

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	10 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	32
Number of Macrocells	512
Number of Gates	10000
Number of I/O	172
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm3512aqc208-10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- PCI compatible
- Bus-friendly architecture including programmable slew-rate control
- Open–drain output option
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power–saving mode for a power reduction of over 50% in each macrocell
- Configurable expander product–term distribution, allowing up to 32 product terms per macrocell
- Programmable security bit for protection of proprietary designs
- Enhanced architectural features, including:
 - 6 or 10 pin– or logic–driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Programmable output slew–rate control
- Software design support and automatic place—and—route provided by Altera's development systems for Windows—based PCs and Sun SPARCstations, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from third–party manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with the Altera master programming unit (MPU), MasterBlasterTM communications cable, ByteBlasterMVTM parallel port download cable, BitBlasterTM serial download cable as well as programming hardware from third–party manufacturers and any in–circuit tester that supports JamTM Standard Test and Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), or Serial Vector Format Files (.svf)

General Description

MAX 3000A devices are low–cost, high–performance devices based on the Altera MAX architecture. Fabricated with advanced CMOS technology, the EEPROM–based MAX 3000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices in the -4, -5, -6, -7, and -10 speed grades are compatible with the timing requirements of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

MAX 3000A devices contain 32 to 512 macrocells, combined into groups of 16 macrocells called logic array blocks (LABs). Each macrocell has a programmable—AND/fixed—OR array and a configurable register with independently programmable clock, clock enable, clear, and preset functions. To build complex logic functions, each macrocell can be supplemented with shareable expander and high—speed parallel expander product terms to provide up to 32 product terms per macrocell.

MAX 3000A devices provide programmable speed/power optimization. Speed-critical portions of a design can run at high speed/full power, while the remaining portions run at reduced speed/low power. This speed/power optimization feature enables the designer to configure one or more macrocells to operate at 50% or lower power while adding only a nominal timing delay. MAX 3000A devices also provide an option that reduces the slew rate of the output buffers, minimizing noise transients when non-speed-critical signals are switching. The output drivers of all MAX 3000A devices can be set for 2.5 V or 3.3 V, and all input pins are 2.5–V, 3.3–V, and 5.0-V tolerant, allowing MAX 3000A devices to be used in mixed-voltage systems.

MAX 3000A devices are supported by Altera development systems, which are integrated packages that offer schematic, text—including VHDL, Verilog HDL, and the Altera Hardware Description Language (AHDL)—and waveform design entry, compilation and logic synthesis, simulation and timing analysis, and device programming. The software provides EDIF 2 0 0 and 3 0 0, LPM, VHDL, Verilog HDL, and other interfaces for additional design entry and simulation support from other industry–standard PC– and UNIX–workstation–based EDA tools. The software runs on Windows–based PCs, as well as Sun SPARCstation, and HP 9000 Series 700/800 workstations.

For more information on development tools, see the MAX+PLUS II Programmable Logic Development System & Software Data Sheet and the Quartus Programmable Logic Development System & Software Data Sheet.

Functional Description

The MAX 3000A architecture includes the following elements:

- Logic array blocks (LABs)
- Macrocells
- Expander product terms (shareable and parallel)
- Programmable interconnect array (PIA)
- I/O control blocks

The MAX 3000A architecture includes four dedicated inputs that can be used as general–purpose inputs or as high–speed, global control signals (clock, clear, and two output enable signals) for each macrocell and I/O pin. Figure 1 shows the architecture of MAX 3000A devices.

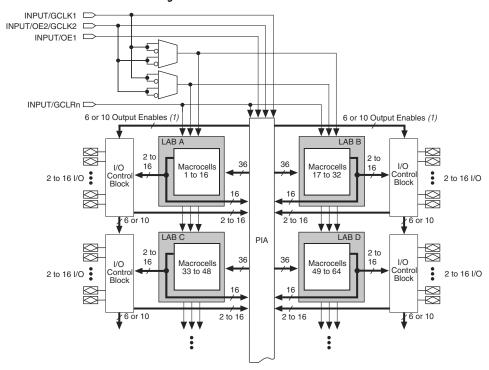


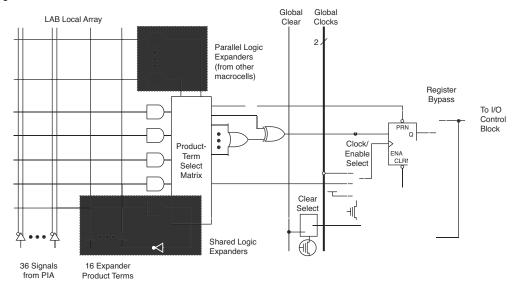
Figure 1. MAX 3000A Device Block Diagram

Note:

(1) EPM3032A, EPM3064A, EPM3128A, and EPM3256A devices have six output enables. EPM3512A devices have 10 output enables.

Logic Array Blocks

The MAX 3000A device architecture is based on the linking of high–performance LABs. LABs consist of 16–macrocell arrays, as shown in Figure 1. Multiple LABs are linked together via the PIA, a global bus that is fed by all dedicated input pins, I/O pins, and macrocells.


Each LAB is fed by the following signals:

- 36 signals from the PIA that are used for general logic inputs
- Global controls that are used for secondary register functions

Macrocells

MAX 3000A macrocells can be individually configured for either sequential or combinatorial logic operation. Macrocells consist of three functional blocks: logic array, product–term select matrix, and programmable register. Figure 2 shows a MAX 3000A macrocell.

Figure 2. MAX 3000A Macrocell

Combinatorial logic is implemented in the logic array, which provides five product terms per macrocell. The product–term select matrix allocates these product terms for use as either primary logic inputs (to the OR and XOR gates) to implement combinatorial functions, or as secondary inputs to the macrocell's register preset, clock, and clock enable control functions.

Two kinds of expander product terms ("expanders") are available to supplement macrocell logic resources:

- Shareable expanders, which are inverted product terms that are fed back into the logic array
- Parallel expanders, which are product terms borrowed from adjacent macrocells

The Altera development system automatically optimizes product–term allocation according to the logic requirements of the design.

Expander Product Terms

Although most logic functions can be implemented with the five product terms available in each macrocell, highly complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 3000A architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. Shareable expanders incur a small delay (t_{SFXP}) . Figure 3 shows how shareable expanders can feed multiple macrocells.

Shareable expanders can be shared by any or all macrocells in an LAB.

Figure 3. MAX 3000A Shareable Expanders

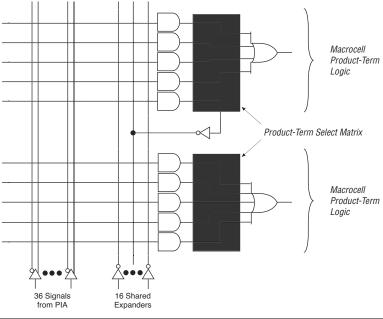
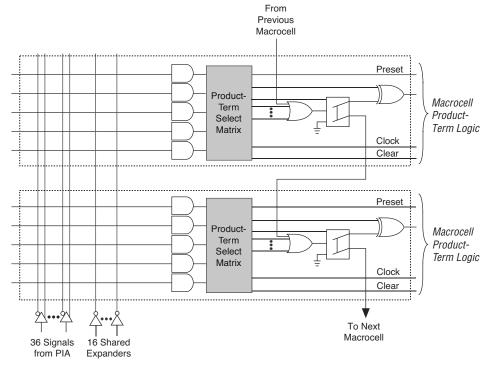



Figure 4. MAX 3000A Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 3000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.

Programming Sequence

During in-system programming, instructions, addresses, and data are shifted into the MAX 3000A device through the TDI input pin. Data is shifted out through the TDO output pin and compared against the expected data.

Programming a pattern into the device requires the following six ISP stages. A stand-alone verification of a programmed pattern involves only stages 1, 2, 5, and 6.

- Enter ISP. The enter ISP stage ensures that the I/O pins transition smoothly from user mode to ISP mode. The enter ISP stage requires 1 ms.
- Check ID. Before any program or verify process, the silicon ID is checked. The time required to read this silicon ID is relatively small compared to the overall programming time.
- 3. *Bulk Erase*. Erasing the device in-system involves shifting in the instructions to erase the device and applying one erase pulse of 100 ms.
- Program. Programming the device in-system involves shifting in the address and data and then applying the programming pulse to program the EEPROM cells. This process is repeated for each EEPROM address.
- Verify. Verifying an Altera device in-system involves shifting in addresses, applying the read pulse to verify the EEPROM cells, and shifting out the data for comparison. This process is repeated for each EEPROM address.
- 6. Exit ISP. An exit ISP stage ensures that the I/O pins transition smoothly from ISP mode to user mode. The exit ISP stage requires 1 ms.

Programming Times

The time required to implement each of the six programming stages can be broken into the following two elements:

- A pulse time to erase, program, or read the EEPROM cells.
- A shifting time based on the test clock (TCK) frequency and the number of TCK cycles to shift instructions, address, and data into the device.

The programming times described in Tables 4 through 6 are associated with the worst-case method using the enhanced ISP algorithm.

Table 4. MAX 3000A t _{PU}	Table 4. MAX 3000A t _{PULSE} & Cycle _{TCK} Values										
Device	Progra	ımming	Stand-Alone	Verification							
	t _{PPULSE} (s)	Cycle _{PTCK}	t _{VPULSE} (s)	Cycle _{VTCK}							
EPM3032A	2.00	55,000	0.002	18,000							
EPM3064A	2.00	105,000	0.002	35,000							
EPM3128A	2.00	205,000	0.002	68,000							
EPM3256A	2.00	447,000	0.002	149,000							
EPM3512A	2.00	890,000	0.002	297,000							

Tables 5 and 6 show the in-system programming and stand alone verification times for several common test clock frequencies.

Table 5. MAX 3000A In-System Programming Times for Different Test Clock Frequencies												
Device		f _{TCK}										
	10 MHz	MHz 5 MHz 2 MHz 1 MHz 500 kHz 200 kHz 100 kHz 50 kHz										
EPM3032A	2.01	2.01	2.03	2.06	2.11	2.28	2.55	3.10	S			
EPM3064A	2.01	2.02	2.05	2.11	2.21	2.53	3.05	4.10	S			
EPM3128A	2.02	2.04	2.10	2.21	2.41	3.03	4.05	6.10	S			
EPM3256A	2.05	2.09	2.23	2.45	2.90	4.24	6.47	10.94	S			
EPM3512A	2.09	2.18	2.45	2.89	3.78	6.45	10.90	19.80	s			

Table 6. MAX 3000A Stand-Alone Verification Times for Different Test Clock Frequencies												
Device				1	TCK				Units			
	10 MHz	IZ 5 MHZ 2 MHZ 1 MHZ 500 kHZ 200 kHZ 100 kHZ 50 kHZ										
EPM3032A	0.00	0.01	0.01	0.02	0.04	0.09	0.18	0.36	S			
EPM3064A	0.01	0.01	0.02	0.04	0.07	0.18	0.35	0.70	S			
EPM3128A	0.01	0.02	0.04	0.07	0.14	0.34	0.68	1.36	S			
EPM3256A	0.02	0.03	0.08	0.15	0.30	0.75	1.49	2.98	S			
EPM3512A	0.03	0.06	0.15	0.30	0.60	1.49	2.97	5.94	S			

Programmable Speed/Power Control

MAX 3000A devices offer a power–saving mode that supports low-power operation across user–defined signal paths or the entire device. This feature allows total power dissipation to be reduced by 50% or more because most logic applications require only a small fraction of all gates to operate at maximum frequency.

The designer can program each individual macrocell in a MAX 3000A device for either high–speed or low–power operation. As a result, speed-critical paths in the design can run at high speed, while the remaining paths can operate at reduced power. Macrocells that run at low power incur a nominal timing delay adder (t_{LPA}) for the t_{LAD} , t_{LAC} , t_{IC} , t_{ACI} , t_{EN} , t_{CPPW} and t_{SEXP} parameters.

Output Configuration

MAX 3000A device outputs can be programmed to meet a variety of system–level requirements.

MultiVolt I/O Interface

The MAX 3000A device architecture supports the MultiVolt I/O interface feature, which allows MAX 3000A devices to connect to systems with differing supply voltages. MAX 3000A devices in all packages can be set for 2.5–V, 3.3–V, or 5.0–V I/O pin operation. These devices have one set of V_{CC} pins for internal operation and input buffers (VCCINT), and another set for I/O output drivers (VCCIO).

The VCCIO pins can be connected to either a 3.3–V or 2.5–V power supply, depending on the output requirements. When the VCCIO pins are connected to a 2.5–V power supply, the output levels are compatible with 2.5–V systems. When the VCCIO pins are connected to a 3.3–V power supply, the output high is at 3.3 V and is therefore compatible with 3.3-V or 5.0–V systems. Devices operating with V_{CCIO} levels lower than 3.0 V incur a nominally greater timing delay of t_{OD2} instead of t_{OD1} . Inputs can always be driven by 2.5–V, 3.3–V, or 5.0–V signals.

1	able I	1 summarizes	the MA	X 3000A	Multi V	olt I/C) supp	ort.
---	--------	--------------	--------	---------	---------	---------	--------	------

Table 11. MAX 3000A MultiVolt I/O Support											
V _{CCIO} Voltage Input Signal (V) Output Signal (V)											
	2.5 3.3 5.0 2.5 3.3 5.0										
2.5	✓	✓	✓	✓							
3.3	3.3										

Note:

(1) When $V_{\rm CCIO}$ is 3.3 V, a MAX 3000A device can drive a 2.5–V device that has 3.3–V tolerant inputs.

 $V_{CCINT} = 3.3 V$

V_{CCIO} = 2.5 V

Temperature = 25 °C

150 I_{OL} 100 Typical I_O $V_{CCINT} = 3.3 V$ Output $V_{CCIO} = 3.3 V$ Current (mA) Temperature = 25 °C 50 I_{OH} 2 V_O Output Voltage (V) 2.5 V 150 I_{OL}

Figure 9. Output Drive Characteristics of MAX 3000A Devices

3.3 V

Power Sequencing & Hot-Socketing

Because MAX 3000A devices can be used in a mixed–voltage environment, they have been designed specifically to tolerate any possible power–up sequence. The $\rm V_{CCIO}$ and $\rm V_{CCINT}$ power planes can be powered in any order.

V_O Output Voltage (V)

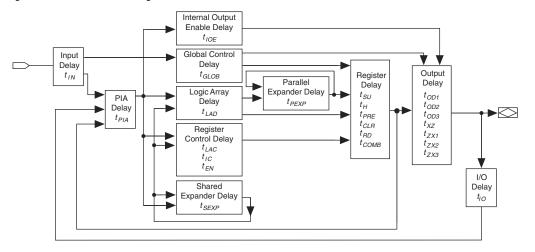
Signals can be driven into MAX 3000A devices before and during power-up without damaging the device. In addition, MAX 3000A devices do not drive out during power-up. Once operating conditions are reached, MAX 3000A devices operate as specified by the user.

Altera Corporation 25

100

50

Typical I_O


Current (mA)

Output

Timing Model

MAX 3000A device timing can be analyzed with the Altera software, with a variety of popular industry–standard EDA simulators and timing analyzers, or with the timing model shown in Figure 10. MAX 3000A devices have predictable internal delays that enable the designer to determine the worst–case timing of any design. The software provides timing simulation, point–to–point delay prediction, and detailed timing analysis for device–wide performance evaluation.

Figure 10. MAX 3000A Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin–to–pin timing delays, can be calculated as the sum of internal parameters. Figure 11 shows the timing relationship between internal and external delay parameters.

Tables 16 through 23 show EPM3032A, EPM3064A, EPM3128A, EPM3256A, and EPM3512A timing information.

	6. EPM3032A External 1	, 		Note (1)		•			Unit		
Symbol	Parameter	Conditions	Speed Grade								
			_	4	_	7	-1	10			
			Min	Max	Min	Max	Min	Max			
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10	ns		
t _{PD2}	I/O input to non– registered output	C1 = 35 pF (2)		4.5		7.5		10	ns		
t _{SU}	Global clock setup time	(2)	2.9		4.7		6.3		ns		
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.0	1.0	5.0	1.0	6.7	ns		
t _{CH}	Global clock high time		2.0		3.0		4.0		ns		
t _{CL}	Global clock low time		2.0		3.0		4.0		ns		
t _{ASU}	Array clock setup time	(2)	1.6		2.5		3.6		ns		
t _{AH}	Array clock hold time	(2)	0.3		0.5		0.5		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.4	ns		
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns		
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns		
t _{CNT}	Minimum global clock period	(2)		4.4		7.2		9.7	ns		
f _{CNT}	Maximum internal global clock frequency	(2), (4)	227.3		138.9		103.1		MHz		
t _{ACNT}	Minimum array clock period	(2)		4.4		7.2		9.7	ns		
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	227.3		138.9		103.1		MHz		

Symbol	Parameter	Conditions			Speed	Grade			Unit
			_	4	_	-7	_	10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.2		1.5	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.2		1.5	ns
t _{SEXP}	Shared expander delay			1.9		3.1		4.0	ns
t _{PEXP}	Parallel expander delay			0.5		0.8		1.0	ns
t_{LAD}	Logic array delay			1.5		2.5		3.3	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 \text{ V or } 3.3 \text{ V}$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.8		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t_{RD}	Register delay			0.7		1.2		1.5	ns
t _{COMB}	Combinatorial delay			0.6		1.0		1.3	ns
t _{IC}	Array clock delay			1.2		2.0		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			0.8		1.3		1.9	ns
t _{PRE}	Register preset time			1.2		1.9		2.6	ns
t _{CLR}	Register clear time			1.2		1.9		2.6	ns

Table 17	Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2) Note (1)								
Symbol	Symbol Parameter Conditions Speed Grade Unit								
			_	-4 -7 -10					
			Min	Max	Min	Max	Min	Max	
t _{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns
t_{LPA}	Low-power adder	(5)		2.5		4.0		5.0	ns

Table 18	3. EPM3064A External Timin	g Parameters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			_	4	_	7	-1	10	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non–registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{PD2}	I/O input to non–registered output	C1 = 35 pF <i>(2)</i>		4.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.8		4.7		6.2		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.1	1.0	5.1	1.0	7.0	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.6		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.4		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.6	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.5		7.4		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	222.2		135.1		100.0		MHz
t _{ACNT}	Minimum array clock period	(2)		4.5		7.4		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	222.2		135.1		100.0		MHz

Table 19	Table 19. EPM3064A Internal Timing Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions			Speed	Grade			Unit	
			_	-4 -7 -10						
			Min	Max	Min	Max	Min	Max		
t _{CLR}	Register clear time			1.3		2.1		2.9	ns	
t_{PIA}	PIA delay	(2)		1.0		1.7		2.3	ns	
t_{LPA}	Low-power adder	(5)		3.5		4.0		5.0	ns	

Table 2	D. EPM3128A External 1	iming Param	eters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-	-5 -7 -10					
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non– registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{PD2}	I/O input to non– registered output	C1 = 35 pF (2)		5.0		7.5		10	ns
t _{SU}	Global clock setup time	(2)	3.3		4.9		6.6		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.4	1.0	5.0	1.0	6.6	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.8		2.8		3.8		ns
t _{AH}	Array clock hold time	(2)	0.2		0.3		0.4		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.9	1.0	7.1	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		5.2		7.7		10.2	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	192.3		129.9		98.0		MHz
t _{ACNT}	Minimum array clock period	(2)		5.2		7.7		10.2	ns

Table 21. EPM3128A Internal Timing Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions	Speed Grade Unit						
			-5 -7		-7	-10			
			Min	Max	Min	Max	Min	Max	
t _{SU}	Register setup time		1.4		2.1		2.9		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{RD}	Register delay			0.8		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.5		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.7		2.2	ns
t _{EN}	Register enable time			0.7		1.0		1.3	ns
t _{GLOB}	Global control delay			1.1		1.6		2.0	ns
t _{PRE}	Register preset time			1.4		2.0		2.7	ns
t _{CLR}	Register clear time			1.4		2.0		2.7	ns
t _{PIA}	PIA delay	(2)		1.4		2.0		2.6	ns
t _{LPA}	Low-power adder	(5)		4.0		4.0		5.0	ns

Table 22. EPM3256A External Timing Parameters Note (1)							
Symbol	Parameter	Conditions		Unit			
			=	-7	-10		
			Min	Max	Min	Max	
t _{PD1}	Input to non–registered output	C1 = 35 pF (2)		7.5		10	ns
t _{PD2}	I/O input to non–registered output	C1 = 35 pF (2)		7.5		10	ns
t _{SU}	Global clock setup time	(2)	5.2		6.9		ns
t _H	Global clock hold time	(2)	0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.8	1.0	6.4	ns
t _{CH}	Global clock high time		3.0		4.0		ns
t _{CL}	Global clock low time		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	2.7		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.3	1.0	9.7	ns
t _{ACH}	Array clock high time		3.0		4.0		ns
t _{ACL}	Array clock low time		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		ns

Power Consumption

Supply power (P) versus frequency (f_{MAX}, in MHz) for MAX 3000A devices is calculated with the following equation:

$$P = P_{INT} + P_{IO} = I_{CCINT} \times V_{CC} + P_{IO}$$

The $P_{\rm IO}$ value, which depends on the device output load characteristics and switching frequency, can be calculated using the guidelines given in *Application Note 74 (Evaluating Power for Altera Devices)*.

The I_{CCINT} value depends on the switching frequency and the application logic. The I_{CCINT} value is calculated with the following equation:

 $I_{CCINT} =$

$$(A \times MC_{TON}) + [B \times (MC_{DEV} - MC_{TON})] + (C \times MC_{USED} \times f_{MAX} \times tog_{LC})$$

The parameters in the I_{CCINT} equation are:

 MC_{TON} = Number of macrocells with the Turbo BitTM option turned

on, as reported in the Quartus II or MAX+PLUS II Report

File (.rpt)

 MC_{DEV} = Number of macrocells in the device

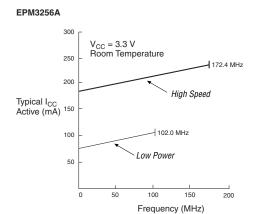
MC_{USED} = Total number of macrocells in the design, as reported in

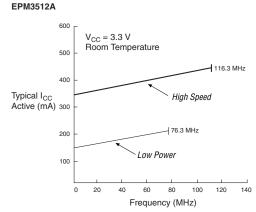
the RPT File

 f_{MAX} = Highest clock frequency to the device

tog_{LC} = Average percentage of logic cells toggling at each clock

(typically 12.5%)

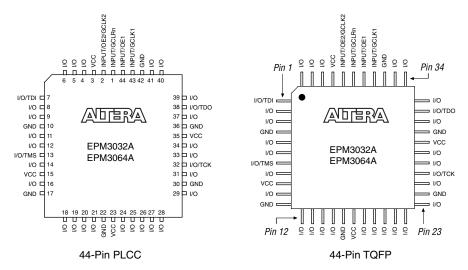

A, B, C = Constants (shown in Table 26)


Table 26. MAX 3000A I _{CC} Equation Constants						
Device	A	В	C			
EPM3032A	0.71	0.30	0.014			
EPM3064A	0.71	0.30	0.014			
EPM3128A	0.71	0.30	0.014			
EPM3256A	0.71	0.30	0.014			
EPM3512A	0.71	0.30	0.014			

The I_{CCINT} calculation provides an I_{CC} estimate based on typical conditions using a pattern of a 16–bit, loadable, enabled, up/down counter in each LAB with no output load. Actual I_{CC} should be verified during operation because this measurement is sensitive to the actual pattern in the device and the environmental operating conditions.

Figures 12 and 13 show the typical supply current versus frequency for MAX 3000A devices.

Figure 13. I_{CC} vs. Frequency for MAX 3000A Devices


Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin–out information.

Figures 14 through 18 show the package pin-out diagrams for MAX 3000A devices.

Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram

Package outlines not drawn to scale.

Version 3.3

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.3:

- Updated Tables 3, 13, and 26.
- Added Tables 4 through 6.
- Updated Figures 12 and 13.
- Added "Programming Sequence" on page 14 and "Programming Times" on page 14

Version 3.2

The following change were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.2:

■ Updated the EPM3512 I_{CC} versus frequency graph in Figure 13.

Version 3.1

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.1:

- Updated timing information in Table 1 for the EPM3256A device.
- Updated *Note (10)* of Table 15.

Version 3.0

The following changes were made in the MAX 3000A Programmable Logic Device Data Sheet version 3.0:

- Added EPM3512A device.
- Updated Tables 2 and 3.

101 Innovation Drive San Jose, CA 95134 (408) 544-7000 http://www.altera.com Applications Hotline: (800) 800-EPLD Customer Marketing: (408) 544-7104 Literature Services: lit_reg@altera.com

Copyright © 2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services

LS. EN ISO 9001