

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	32
Number of Macrocells	512
Number of Gates	10000
Number of I/O	208
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm3512afc256-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- PCI compatible
- Bus-friendly architecture including programmable slew-rate control
- Open–drain output option
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power–saving mode for a power reduction of over 50% in each macrocell
- Configurable expander product–term distribution, allowing up to 32 product terms per macrocell
- Programmable security bit for protection of proprietary designs
- Enhanced architectural features, including:
 - 6 or 10 pin– or logic–driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Programmable output slew–rate control
- Software design support and automatic place—and—route provided by Altera's development systems for Windows—based PCs and Sun SPARCstations, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from third–party manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with the Altera master programming unit (MPU), MasterBlasterTM communications cable, ByteBlasterMVTM parallel port download cable, BitBlasterTM serial download cable as well as programming hardware from third–party manufacturers and any in–circuit tester that supports JamTM Standard Test and Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), or Serial Vector Format Files (.svf)

General Description

MAX 3000A devices are low–cost, high–performance devices based on the Altera MAX architecture. Fabricated with advanced CMOS technology, the EEPROM–based MAX 3000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices in the -4, -5, -6, -7, and -10 speed grades are compatible with the timing requirements of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

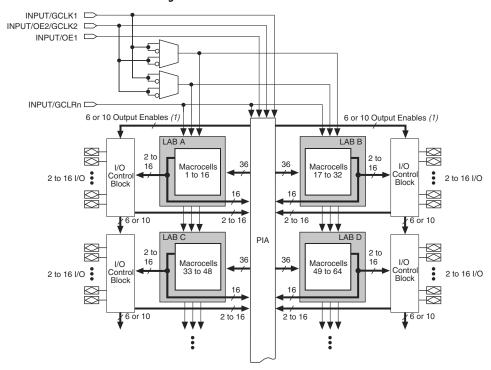


Figure 1. MAX 3000A Device Block Diagram

Note:

(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have 10 output enables.

Logic Array Blocks

The MAX 3000A device architecture is based on the linking of high–performance LABs. LABs consist of 16–macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.

Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions

Expander Product Terms

Although most logic functions can be implemented with the five product terms available in each macrocell, highly complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 3000A architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. Shareable expanders incur a small delay (t_{SFXP}) . Figure 3 shows how shareable expanders can feed multiple macrocells.

Figure 3. MAX 3000A Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

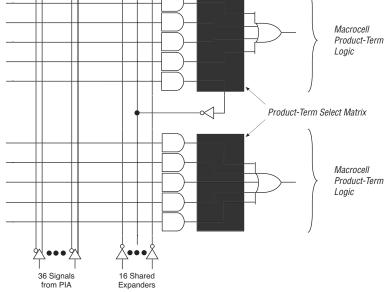
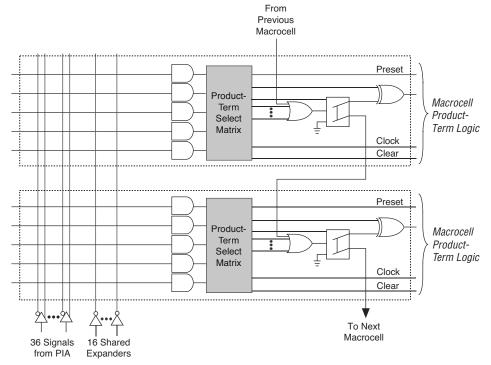
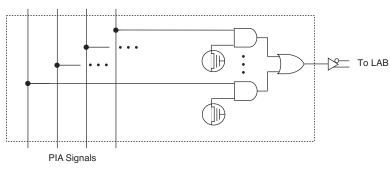



Figure 4. MAX 3000A Parallel Expanders


Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 3000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.

Figure 5. MAX 3000A PIA Routing

While the routing delays of channel-based routing schemes in masked or FPGAs are cumulative, variable, and path-dependent, the MAX 3000A PIA has a predictable delay. The PIA makes a design's timing performance easy to predict.

I/O Control Blocks

The I/O control block allows each I/O pin to be individually configured for input, output, or bidirectional operation. All I/O pins have a tri–state buffer that is individually controlled by one of the global output enable signals or directly connected to ground or $V_{CC}.$ Figure 6 shows the I/O control block for MAX 3000A devices. The I/O control block has 6 or 10 global output enable signals that are driven by the true or complement of two output enable signals, a subset of the I/O pins, or a subset of the I/O macrocells.

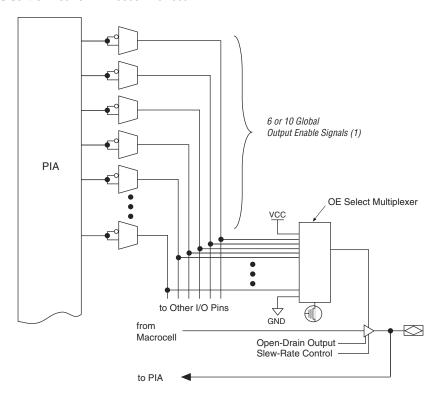


Figure 6. I/O Control Block of MAX 3000A Devices

Note:

(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have 10 output enables.

When the tri–state buffer control is connected to ground, the output is tri-stated (high impedance), and the $\rm I/O$ pin can be used as a dedicated input. When the tri–state buffer control is connected to $\rm V_{CC}$, the output is enabled.

The MAX 3000A architecture provides dual I/O feedback, in which macrocell and pin feedbacks are independent. When an I/O pin is configured as an input, the associated macrocell can be used for buried logic.

In-System Programmability

MAX 3000A devices can be programmed in–system via an industry–standard four–pin IEEE Std. 1149.1-1990 (JTAG) interface. In-system programmability (ISP) offers quick, efficient iterations during design development and debugging cycles. The MAX 3000A architecture internally generates the high programming voltages required to program its EEPROM cells, allowing in–system programming with only a single 3.3–V power supply. During in–system programming, the I/O pins are tri–stated and weakly pulled–up to eliminate board conflicts. The pull–up value is nominally 50 k Ω

MAX 3000A devices have an enhanced ISP algorithm for faster programming. These devices also offer an ISP_Done bit that ensures safe operation when in–system programming is interrupted. This ISP_Done bit, which is the last bit programmed, prevents all I/O pins from driving until the bit is programmed.

ISP simplifies the manufacturing flow by allowing devices to be mounted on a printed circuit board (PCB) with standard pick—and—place equipment before they are programmed. MAX 3000A devices can be programmed by downloading the information via in—circuit testers, embedded processors, the MasterBlaster communications cable, the ByteBlasterMV parallel port download cable, and the BitBlaster serial download cable. Programming the devices after they are placed on the board eliminates lead damage on high—pin—count packages (e.g., QFP packages) due to device handling. MAX 3000A devices can be reprogrammed after a system has already shipped to the field. For example, product upgrades can be performed in the field via software or modem.

The Jam STAPL programming and test language can be used to program MAX 3000A devices with in–circuit testers, PCs, or embedded processors.

For more information on using the Jam STAPL programming and test language, see *Application Note 88* (Using the Jam Language for ISP & ICR via an Embedded Processor), *Application Note 122* (Using Jam STAPL for ISP & ICR via an Embedded Processor) and AN 111 (Embedded Programming Using the 8051 and Jam Byte-Code).

The ISP circuitry in MAX 3000A devices is compliant with the IEEE Std. 1532 specification. The IEEE Std. 1532 is a standard developed to allow concurrent ISP between multiple PLD vendors.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 3000A device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

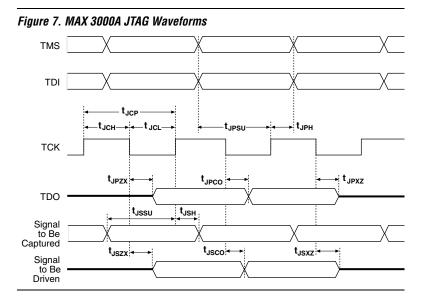


Figure 7 shows the timing information for the JTAG signals.

Table 10 shows the JTAG timing parameters and values for MAX 3000A devices.

Table 1	Table 10. JTAG Timing Parameters & Values for MAX 3000A Devices									
Symbol	Parameter	Min	Max	Unit						
t _{JCP}	TCK clock period	100		ns						
t _{JCH}	TCK clock high time	50		ns						
t _{JCL}	TCK clock low time	50		ns						
t _{JPSU}	JTAG port setup time	20		ns						
t _{JPH}	JTAG port hold time	45		ns						
t _{JPCO}	JTAG port clock to output		25	ns						
t _{JPZX}	JTAG port high impedance to valid output		25	ns						
t _{JPXZ}	JTAG port valid output to high impedance		25	ns						
t _{JSSU}	Capture register setup time	20		ns						
t _{JSH}	Capture register hold time	45		ns						
t _{JSCO}	Update register clock to output		25	ns						
t _{JSZX}	Update register high impedance to valid output		25	ns						
t _{JSXZ}	Update register valid output to high impedance		25	ns						

Programmable Speed/Power Control

MAX 3000A devices offer a power–saving mode that supports low-power operation across user–defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 3000A device for either high–speed or low–power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{ACI} , t_{EN} , t_{CPPW} and t_{SEXP} parameters.

Output Configuration

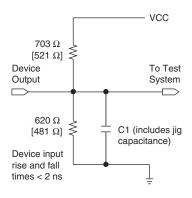
MAX 3000A device outputs can be programmed to meet a variety of system–level requirements.

MultiVolt I/O Interface

The MAX 3000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 3000A devices to connect to systems with differing supply voltages. MAX 3000A devices in all packages can be set for 2.5–V, 3.3–V, or 5.0–V I/O pin operation. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3–V or 2.5–V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5–V power supply, the output levels are compatible with 2.5–V systems. When the VCCIO pins are connected to a 3.3–V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0–V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5–V, 3.3–V, or 5.0–V signals.

Table 11	summarizes	the MA	X 3000A	MultiVolt	I/C) suppc	rt.
----------	------------	--------	---------	-----------	-----	---------	-----


Table 11. MAX 3000A MultiVolt I/O Support										
V _{CCIO} Voltage	V _{CCIO} Voltage Input Signal (V) Output Signal (V)									
	2.5	3.3	5.0	2.5	3.3	5.0				
2.5	✓	~	✓	~						
3.3	✓	✓	✓	✓	✓	✓				

Note:

(1) When $V_{\rm CCIO}$ is 3.3 V, a MAX 3000A device can drive a 2.5–V device that has 3.3–V tolerant inputs.

Figure 8. MAX 3000A AC Test Conditions

Power supply transients can affect AC measurements. Simultaneous transitions of multiple outputs should be avoided for accurate measurement. Threshold tests must not be performed under AC conditions. Large-amplitude, fastground-current transients normally occur as the device outputs discharge the load capacitances. When these transients flow through the parasitic inductance between the device ground pin and the test system ground, significant reductions in observable noise immunity can result. Numbers in brackets are for 2.5-V outputs. Numbers without brackets are for 3.3-V devices or outputs.

Operating Conditions

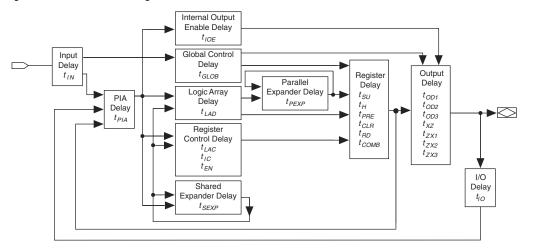
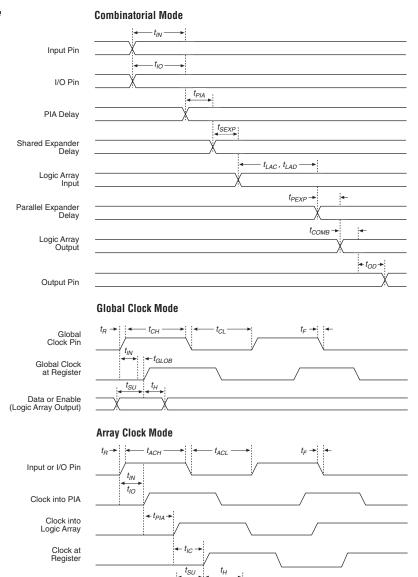

Tables 12 through 15 provide information on absolute maximum ratings, recommended operating conditions, DC operating conditions, and capacitance for MAX 3000A devices.

Table 1	Table 12. MAX 3000A Device Absolute Maximum Ratings Note (1)									
Symbol	Parameter	Conditions	Min	Max	Unit					
V _{CC}	Supply voltage	With respect to ground (2)	-0.5	4.6	V					
VI	DC input voltage	1	-2.0	5.75	V					
I _{OUT}	DC output current, per pin		-25	25	mA					
T _{STG}	Storage temperature	No bias	-65	150	° C					
T_A	Ambient temperature	Under bias	-65	135	° C					
T_{J}	Junction temperature	PQFP and TQFP packages, under bias		135	° C					

Timing Model

MAX 3000A device timing can be analyzed with the Altera software, with a variety of popular industry–standard EDA simulators and timing analyzers, or with the timing model shown in Figure 10. MAX 3000A devices have predictable internal delays that enable the designer to determine the worst–case timing of any design. The software provides timing simulation, point–to–point delay prediction, and detailed timing analysis for device–wide performance evaluation.


Figure 10. MAX 3000A Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin–to–pin timing delays, can be calculated as the sum of internal parameters. Figure 11 shows the timing relationship between internal and external delay parameters.

Figure 11. MAX 3000A Switching Waveforms

 t_R & t_F < 2 ns. Inputs are driven at 3 V for a logic high and 0 V for a logic low. All timing characteristics are measured at 1.5 V.

 $-t_{PIA}$

 $\leftarrow t_{OD} \rightarrow$

 $\leftarrow t_{CLR}, t_{PRE} \rightarrow$

Altera Corporation 27

 t_{RD}

 $\leftarrow t_{PIA} \rightarrow$

← t_{OD}

Data from Logic Array

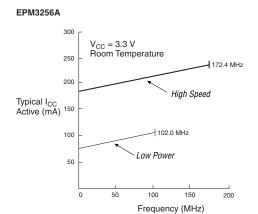
Register to PIA to Logic Array

Register Output to Pin

Tables 16 through 23 show EPM3032A, EPM3064A, EPM3128A, EPM3256A, and EPM3512A timing information.

	6. EPM3032A External 1	<u> </u>		Note (1)		•			Unit	
Symbol	Parameter	Conditions	Speed Grade							
			-4		_	-7		10		
			Min	Max	Min	Max	Min	Max		
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10	ns	
t _{PD2}	I/O input to non– registered output	C1 = 35 pF (2)		4.5		7.5		10	ns	
t _{SU}	Global clock setup time	(2)	2.9		4.7		6.3		ns	
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns	
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.0	1.0	5.0	1.0	6.7	ns	
t _{CH}	Global clock high time		2.0		3.0		4.0		ns	
t _{CL}	Global clock low time		2.0		3.0		4.0		ns	
t _{ASU}	Array clock setup time	(2)	1.6		2.5		3.6		ns	
t _{AH}	Array clock hold time	(2)	0.3		0.5		0.5		ns	
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.4	ns	
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns	
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns	
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns	
t _{CNT}	Minimum global clock period	(2)		4.4		7.2		9.7	ns	
f _{CNT}	Maximum internal global clock frequency	(2), (4)	227.3		138.9		103.1		MHz	
t _{ACNT}	Minimum array clock period	(2)		4.4		7.2		9.7	ns	
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	227.3		138.9		103.1		MHz	

Table 17	Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions			Speed	Grade			Unit	
			_	4	-	7	-10			
			Min	Max	Min	Max	Min	Max		
t _{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns	
t_{LPA}	Low-power adder	(5)		2.5		4.0		5.0	ns	


Table 18	3. EPM3064A External Timin	g Parameters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-4		-7		-10		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non–registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{PD2}	I/O input to non–registered output	C1 = 35 pF <i>(2)</i>		4.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.8		4.7		6.2		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.1	1.0	5.1	1.0	7.0	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.6		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.4		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.6	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.5		7.4		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	222.2		135.1		100.0		MHz
t _{ACNT}	Minimum array clock period	(2)		4.5		7.4		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	222.2		135.1		100.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			_	-4	-	-7		10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.6		1.1		1.4	ns
t _{IO}	I/O input pad and buffer delay			0.6		1.1		1.4	ns
t _{SEXP}	Shared expander delay			1.8		3.0		3.9	ns
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns
t_{LAD}	Logic array delay			1.5		2.5		3.2	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t_{SU}	Register setup time		1.3		2.0		2.9		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{RD}	Register delay			0.7		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.6		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.9		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			1.0		1.5		2.2	ns
t _{PRE}	Register preset time			1.3		2.1		2.9	ns

Symbol	Parameter	Conditions		Speed	Grade		Unit
			-7		-1	10	
			Min	Max	Min	Max	
t _{AH}	Array clock hold time	(2)	0.2		0.3		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.8	1.0	10.4	ns
t _{ACH}	Array clock high time		3.0		4.0		ns
t _{ACL}	Array clock low time		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		8.6		11.5	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	116.3		87.0		MHz
t _{ACNT}	Minimum array clock period	(2)		8.6		11.5	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	116.3		87.0		MHz

Table 25.	EPM3512A Internal Timing Par	ameters (Part 1	of 2)	Note (1)					
Symbol	Parameter	Conditions		Speed Grade					
			-7		-10				
			Min	Max	Min	Max			
t _{IN}	Input pad and buffer delay			0.7		0.9	ns		
t _{IO}	I/O input pad and buffer delay			0.7		0.9	ns		
t _{FIN}	Fast input delay			3.1		3.6	ns		
t _{SEXP}	Shared expander delay			2.7		3.5	ns		
t _{PEXP}	Parallel expander delay			0.4		0.5	ns		
t_{LAD}	Logic array delay			2.2		2.8	ns		
t _{LAC}	Logic control array delay			1.0		1.3	ns		
t _{IOE}	Internal output enable delay			0.0		0.0	ns		
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		1.0		1.5	ns		
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		1.5		2.0	ns		

Figure 13. I_{CC} vs. Frequency for MAX 3000A Devices

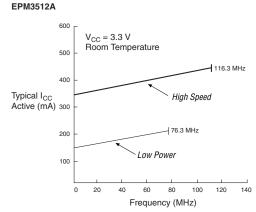
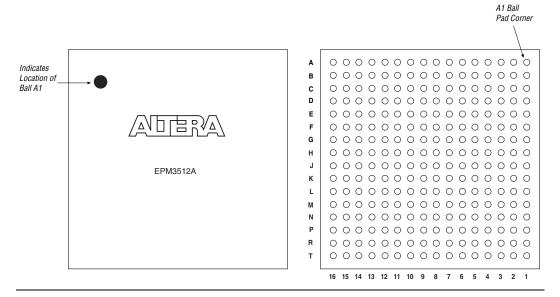



Figure 18. 256-Pin FineLine BGA Package Pin-Out Diagram

Package outline not drawn to scale.

Revision History

The information contained in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5 supersedes information published in previous versions. The following changes were made in the *MAX 3000A Programmable Logic Device Data Sheet* version 3.5:

Version 3.5

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.5:

■ New paragraph added before "Expander Product Terms".

Version 3.4

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.4:

■ Updated Table 1.

Version 3.3

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.3:

- Updated Tables 3, 13, and 26.
- Added Tables 4 through 6.
- Updated Figures 12 and 13.
- Added "Programming Sequence" on page 14 and "Programming Times" on page 14

Version 3.2

The following change were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.2:

■ Updated the EPM3512 I_{CC} versus frequency graph in Figure 13.

Version 3.1

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.1:

- Updated timing information in Table 1 for the EPM3256A device.
- Updated *Note (10)* of Table 15.

Version 3.0

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.0:

- Added EPM3512A device.
- Updated Tables 2 and 3.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_reg@altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services

LS. EN ISO 9001