

Welcome to **E-XFL.COM**

Understanding Embedded - CPLDs (Complex Programmable Logic Devices)

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixed-function ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details	
Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	7.5 ns
Voltage Supply - Internal	3V ~ 3.6V
Number of Logic Elements/Blocks	32
Number of Macrocells	512
Number of Gates	10000
Number of I/O	172
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/intel/epm3512aqc208-7n

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

...and More Features

- PCI compatible
- Bus-friendly architecture including programmable slew-rate control
- Open–drain output option
- Programmable macrocell flipflops with individual clear, preset, clock, and clock enable controls
- Programmable power–saving mode for a power reduction of over 50% in each macrocell
- Configurable expander product–term distribution, allowing up to 32 product terms per macrocell
- Programmable security bit for protection of proprietary designs
- Enhanced architectural features, including:
 - 6 or 10 pin– or logic–driven output enable signals
 - Two global clock signals with optional inversion
 - Enhanced interconnect resources for improved routability
 - Programmable output slew–rate control
- Software design support and automatic place—and—route provided by Altera's development systems for Windows—based PCs and Sun SPARCstations, and HP 9000 Series 700/800 workstations
- Additional design entry and simulation support provided by EDIF 2 0 0 and 3 0 0 netlist files, library of parameterized modules (LPM), Verilog HDL, VHDL, and other interfaces to popular EDA tools from third–party manufacturers such as Cadence, Exemplar Logic, Mentor Graphics, OrCAD, Synopsys, Synplicity, and VeriBest
- Programming support with the Altera master programming unit (MPU), MasterBlasterTM communications cable, ByteBlasterMVTM parallel port download cable, BitBlasterTM serial download cable as well as programming hardware from third–party manufacturers and any in–circuit tester that supports JamTM Standard Test and Programming Language (STAPL) Files (.jam), Jam STAPL Byte-Code Files (.jbc), or Serial Vector Format Files (.svf)

General Description

MAX 3000A devices are low–cost, high–performance devices based on the Altera MAX architecture. Fabricated with advanced CMOS technology, the EEPROM–based MAX 3000A devices operate with a 3.3-V supply voltage and provide 600 to 10,000 usable gates, ISP, pin-to-pin delays as fast as 4.5 ns, and counter speeds of up to 227.3 MHz. MAX 3000A devices in the -4, -5, -6, -7, and -10 speed grades are compatible with the timing requirements of the PCI Special Interest Group (PCI SIG) *PCI Local Bus Specification, Revision 2.2.* See Table 2.

For registered functions, each macrocell flipflop can be individually programmed to implement D, T, JK, or SR operation with programmable clock control. The flipflop can be bypassed for combinatorial operation. During design entry, the designer specifies the desired flipflop type; the Altera development system software then selects the most efficient flipflop operation for each registered function to optimize resource utilization.

Each programmable register can be clocked in three different modes:

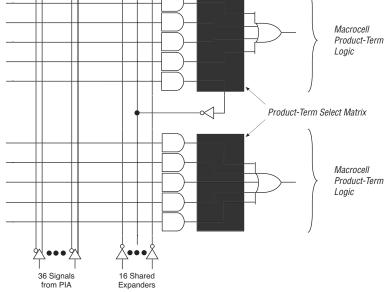
- Global clock signal mode, which achieves the fastest clock–to–output performance.
- Global clock signal enabled by an active—high clock enable. A clock enable is generated by a product term. This mode provides an enable on each flipflop while still achieving the fast clock—to—output performance of the global clock.
- Array clock implemented with a product term. In this mode, the flipflop can be clocked by signals from buried macrocells or I/O pins.

Two global clock signals are available in MAX 3000A devices. As shown in Figure 1, these global clock signals can be the true or the complement of either of the two global clock pins, GCLK1 or GCLK2.

Each register also supports asynchronous preset and clear functions. As shown in Figure 2, the product–term select matrix allocates product terms to control these operations. Although the product–term–driven preset and clear from the register are active high, active–low control can be obtained by inverting the signal within the logic array. In addition, each register clear function can be individually driven by the active–low dedicated global clear pin (GCLRn).

All registers are cleared upon power-up. By default, all registered outputs drive low when the device is powered up. You can set the registered outputs to drive high upon power-up through the Quartus[®] II software. Quartus II software uses the NOT Gate Push-Back method, which uses an additional macrocell to set the output high. To set this in the Quartus II software, go to the Assignment Editor and set the **Power-Up Level** assignment for the register to **High**.

Expander Product Terms


Although most logic functions can be implemented with the five product terms available in each macrocell, highly complex logic functions require additional product terms. Another macrocell can be used to supply the required logic resources. However, the MAX 3000A architecture also offers both shareable and parallel expander product terms ("expanders") that provide additional product terms directly to any macrocell in the same LAB. These expanders help ensure that logic is synthesized with the fewest possible logic resources to obtain the fastest possible speed.

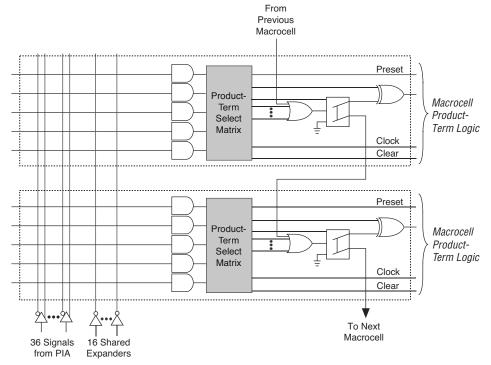
Shareable Expanders

Each LAB has 16 shareable expanders that can be viewed as a pool of uncommitted single product terms (one from each macrocell) with inverted outputs that feed back into the logic array. Each shareable expander can be used and shared by any or all macrocells in the LAB to build complex logic functions. Shareable expanders incur a small delay (t_{SFXP}) . Figure 3 shows how shareable expanders can feed multiple macrocells.

Figure 3. MAX 3000A Shareable Expanders

Shareable expanders can be shared by any or all macrocells in an LAB.

Parallel Expanders


Parallel expanders are unused product terms that can be allocated to a neighboring macrocell to implement fast, complex logic functions. Parallel expanders allow up to 20 product terms to directly feed the macrocell OR logic, with five product terms provided by the macrocell and 15 parallel expanders provided by neighboring macrocells in the LAB.

The Altera development system compiler can automatically allocate up to three sets of up to five parallel expanders to the macrocells that require additional product terms. Each set of five parallel expanders incurs a small, incremental timing delay (t_{PEXP}). For example, if a macrocell requires 14 product terms, the compiler uses the five dedicated product terms within the macrocell and allocates two sets of parallel expanders; the first set includes five product terms, and the second set includes four product terms, increasing the total delay by $2 \times t_{PEXP}$.

Two groups of eight macrocells within each LAB (e.g., macrocells 1 through 8 and 9 through 16) form two chains to lend or borrow parallel expanders. A macrocell borrows parallel expanders from lower–numbered macrocells. For example, macrocell 8 can borrow parallel expanders from macrocell 7, from macrocells 7 and 6, or from macrocells 7, 6, and 5. Within each group of eight, the lowest–numbered macrocell can only lend parallel expanders and the highest–numbered macrocell can only borrow them. Figure 4 shows how parallel expanders can be borrowed from a neighboring macrocell.

Figure 4. MAX 3000A Parallel Expanders

Unused product terms in a macrocell can be allocated to a neighboring macrocell.

Programmable Interconnect Array

Logic is routed between LABs on the PIA. This global bus is a programmable path that connects any signal source to any destination on the device. All MAX 3000A dedicated inputs, I/O pins, and macrocell outputs feed the PIA, which makes the signals available throughout the entire device. Only the signals required by each LAB are actually routed from the PIA into the LAB. Figure 5 shows how the PIA signals are routed into the LAB. An EEPROM cell controls one input to a two-input AND gate, which selects a PIA signal to drive into the LAB.

By combining the pulse and shift times for each of the programming stages, the program or verify time can be derived as a function of the TCK frequency, the number of devices, and specific target device(s). Because different ISP-capable devices have a different number of EEPROM cells, both the total fixed and total variable times are unique for a single device.

Programming a Single MAX 3000A Device

The time required to program a single MAX 3000A device in-system can be calculated from the following formula:

$$t_{PROG} = t_{PPULSE} + \frac{Cycle_{PTCK}}{f_{TCK}}$$

where: $t_{PROG} = Programming time$ $t_{PPULSE} = Sum of the fixed times to erase, program, and$

verify the EEPROM cells

 $Cycle_{PTCK}$ = Number of TCK cycles to program a device

= TCK frequency

The ISP times for a stand-alone verification of a single MAX 3000A device can be calculated from the following formula:

$$t_{VER} = t_{VPULSE} + \frac{Cycle_{VTCK}}{f_{TCK}}$$

where: t_{VER} = Verify time t_{VPULSE} = Sum of the fixed times to verify the EEPROM cells $Cycle_{VTCK}$ = Number of TCK cycles to verify a device

The instruction register length of MAX 3000A devices is 10 bits. The IDCODE and USERCODE register length is 32 bits. Tables 8 and 9 show the boundary–scan register length and device IDCODE information for MAX 3000A devices.

Table 8. MAX 3000A Boundary-Sc	an Register Length
Device	Boundary–Scan Register Length
EPM3032A	96
EPM3064A	192
EPM3128A	288
EPM3256A	480
EPM3512A	624

Table 9. 32-	Bit MAX 30	00A Device IDCODE Value	Note (1)	
Device		IDCODE (32 I	oits)	
	Version (4 Bits)	Part Number (16 Bits)	Manufacturer's Identity (11 Bits)	1 (1 Bit) (2)
EPM3032A	0001	0111 0000 0011 0010	00001101110	1
EPM3064A	0001	0111 0000 0110 0100	00001101110	1
EPM3128A	0001	0111 0001 0010 1000	00001101110	1
EPM3256A	0001	0111 0010 0101 0110	00001101110	1
EPM3512A	0001	0111 0101 0001 0010	00001101110	1

Notes:

- (1) The most significant bit (MSB) is on the left.
- (2) The least significant bit (LSB) for all JTAG IDCODEs is 1.

See Application Note 39 (IEEE 1149.1 (JTAG) Boundary–Scan Testing in Altera Devices) for more information on JTAG BST.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CCINT}	Supply voltage for internal logic and input buffers	(10)	3.0	3.6	V
3 3	Supply voltage for output drivers, 3.3–V operation		3.0	3.6	V
	Supply voltage for output drivers, 2.5–V operation		2.3	2.7	V
V _{CCISP}	Supply voltage during ISP		3.0	3.6	V
V _I	Input voltage	(3)	-0.5	5.75	V
V _O	Output voltage		0	V _{CCIO}	V
T _A	Ambient temperature	Commercial range	0	70	° C
		Industrial range	-40	85	° C
T _J	Junction temperature	Commercial range	0	90	° C
		Industrial range (11)	-40	105	° C
t _R	Input rise time			40	ns
t _F	Input fall time			40	ns

Table 1	4. MAX 3000A Device DC Opera	ating Conditions Note (4)			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{IH}	High-level input voltage		1.7	5.75	V
V _{IL}	Low-level input voltage		-0.5	0.8	V
V _{OH}	3.3–V high–level TTL output voltage	$I_{OH} = -8 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (5)$	2.4		V
	3.3–V high–level CMOS output voltage	$I_{OH} = -0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (5)$	V _{CCIO} - 0.2		V
	2.5-V high-level output voltage	$I_{OH} = -100 \mu A DC, V_{CCIO} = 2.30 V (5)$	2.1		٧
		$I_{OH} = -1 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (5)$	2.0		V
		$I_{OH} = -2 \text{ mA DC}, V_{CCIO} = 2.30 \text{ V } (5)$	1.7		٧
V_{OL}	3.3-V low-level TTL output voltage	I _{OL} = 8 mA DC, V _{CCIO} = 3.00 V <i>(6)</i>		0.4	V
	3.3–V low–level CMOS output voltage	$I_{OL} = 0.1 \text{ mA DC}, V_{CCIO} = 3.00 \text{ V } (6)$		0.2	V
	2.5-V low-level output voltage	I _{OL} = 100 μA DC, V _{CCIO} = 2.30 V <i>(6)</i>		0.2	V
		I _{OL} = 1 mA DC, V _{CCIO} = 2.30 V (6)		0.4	V
		I _{OL} = 2 mA DC, V _{CCIO} = 2.30 V (6)		0.7	٧
II	Input leakage current	V _I = -0.5 to 5.5 V (7)	-10	10	μА
I _{OZ}	Tri-state output off-state current	V _I = -0.5 to 5.5 V (7)	-10	10	μА
R _{ISP}	Value of I/O pin pull–up resistor when programming in–system or during power–up	V _{CCIO} = 2.3 to 3.6 V (8)	20	74	kΩ

Table 1	Table 15. MAX 3000A Device Capacitance Note (9)								
Symbol	Parameter Conditions Min Max Uni								
C _{IN}	Input pin capacitance	V _{IN} = 0 V, f = 1.0 MHz		8	pF				
C _{I/O}	I/O pin capacitance	V _{OUT} = 0 V, f = 1.0 MHz		8	pF				

Notes to tables:

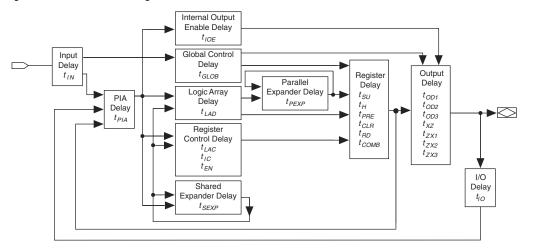

- (1) See the Operating Requirements for Altera Devices Data Sheet.
- (2) Minimum DC input voltage is –0.5 V. During transitions, the inputs may undershoot to –2.0 V or overshoot to 5.75 V for input currents less than 100 mA and periods shorter than 20 ns.
- (3) All pins, including dedicated inputs, I/O pins, and JTAG pins, may be driven before V_{CCINT} and V_{CCIO} are powered.
- (4) These values are specified under the recommended operating conditions, as shown in Table 13 on page 23.
- (5) The parameter is measured with 50% of the outputs each sourcing the specified current. The I_{OH} parameter refers to high–level TTL or CMOS output current.
- (6) The parameter is measured with 50% of the outputs each sinking the specified current. The I_{OL} parameter refers to low–level TTL, PCI, or CMOS output current.
- (7) This value is specified during normal device operation. During power-up, the maximum leakage current is ±300 µA.
- (8) This pull-up exists while devices are programmed in-system and in unprogrammed devices during power-up.
- (9) Capacitance is measured at 25° C and is sample–tested only. The OE1 pin (high–voltage pin during programming) has a maximum capacitance of 20 pF.
- (10) The POR time for all MAX 3000A devices does not exceed 100 μ s. The sufficient V_{CCINT} voltage level for POR is 3.0 V. The device is fully initialized within the POR time after V_{CCINT} reaches the sufficient POR voltage level.
- (11) These devices support in-system programming for -40° to 100° C. For in-system programming support between -40° and 0° C, contact Altera Applications.

Figure 9 shows the typical output drive characteristics of MAX 3000A devices.

Timing Model

MAX 3000A device timing can be analyzed with the Altera software, with a variety of popular industry–standard EDA simulators and timing analyzers, or with the timing model shown in Figure 10. MAX 3000A devices have predictable internal delays that enable the designer to determine the worst–case timing of any design. The software provides timing simulation, point–to–point delay prediction, and detailed timing analysis for device–wide performance evaluation.

Figure 10. MAX 3000A Timing Model

The timing characteristics of any signal path can be derived from the timing model and parameters of a particular device. External timing parameters, which represent pin–to–pin timing delays, can be calculated as the sum of internal parameters. Figure 11 shows the timing relationship between internal and external delay parameters.

Tables 16 through 23 show EPM3032A, EPM3064A, EPM3128A, EPM3256A, and EPM3512A timing information.

	6. EPM3032A External 1	, 		Note (1)		•			T
Symbol	Parameter	Conditions			Speed	Grade	1		Unit
			_	4	_	-7		-10	
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non- registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{PD2}	I/O input to non– registered output	C1 = 35 pF (2)		4.5		7.5		10	ns
t _{SU}	Global clock setup time	(2)	2.9		4.7		6.3		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.0	1.0	5.0	1.0	6.7	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.5		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.5		0.5		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.4	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.4		7.2		9.7	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	227.3		138.9		103.1		MHz
t _{ACNT}	Minimum array clock period	(2)		4.4		7.2		9.7	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	227.3		138.9		103.1		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			_	4	_	-7	_	10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.2		1.5	ns
t _{IO}	I/O input pad and buffer delay			0.7		1.2		1.5	ns
t _{SEXP}	Shared expander delay			1.9		3.1		4.0	ns
t _{PEXP}	Parallel expander delay			0.5		0.8		1.0	ns
t_{LAD}	Logic array delay			1.5		2.5		3.3	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on $V_{CCIO} = 2.5 \text{ V or } 3.3 \text{ V}$	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.8		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t_{RD}	Register delay			0.7		1.2		1.5	ns
t _{COMB}	Combinatorial delay			0.6		1.0		1.3	ns
t _{IC}	Array clock delay			1.2		2.0		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			0.8		1.3		1.9	ns
t _{PRE}	Register preset time			1.2		1.9		2.6	ns
t _{CLR}	Register clear time			1.2		1.9		2.6	ns

Table 17	Table 17. EPM3032A Internal Timing Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions		Speed Grade						
			-4		-7		-10			
			Min	Max	Min	Max	Min	Max		
t _{PIA}	PIA delay	(2)		0.9		1.5		2.1	ns	
t_{LPA}	Low-power adder	(5)		2.5		4.0		5.0	ns	

Table 18	3. EPM3064A External Timin	g Parameters	Note (1)					
Symbol	Parameter	Conditions			Speed	Grade			Unit
			-4		-7		-10		
			Min	Max	Min	Max	Min	Max	
t _{PD1}	Input to non–registered output	C1 = 35 pF (2)		4.5		7.5		10.0	ns
t _{PD2}	I/O input to non–registered output	C1 = 35 pF <i>(2)</i>		4.5		7.5		10.0	ns
t _{SU}	Global clock setup time	(2)	2.8		4.7		6.2		ns
t _H	Global clock hold time	(2)	0.0		0.0		0.0		ns
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	3.1	1.0	5.1	1.0	7.0	ns
t _{CH}	Global clock high time		2.0		3.0		4.0		ns
t _{CL}	Global clock low time		2.0		3.0		4.0		ns
t _{ASU}	Array clock setup time	(2)	1.6		2.6		3.6		ns
t _{AH}	Array clock hold time	(2)	0.3		0.4		0.6		ns
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	4.3	1.0	7.2	1.0	9.6	ns
t _{ACH}	Array clock high time		2.0		3.0		4.0		ns
t _{ACL}	Array clock low time		2.0		3.0		4.0		ns
t _{CPPW}	Minimum pulse width for clear and preset	(3)	2.0		3.0		4.0		ns
t _{CNT}	Minimum global clock period	(2)		4.5		7.4		10.0	ns
f _{CNT}	Maximum internal global clock frequency	(2), (4)	222.2		135.1		100.0		MHz
t _{ACNT}	Minimum array clock period	(2)		4.5		7.4		10.0	ns
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	222.2		135.1		100.0		MHz

Symbol	Parameter	Conditions			Speed	Grade			Unit
			_	-4	-	-7		10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.6		1.1		1.4	ns
t _{IO}	I/O input pad and buffer delay			0.6		1.1		1.4	ns
t _{SEXP}	Shared expander delay			1.8		3.0		3.9	ns
t _{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns
t_{LAD}	Logic array delay			1.5		2.5		3.2	ns
t _{LAC}	Logic control array delay			0.6		1.0		1.2	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.8		1.3		1.8	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		1.3		1.8		2.3	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.8		6.3		6.8	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 2.5 \text{ V}$	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns
t _{SU}	Register setup time		1.3		2.0		2.9		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{RD}	Register delay			0.7		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.6		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.9		2.5	ns
t _{EN}	Register enable time			0.6		1.0		1.2	ns
t _{GLOB}	Global control delay			1.0		1.5		2.2	ns
t _{PRE}	Register preset time			1.3		2.1		2.9	ns

Table 20	Table 20. EPM3128A External Timing Parameters Note (1)									
Symbol	Parameter	Conditions			Speed	Grade			Unit	
			-	-5 -7		7	-10			
			Min	Max	Min	Max	Min	Max		
f _{ACNT}	Maximum internal array clock frequency	(2), (4)	192.3		129.9		98.0		MHz	

Table 2	Table 21. EPM3128A Internal Timing Parameters (Part 1 of 2) Note (1)								
Symbol	Parameter	Conditions	Conditions Speed Grade						Unit
			_	-5		- 7		10	
			Min	Max	Min	Max	Min	Max	
t _{IN}	Input pad and buffer delay			0.7		1.0		1.4	ns
t_{IO}	I/O input pad and buffer delay			0.7		1.0		1.4	ns
t _{SEXP}	Shared expander delay			2.0		2.9		3.8	ns
t_{PEXP}	Parallel expander delay			0.4		0.7		0.9	ns
t_{LAD}	Logic array delay			1.6		2.4		3.1	ns
t_{LAC}	Logic control array delay			0.7		1.0		1.3	ns
t _{IOE}	Internal output enable delay			0.0		0.0		0.0	ns
t _{OD1}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 3.3 V	C1 = 35 pF		0.8		1.2		1.6	ns
t _{OD2}	Output buffer and pad delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		1.3		1.7		2.1	ns
t _{OD3}	Output buffer and pad delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		5.8		6.2		6.6	ns
t _{ZX1}	Output buffer enable delay, slow slew rate = off $V_{CCIO} = 3.3 \text{ V}$	C1 = 35 pF		4.0		4.0		5.0	ns
t _{ZX2}	Output buffer enable delay, slow slew rate = off V _{CCIO} = 2.5 V	C1 = 35 pF		4.5		4.5		5.5	ns
t _{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		9.0		10.0	ns
t_{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		4.0		5.0	ns

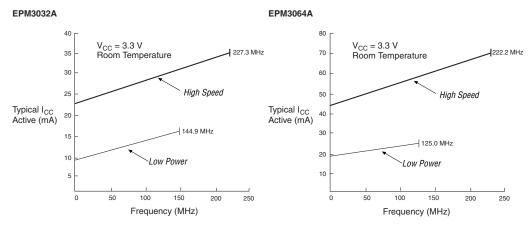

Table 21. EPM3128A Internal Timing Parameters (Part 2 of 2) Note (1)									
Symbol	Parameter	Conditions	Speed Grade						
			_	-5 -7		-10			
			Min	Max	Min	Max	Min	Max	
t _{SU}	Register setup time		1.4		2.1		2.9		ns
t _H	Register hold time		0.6		1.0		1.3		ns
t _{RD}	Register delay			0.8		1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.5		0.9		1.3	ns
t _{IC}	Array clock delay			1.2		1.7		2.2	ns
t _{EN}	Register enable time			0.7		1.0		1.3	ns
t _{GLOB}	Global control delay			1.1		1.6		2.0	ns
t _{PRE}	Register preset time			1.4		2.0		2.7	ns
t _{CLR}	Register clear time			1.4		2.0		2.7	ns
t _{PIA}	PIA delay	(2)		1.4		2.0		2.6	ns
t _{LPA}	Low-power adder	(5)		4.0		4.0		5.0	ns

Table 22. EPM3256A External Timing Parameters Note (1)									
Symbol	Parameter	Conditions		Unit					
			-7		-10		1		
			Min	Max	Min	Max			
t _{PD1}	Input to non–registered output	C1 = 35 pF (2)		7.5		10	ns		
t _{PD2}	I/O input to non–registered output	C1 = 35 pF (2)		7.5		10	ns		
t _{SU}	Global clock setup time	(2)	5.2		6.9		ns		
t _H	Global clock hold time	(2)	0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.8	1.0	6.4	ns		
t _{CH}	Global clock high time		3.0		4.0		ns		
t _{CL}	Global clock low time		3.0		4.0		ns		
t _{ASU}	Array clock setup time	(2)	2.7		3.6		ns		
t _{AH}	Array clock hold time	(2)	0.3		0.5		ns		
t _{ACO1}	Array clock to output delay	C1 = 35 pF (2)	1.0	7.3	1.0	9.7	ns		
t _{ACH}	Array clock high time		3.0		4.0		ns		
t _{ACL}	Array clock low time		3.0		4.0		ns		
t _{CPPW}	Minimum pulse width for clear and preset	(3)	3.0		4.0		ns		

Table 23.	EPM3256A Internal Timing Para	meters (Part 2 of	2) Not	e (1)			
Symbol	Parameter	Conditions		Unit			
			-7		-10		1
			Min	Max	Min	Max	
t_{ZX3}	Output buffer enable delay, slow slew rate = on V _{CCIO} = 2.5 V or 3.3 V	C1 = 35 pF		9.0		10.0	ns
t _{XZ}	Output buffer disable delay	C1 = 5 pF		4.0		5.0	ns
t _{SU}	Register setup time		2.1		2.9		ns
t_H	Register hold time		0.9		1.2		ns
t _{RD}	Register delay			1.2		1.6	ns
t _{COMB}	Combinatorial delay			0.8		1.2	ns
t _{IC}	Array clock delay			1.6		2.1	ns
t _{EN}	Register enable time			1.0		1.3	ns
t _{GLOB}	Global control delay			1.5		2.0	ns
t _{PRE}	Register preset time			2.3		3.0	ns
t _{CLR}	Register clear time			2.3		3.0	ns
t_{PIA}	PIA delay	(2)		2.4		3.2	ns
t_{LPA}	Low-power adder	(5)		4.0		5.0	ns

Table 24. EPM3512A External Timing Parameters Note (1)									
Symbol	Parameter	Conditions		Unit					
			-7		-10				
			Min	Max	Min	Max			
t _{PD1}	Input to non-registered output	C1 = 35 pF (2)		7.5		10.0	ns		
t _{PD2}	I/O input to non-registered output	C1 = 35 pF (2)		7.5		10.0	ns		
t _{SU}	Global clock setup time	(2)	5.6		7.6		ns		
t _H	Global clock hold time	(2)	0.0		0.0		ns		
t _{FSU}	Global clock setup time of fast input		3.0		3.0		ns		
t _{FH}	Global clock hold time of fast input		0.0		0.0		ns		
t _{CO1}	Global clock to output delay	C1 = 35 pF	1.0	4.7	1.0	6.3	ns		
t _{CH}	Global clock high time		3.0		4.0		ns		
t _{CL}	Global clock low time		3.0		4.0		ns		
t _{ASU}	Array clock setup time	(2)	2.5		3.5		ns		

Figure 12. I_{CC} vs. Frequency for MAX 3000A Devices

EPM3128A

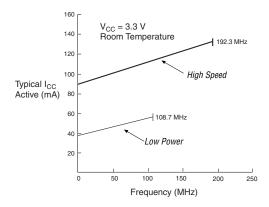
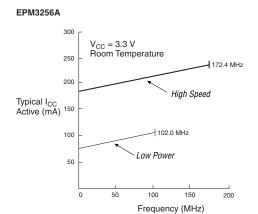
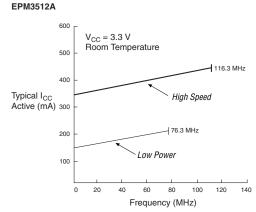
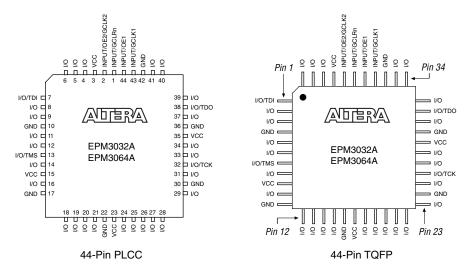




Figure 13. I_{CC} vs. Frequency for MAX 3000A Devices


Device Pin-Outs

See the Altera web site (http://www.altera.com) or the *Altera Digital Library* for pin–out information.

Figures 14 through 18 show the package pin-out diagrams for MAX 3000A devices.

Figure 14. 44-Pin PLCC/TQFP Package Pin-Out Diagram

Package outlines not drawn to scale.

