationship between internal and external delay parameters.

Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	-4	-	-7	-	10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.2		1.5	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.2		1.5	ns
t _{SEXP}	Shared expander delay			1.9		3.1		4.0	ns
t _{PEXP}	Parallel expander delay			0.5		0.8		1.0	ns
t _{LAD}	Logic array delay			1.5		2.5		3.3	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 V$	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 2.5 V \text{ or } 3.3 V$	C1 = 35 pF		9.0		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.8		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{RD}	Register delay			0.7		1.2		1.5	ns
t _{COMB}	Combinatorial delay			0.6		1.0		1.3	ns
t _{IC}	Array clock delay			1.2		2.0		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			0.8		1.3		1.9	ns
t _{PRE}	Register preset time			1.2		1.9		2.6	ns
t _{CLR}	Register clear time			1.2		1.9		2.6	ns

MAX 3000A Programmable Logic Device Family Data Sheet

Table 1	Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2) Note (1)										
Symbol	Parameter	Conditions		Speed Grade							
			-4		-7		-10				
			Min	Max	Min	Max	Min	Max			
t _{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns		
t _{LPA}	Low-power adder	(5)		2.5		4.0		5.0	ns		

Table 18. EPM3064A External Timing Parameters Note (1)

Symbol	Parameter	Conditions			Speed	Grade			Unit
			_	4	-	7	-1	0	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non–registered output	C1 = 35 pF <i>(2)</i>		4.5		7.5		10.0	ns
t _{PD2}	I/O input to non–registered output	C1 = 35 pF <i>(2)</i>		4.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.8		4.7		6.2		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.1	1.0	5.1	1.0	7.0	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.6		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.4		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF <i>(2)</i>	1.0	4.3	1.0	7.2	1.0	9.6	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.5		7.4		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	222.2		135.1		100.0		MHz
t _{ACNT}	Minimum array clock period	(2)		4.5		7.4		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	222.2		135.1		100.0		MHz

MAX 3000A Programmable Logic Device Family Data Sheet

Table 19. EPM3064A Internal Timing Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions	Speed Grade						
			_	4	-7		-10		1
			Min	Max	Min	Max	Min	Max	
t _{CLR}	Register clear time			1.3		2.1		2.9	ns
t _{PIA}	PIA delay	(2)		1.0		1.7		2.3	ns
t _{LPA}	Low-power adder	(5)		3.5		4.0		5.0	ns

 Table 20. EPM3128A External Timing Parameters
 Note (1)

Symbol	Parameter	Conditions		Unit					
			-5		-7		-10		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non– registered output	C1 = 35 pF <i>(2)</i>		5.0		7.5		10	ns
t _{PD2}	I/O input to non- registered output	C1 = 35 pF <i>(2)</i>		5.0		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.3		4.9		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.4	1.0	5.0	1.0	6.6	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.8		2.8		3.8		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF <i>(2)</i>	1.0	4.9	1.0	7.1	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.2		7.7		10.2	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	192.3		129.9		98.0		MHz
t _{acnt}	Minimum array clock period	(2)		5.2		7.7		10.2	ns

Symbol	EPM3512A External Timing Para	Conditions	e (1)	Unit			
		oonantons	-7		Grade -10		
			Min	Max	Min	Max	
t _{AH}	Array clock hold time	(2)	0.2		0.3		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	ns
t _{ACH}	Array clock high time		3.0		4.0		ns
t _{ACL}	Array clock low time		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		8.6		11.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		MHz
t _{ACNT}	Minimum array clock period	(2)		8.6		11.5	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		MHz

Table 25. EPM3512A Internal Timing Parameters (Part 1 of 2)	Note (1)

Symbol	Parameter	Conditions		Unit			
			-7		-10		1
			Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		0.9	ns
t _{IO}	I/O input pad and buffer delay			0.7		0.9	ns
t _{FIN}	Fast input delay			3.1		3.6	ns
t _{SEXP}	Shared expander delay			2.7		3.5	ns
t _{PEXP}	Parallel expander delay			0.4		0.5	ns
t _{LAD}	Logic array delay			2.2		2.8	ns
t _{LAC}	Logic control array delay			1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off	C1 = 35 pF		1.0		1.5	ns
	$V_{CCIO} = 3.3 V$						
t _{OD2}	Output buffer and pad delay, slow slew rate = off	C1 = 35 pF		1.5		2.0	ns
	$V_{CCIO} = 2.5 V$						

Symbol	Parameter	Conditions		Unit			
			-7		-10		-
			Min	Max	Min	Max	
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5$ V or 3.3 V	C1 = 35 pF		6.0		6.5	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 V$	C1 = 35 pF		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on $V_{CCIO} = 3.3 V$	C1 = 35 pF		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0	ns
t _{SU}	Register setup time		2.1		3.0		ns
t _H	Register hold time		0.6		0.8		ns
t _{FSU}	Register setup time of fast input		1.6		1.6		ns
t _{FH}	Register hold time of fast input		1.4		1.4		ns
t _{RD}	Register delay			1.3		1.7	ns
t _{COMB}	Combinatorial delay			0.6		0.8	ns
t _{IC}	Array clock delay			1.8		2.3	ns
t _{EN}	Register enable time			1.0		1.3	ns
t _{GLOB}	Global control delay			1.7		2.2	ns
t _{PRE}	Register preset time			1.0		1.4	ns
t _{CLR}	Register clear time			1.0		1.4	ns
t _{PIA}	PIA delay	(2)		3.0		4.0	ns
t _{LPA}	Low-power adder	(5)		4.5		5.0	ns

Notes to tables:

- These values are specified under the recommended operating conditions, as shown in Table 13 on page 23. See Figure 11 on page 27 for more information on switching waveforms.
- (2) These values are specified for a PIA fan-out of one LAB (16 macrocells). For each additional LAB fan-out in these devices, add an additional 0.1 ns to the PIA timing value.
- (3) This minimum pulse width for preset and clear applies for both global clear and array controls. The t_{LPA} parameter must be added to this minimum width if the clear or reset signal incorporates the t_{LAD} parameter into the signal path.
- (4) These parameters are measured with a 16-bit loadable, enabled, up/down counter programmed into each LAB.

(5) The t_{LPA} parameter must be added to the t_{LAD} , t_{LAC} , t_{IC} , t_{EN} , t_{SEXP} , t_{ACL} , and t_{CPPW} parameters for macrocells running in low–power mode.

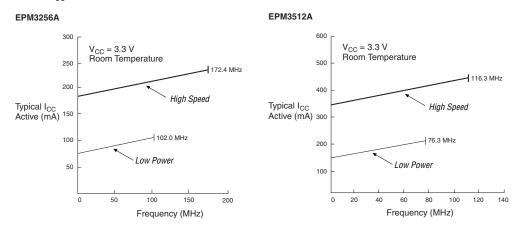


Figure 13. I_{CC} vs. Frequency for MAX 3000A Devices

Device Pin–Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin–out information.

Figures 14 through 18 show the package pin–out diagrams for MAX 3000A devices.

Package outlines not drawn to scale.

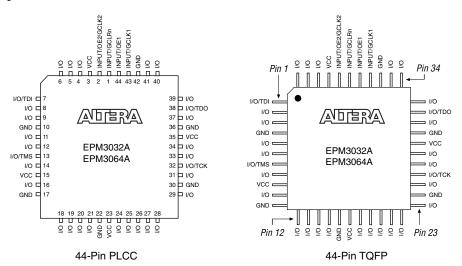
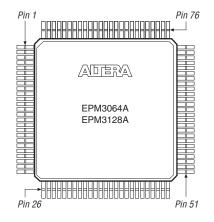
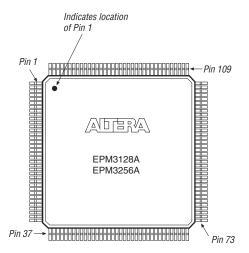
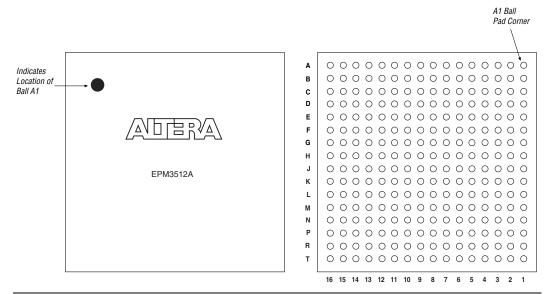


Figure 15. 100–Pin TQFP Package Pin–Out Diagram

Package outline not drawn to scale.


Figure 16. 144–Pin TQFP Package Pin–Out Diagram

Package outline not drawn to scale.

Figure 18. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Revision History

The information contained in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5 supersedes information published in previous versions. The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5:

Version 3.5

The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5:

■ New paragraph added before "Expander Product Terms".

Version 3.4

The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.4:

Updated Table 1.