

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65k90-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Microcontroller Features:

- Operating Voltage Range: 1.8V to 5.5V
- On-Chip 3.3V Regulator
- Operating Speed up to 64 MHz
- Up to 128 Kbytes On-Chip Flash Program Memory
- Data EEPROM of 1,024 Bytes
- 4K x 8 General Purpose Registers (SRAM)
- 10,000 Erase/Write Cycle Flash Program Memory, Minimum
- 1,000,000 Erase/write Cycle Data EEPROM Memory, Typical
- Flash Retention 40 Years, Minimum
- Three Internal Oscillators: LF-INTRC (31 kHz), MF-INTOSC (500 kHz) and HF-INTOSC (16 MHz)
- Self-Programmable under Software Control

- Priority Levels for Interrupts
- 8 x 8 Single-Cycle Hardware Multiplier
- Extended Watchdog Timer (WDT):
- Programmable period from 4 ms to 4,194s (about 70 minutes)
- In-Circuit Serial Programming[™] (ICSP[™]) via Two Pins
- · In-Circuit Debug via Two Pins
- Programmable:
 - BOR
 - LVD
- Two Enhanced Addressable USART modules:
 - LIN/J2602 support
 - Auto-Baud Detect (ABD)
- 12-Bit A/D Converter with up to 24 Channels:
 - Auto-acquisition and Sleep operation
 - Differential Input mode of operation

	Pin Number	Pin	Buffor	
Pin Name	QFN/TQFP	Туре	Туре	Description
				PORTC is a bidirectional I/O port.
RC0/SOSCO/SCLKI RC0 SOSCO SCLKI	30	I/O O I	ST — ST	Digital I/O. SOSC oscillator output. Digital SOSC input.
RC1/SOSCI/ECCP2/P2A/ SEG32 RC1 SOSCI ECCP2 ⁽¹⁾ P2A SEG32	29	I/O I I/O O	ST CMOS ST — Analog	Digital I/O. SOSC oscillator input. Capture 2 input/Compare 2 output/PWM2 output. Enhanced PWM2 Output A. SEG32 output for LCD.
RC2/ECCP1/P1A/SEG13 RC2 ECCP1 P1A SEG13	33	I/O I/O O	ST ST — Analog	Digital I/O. Capture 1 input/Compare 1 output/PWM1 output. Enhanced PWM1 Output A. SEG13 output for LCD.
RC3/SCK1/SCL1/SEG17 RC3 SCK1 SCL1 SEG17	34	I/O I/O I/O O	ST ST I ² C Analog	Digital I/O. Synchronous serial clock input/output for SPI mode. Synchronous serial clock input/output for I ² C™ mode. SEG17 output for LCD.
RC4/SDI1/SDA1/SEG16 RC4 SDI1 SDA1 SEG16	35	I/O I I/O O	ST ST I ² C Analog	Digital I/O. SPI data in. I ² C data I/O. SEG16 output for LCD.
RC5/SDO1/SEG12 RC5 SDO1 SEG12	36	I/O O O	ST Analog	Digital I/O. SPI data out. SEG12 output for LCD.
RC6/TX1/CK1/SEG27 RC6 TX1 CK1 SEG27	31	I/O O I/O O	ST — ST Analog	Digital I/O. EUSART asynchronous transmit. EUSART synchronous clock (see related RX1/DT1). SEG27 output for LCD.
RC7/RX1/DT1/SEG28 RC7 RX1 DT1 SEG28	32	I/O I I/O O	ST ST ST Analog	Digital I/O. EUSART asynchronous receive. EUSART synchronous data (see related TX1/CK1). SEG28 output for LCD.
Legend: TTL = TTL c ST = Schm I = Input P = Powe $I^2C^{TM} = I^2C/SI$	iompatible inpu itt Trigger inpu r MBus	t t with C	CMOS lev	CMOS = CMOS compatible input or output Analog = Analog input O = Output OD = Open-Drain (no P diode to VDD)

TABLE 1-3: PIC18F6XK90 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Default assignment for ECCP2 when the CCP2MX Configuration bit is set.

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K90 and PIC18F85K90 devices.

6.4 Data Addressing Modes

Note:	The execution of some instructions in the
	core PIC18 instruction set are changed
	when the PIC18 extended instruction set is
	enabled. For more information, see
	Section 6.6 "Data Memory and the
	Extended Instruction Set".

While the program memory can be addressed in only one way, through the Program Counter, information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). For details on this mode's operation, see **Section 6.6.1 "Indexed Addressing with Literal Offset**".

6.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all. They either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples of this mode include SLEEP, RESET and DAW.

Other instructions work in a similar way, but require an additional explicit argument in the opcode. This method is known as the Literal Addressing mode because the instructions require some literal value as an argument. Examples of this include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

6.4.2 DIRECT ADDRESSING

Direct Addressing specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies the instruction's data source as either a register address in one of the banks of data RAM (see Section 6.3.3 "General Purpose Register File") or a location in the Access Bank (see Section 6.3.2 "Access Bank").

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 6.3.1 "Bank Select Register") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit, 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction, either the target register is being operated on or the W register.

6.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code using loops, such as the example of clearing an entire RAM bank in Example 6-5. It also enables users to perform Indexed Addressing and other Stack Pointer operations for program memory in data memory.

EXAMPLE 6-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

100h ;
NCO ; Clear INDF
; register then
; inc pointer
, 1 ; All done with
; Bank1?
; NO, clear next
; YES, continue

6.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on its stored value.

These operands are:

- POSTDEC Accesses the FSR value, then automatically decrements it by '1' afterwards
- POSTINC Accesses the FSR value, then automatically increments it by '1' afterwards
- PREINC Increments the FSR value by '1', then uses it in the operation
- PLUSW Adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation

In this context, accessing an INDF register uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value, offset by the value in the W register – with neither value actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair. Rollovers of the FSRnL register, from FFh to 00h, carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (for example, Z, N and OV bits).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

6.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations.

As a specific case, assume that the FSR0H:FSR0L registers contain FE7h, the address of INDF1. Attempts to read the value of the INDF1, using INDF0 as an operand, will return 00h. Attempts to write to INDF1, using INDF0 as the operand, will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair, but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, however, particularly if their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution, so that they do not inadvertently change settings that might affect the operation of the device.

6.5 Program Memory and the Extended Instruction Set

The operation of program memory is unaffected by the use of the extended instruction set.

Enabling the extended instruction set adds five additional two-word commands to the existing PIC18 instruction set: ADDFSR, CALLW, MOVSF, MOVSS and SUBFSR. These instructions are executed as described in **Section 6.2.4 "Two-Word Instructions"**.

REGISTER 7-1: EECON1: EEPROM CONTROL REGISTER 1

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR ⁽¹⁾	WREN	WR	RD
bit 7							bit 0

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	EEPGD: Flash Program or Data EEPROM Memory Select bit
	1 = Access Flash program memory
	0 = Access data EEPROM memory
bit 6	CFGS: Flash Program/Data EEPROM or Configuration Select bit
	1 = Access Configuration registers
	0 = Access Flash program or data EEPROM memory
bit 5	Unimplemented: Read as '0'
bit 4	FREE: Flash Block Erase Enable bit
	1 = Erase the program memory row addressed by TBLPTR on the next WR command
	(cleared by completion of erase operation)
	0 = Perform write-only
bit 3	WRERR: Flash Program/Data EEPROM Error Flag bit ⁽¹⁾
	1 = A write operation is prematurely terminated (any Reset during self-timed programming in normal operation or an improper write attempt)
	0 = The write operation completed
bit 2	WREN: Flash Program/Data EEPROM Write Enable bit
	1 = Allows write cycles to Flash program/data EEPROM
	0 = Inhibits write cycles to Flash program/data EEPROM
bit 1	WR: Write-Control bit
	 Initiates a data EEPROM erase/write cycle, or a program memory erase cycle or write cycle (The operation is self-timed and the bit is cleared by hardware once write is complete. The WR bit can only be set (not cleared) in software.)
	0 = Write cycle to the EEPROM is complete
bit 0	RD: Read Control bit
	1 = Initiates an EEPROM read (Read takes one cycle. RD is cleared in hardware. The RD bit can only be set (not cleared) in software. The RD bit cannot be set when EERCD = 1 or CECS = 1.)
	0 = Does not initiate an EEPROM read

Note 1: When a WRERR occurs, the EEPGD and CFGS bits are not cleared. This allows tracing of the error condition.

REGISTER 10-9: PIR6: PERIPHERAL INTERRUPT FLAG REGISTER 6

U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	EEIF	—	CMP3IF	CMP2IF	CMP1IF
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5	Unimplemented: Read as '0'
bit 4	EEIF: Data EEDATA/Flash Write Operation Interrupt Flag bit
	1 = The write operation is complete (must be cleared in software)0 = The write operation is not complete, or has not been started
bit 3	Unimplemented: Read as '0'
bit 2	CMP3IF: CMP3 Interrupt Flag bit
	1 = CMP3 interrupt occurred (must be cleared in software)0 = No CMP3 interrupt occurred
bit 1	CMP2IF: CMP2 Interrupt Flag bit
	1 = CMP2 interrupt occurred (must be cleared in software)0 = No CMP2 interrupt occurred
bit 0	CMP1IF: CM1 Interrupt Flag bit
	1 = CMP1 interrupt occurred (must be cleared in software)0 = No CMP1 interrupt occurred

11.2 PORTA, TRISA and LATA Registers

PORTA is an 8-bit wide, bidirectional port. The corresponding Data Direction and Output Latch registers are TRISA and LATA.

RA4/T0CKI is a Schmitt Trigger input. All other PORTA pins have TTL input levels and full CMOS output drivers.

The RA4 pin is multiplexed with the Timer0 clock input and one of the LCD segment drives. RA5 and RA<3:0> are multiplexed with analog inputs for the A/D Converter. RA1 is multiplexed with analog as well as the LCD segment drive.

The operation of the analog inputs as A/D Converter inputs is selected by clearing or setting the ANSEL<3:0> control bits in the ANCON1 register. The corresponding TRISA bits control the direction of these pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

Note: RA5 and RA<3:0> are configured as analog inputs on any Reset and are read as '0'. RA4 is configured as a digital input.

OSC2/CLKO/RA6 and OSC1/CLKI/RA7 normally serve as the external circuit connections for the external (primary) oscillator circuit (HS Oscillator modes) or the external clock input and output (EC Oscillator modes). In these cases, RA6 and RA7 are not available as digital I/O and their corresponding TRIS and LAT bits are read as '0'. When the device is configured to use HF-INTOSC, MF-INTOSC or LF-INTOSC as the default oscillator mode, RA6 and RA7 are automatically configured as digital I/O; the oscillator and clock in/clock out functions are disabled.

RA1, RA4 and RA5 are multiplexed with LCD segment drives that are controlled by bits in the LCDSE1 and LCDSE2 registers. I/O port functionality is only available when the LCD segments are disabled.

RA5 has additional functionality for Timer1 and Timer3. It can be configured as the Timer1 clock input or the Timer3 external clock gate input.

EXAMPLE 11-1: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by
CLRF	LATA	; Alternate method to
BANKSEL	ANCON1	, clear output data fatches
MOVLW	00h	; Configure A/D
MOVWF	ANCON1	; for digital inputs
MOVLW	OBFh	; Value used to initialize
		; data direction
MOVWF	TRISA	; Set RA<7, 5:0> as inputs,
		; RA<6> as output

11.9 PORTH, LATH and TRISH Registers

Note:	PORTH is	available	only	on	the	80-pin
	devices.					

PORTH is an 8-bit wide, bidirectional I/O port. The corresponding Data Direction and Output Latch registers are TRISH and LATH.

All pins on PORTH are implemented with Schmitt Trigger input buffers. Each pin is individually configurable as an input or output.

All PORTH pins are multiplexed with the ADC/CCP/Comparator and LCD segment drives controlled by the LCDSE5 register. I/O port functions are only available when the segments are disabled.

EXAMPLE 11-8: INITIALIZING PORTH

CLRF	PORTH	; ;	Initialize PORTH by clearing output
		;	data latches
CLRF	LATH	;	Alternate method
		;	to clear output
		;	data latches
BANKSEL	ANCON2		
MOVLW	0Fh	;	Configure PORTH as
MOVWF	ANCON2	;	digital I/O
MOVLW	0Fh	;	Configure PORTH as
MOVWF	ANCON1	;	digital I/O
MOVLW	0CFh	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISH	;	Set RH3:RH0 as inputs
		;	RH5:RH4 as outputs
		;	RH7:RH6 as inputs

19.4 PWM (Enhanced Mode)

The Enhanced PWM mode can generate a PWM signal on up to four different output pins with up to 10 bits of resolution. It can do this through four different PWM Output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the PxM bits of the CCPxCON register must be set appropriately.

The PWM outputs are multiplexed with I/O pins and are designated: PxA, PxB, PxC and PxD. The polarity of the PWM pins is configurable and is selected by setting the CCPxM bits in the CCPxCON register appropriately.

Table 19-1 provides the pin assignments for each Enhanced PWM mode.

Figure 19-3 provides an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

FIGURE 19-3: EXAMPLE SIMPLIFIED BLOCK DIAGRAM OF THE ENHANCED PWM MODE

Note:The TRIS register value for each PWM output must be configured appropriately.Any pin not used by an Enhanced PWM mode is available for alternate pin functions.

21.3.4 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPxCON1<5>), must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, reinitialize the SSPxCON registers and then set the SSPEN bit. This configures the SDIx, SDOx, SCKx and SSx pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- SDIx must have TRISC<4> or TRISD<5> bit set
- SDOx must have the TRISC<5> or TRISD<4> bit cleared
- SCKx (Master mode) must have the TRISC<3> or TRISD<6>bit cleared
- SCKx (Slave mode) must have the TRISC<3> or TRISD<6> bit set
- SSx must have the TRISF<7> or TRISD<7> bit set

Any serial port function that is not desired may be overridden by programming the corresponding Data Direction (TRIS) register to the opposite value.

21.3.5 TYPICAL CONNECTION

Figure 21-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCKx signal. Data is shifted out of both shift registers on their programmed clock edge and latched on the opposite edge of the clock. Both processors should be programmed to the same Clock Polarity (CKP), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- · Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 21-2: SPI MASTER/SLAVE CONNECTION

REGISTER 23-10: ANCON2: A/D PORT CONFIGURATION REGISTER 2

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSEL23 ⁽¹⁾	ANSEL22 ⁽¹⁾	ANSEL21 ⁽¹⁾	ANSEL20 ⁽¹⁾	ANSEL19	ANSEL18	ANSEL17	ANSEL16
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **ANSEL<23:16>:** Analog Port Configuration bits (AN23 through AN16)

0 = Pin configured as a digital port

1 = Pin configured as an analog channel — digital input disabled and any inputs read as '0'

Note 1: AN12 through AN15, and AN20 to AN23, are implemented only on 80-pin devices. For 64-pin devices, the corresponding ANSELx bits are still implemented for these channels, but have no effect.

The analog reference voltage is software-selectable to either the device's positive and negative supply voltage (AVDD and AVSS) or the voltage level on the RA3/AN3/VREF+ and RA2/AN2/VREF- pins. VREF+ has two additional internal voltage reference selections: 2.048V and 4.096V.

The A/D Converter can uniquely operate while the device is in Sleep mode. To operate in Sleep, the A/D conversion clock must be derived from the A/D Converter's internal RC oscillator.

The output of the Sample-and-Hold (S/H) is the input into the converter, which generates the result via successive approximation.

Each port pin associated with the A/D Converter can be configured as an analog input or a digital I/O. The ADRESH and ADRESL registers contain the result of the A/D conversion. When the A/D conversion is complete, the result is loaded into the ADRESH:ADRESL register pair, the GO/DONE bit (ADCON0<1>) is cleared and the A/D Interrupt Flag bit, ADIF (PIR1<6>), is set.

A device Reset forces all registers to their Reset state. This forces the A/D module to be turned off and any conversion in progress is aborted. The value in the ADRESH:ADRESL register pair is not modified for a Power-on Reset. These registers will contain unknown data after a Power-on Reset.

The block diagram of the A/D module is shown in Figure 23-4.

EXAMPLE 27-2: CURRENT CALIBRATION ROUTINE

```
#include "pl8cxxx.h"
#define COUNT 500
                                          //@ 8MHz = 125uS.
#define DELAY for(i=0;i<COUNT;i++)</pre>
                                          //R value is 4200000 (4.2M)
#define RCAL .027
                                          //scaled so that result is in
                                          //1/100th of uA
#define ADSCALE 1023
                                          //for unsigned conversion 10 sig bits
#define ADREF 3.3
                                          //Vdd connected to A/D Vr+
int main(void)
{
    int i;
   int j = 0; //index for loop
   unsigned int Vread = 0;
    double VTot = 0;
    float Vavg=0, Vcal=0, CTMUISrc = 0; //float values stored for calcs
//{\tt assume} CTMU and A/D have been setup correctly
//see Example 25-1 for CTMU & A/D setup
setup();
CTMUCONHbits.CTMUEN = 1;
                                          //Enable the CTMU
    for(j=0;j<10;j++)</pre>
    {
        CTMUCONHbits.IDISSEN = 1;
                                          //drain charge on the circuit
        DELAY;
                                          //wait 125us
        CTMUCONHbits.IDISSEN = 0;
                                          //end drain of circuit
       CTMUCONLbits.EDG1STAT = 1;
                                         //Begin charging the circuit
                                          //using CTMU current source
       DELAY;
                                          //wait for 125us
       CTMUCONLbits.EDG1STAT = 0;
                                          //Stop charging circuit
        PIR1bits.ADIF = 0;
                                          //make sure A/D Int not set
        ADCON0bits.GO=1;
                                          //and begin A/D conv.
        while(!PIR1bits.ADIF);
                                          //Wait for A/D convert complete
        Vread = ADRES;
                                          //Get the value from the A/D
        PIR1bits.ADIF = 0;
                                          //Clear A/D Interrupt Flag
        VTot += Vread;
                                          //Add the reading to the total
    }
   Vavg = (float)(VTot/10.000);
                                          //Average of 10 readings
    Vcal = (float)(Vavg/ADSCALE*ADREF);
    CTMUISrc = Vcal/RCAL;
                                          //CTMUISrc is in 1/100ths of uA
```

}

R/P-0) R/P-0	U-0	U-0	R/P-1	R/P-0	R/P-0	R/P-0			
IESC	FCMEN	_	PLLCFG ⁽¹⁾	FOSC3 ⁽²⁾	FOSC2 ⁽²⁾	FOSC1 ⁽²⁾	FOSC0 ⁽²⁾			
bit 7							bit 0			
Legend:		P = Program	P = Programmable bit							
R = Read	lable bit	W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value	e at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	red x = Bit is unknown				
bit 7	IESO: Interna 1 = Two-Spe	al/External Osc ed Start-up is e	cillator Switchov	ver bit						
	0 = Two-Spe	ed Start-up is c	lisabled							
bit 6	FCMEN: Fail	-Safe Clock M	onitor Enable b	it						
	1 = Fail-Safe	Clock Monitor	Clock Monitor is enabled							
	0 = Fail-Safe	Clock Monitor	is disabled							
bit 5	Unimplemer	nted: Read as	'0'							
bit 4	PLLCFG: 4x	PLL Enable bi	t(1)							
	1 = Oscillator 0 = Oscillator	r is multiplied b r is used direct	y 4 ly							
bit 3-0	FOSC<3:0>:	Oscillator Sele	ection bits ⁽²⁾							
	1101 = EC1	, EC oscillator	(low power, DC	C-160 kHz)						
	1100 = EC1	IO, EC oscillator	or with CLKOU		RA6 (low powe	r, DC-160 kHz)				
	1011 = EC2 1010 = EC2	IO. EC oscillator	or with CLKOU	T function on l	RA6 (medium p	ower.160 kHz-	16MHz)			
	0101 = EC3	, EC oscillator	(high power, 4	MHz-64 MHz)		,				
	0100 = EC3	IO, EC oscillat	or with CLKOU	T function on	RA6 (high powe	er, 4 MHz-64 M	Hz)			
	0011 = HS1	, HS oscillator	(medium powe	r, 4 MHz-16 M	lHz)					
	0010 = HS2	, HS OSCIIIATOR	(nign power, 10	5 MHZ-25 MHZ	<u>z)</u>					
0000 = LP oscillator										
	0111 = RC,	External RC oscillator								
	0110 = RCI	0110 = RCIO, External RC oscillator with CKLOUT function on RA6								
	1000 = INTI	O2, Internal R	C oscillator		ation or DAC					
	1001 = INII	UI, Internal R	s oscillator with		CUON ON RAG					
Note 1:	Not valid for the IN	NTIOx PLL mo	de.							
•						1				

REGISTER 28-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

2: INTIO+PLL can only be enabled by the PLLEN bit (OSCTUNE<6>). Other PLL modes can be enabled by either the PLLEN bit or the PLLCFG (CONFIG1H<4>) bit.

REGISTER 28-8: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)⁽²⁾

R/C-	1 R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	R/C-1	
CP7 ⁽¹	CP6 ⁽¹⁾	CP5 ⁽¹⁾	CP4 ⁽¹⁾	CP3	CP2	CP1	CP0	
bit 7							bit 0	
Legend:		C = Clearable	e bit					
R = Read	able bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 7	CP7: Code P	rotection bit ⁽¹⁾						
	1 = Block 7 is 0 = Block 7 is	not code-prote code-protecte	ected d					
bit 6	CP6: Code P	rotection bit ⁽¹⁾						
	1 = Block 6 is 0 = Block 6 is	not code-prote	ected d					
bit 5	CP5: Code P	rotection bit ⁽¹⁾	4					
	1 = Block 5 is	not code-prote	ected					
	0 = Block 5 is	code-protecte	d					
bit 4	CP4: Code P	rotection bit ⁽¹⁾						
	1 = Block 4 is 0 = Block 4 is	not code-prote code-protecte	ected d					
bit 3	CP3: Code P	rotection bit						
	1 = Block 3 is 0 = Block 3 is	not code-protecte	ected d					
bit 2	CP2: Code P	rotection bit						
	1 = Block 2 is 0 = Block 2 is	not code-prote code-protecte	ected d					
bit 1	CP1: Code P	rotection bit						
	1 = Block 1 is 0 = Block 1 is	not code-prote code-protecte	ected d					
bit 0	CP0: Code P	rotection bit						
	1 = Block 0 is	not code-prote	ected					
	0 = Block 0 is	code-protecte	d					
Note 1:	This bit is only ava	ilable on PIC1	BF67K90 and	I PIC18F87K90				

2: For the memory size of the blocks, refer to Figure 28-6.

29.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, the PIC18F87K90 family of devices also provides an optional extension to the core CPU functionality. The added features include eight additional instructions that augment Indirect and Indexed Addressing operations and the implementation of Indexed Literal Offset Addressing for many of the standard PIC18 instructions.

The additional features of the extended instruction set are enabled by default on unprogrammed devices. Users must properly set or clear the XINST Configuration bit during programming to enable or disable these features.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for Indexed Addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- Dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- Function Pointer invocation
- Software Stack Pointer manipulation
- Manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 29-3. Detailed descriptions are provided in **Section 29.2.2 "Extended Instruction Set"**. The opcode field descriptions in Table 29-1 (page 452) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

29.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of Indexed Addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. The MPASM[™] Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byte-oriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 29.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cycles	16-Bit Instruction Word				Status
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add Literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add Literal to FSR2 and Return	2	1110	1000	11kk	kkkk	None
CALLW		Call Subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ	
PUSHL	k	Store Literal at FSR2,	1	1110	1010	kkkk	kkkk	None
		Decrement FSR2						
SUBFSR	f, k	Subtract Literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract Literal from FSR2 and	2	1110	1001	11kk	kkkk	None
		Return						

TABLE 29-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

APPENDIX A: REVISION HISTORY

Revision A (September 2009)

Original data sheet for PIC18F87K90 family devices.

Revision B (April 2010)

Changes to Section 32.0 "Packaging Information", including new packaging diagrams. Changes to some of the values in Section 31.0 "Electrical Characteristics". The new Section 2.0 "Guidelines for Getting Started with PIC18FXXKXX Microcontrollers" has been added. Minor text edits throughout the document.

Revision C (March 2011)

Updated notes for clamping diodes, updated D080, D090, D121, D131 and D310. Also, updated the absolute maximum specification for the I/O pin and the maximum specification for the input/output clamp current. The 64-lead QFN packaging diagram was updated.

Revision D (July 2011)

Updated the specification values in **Section 31.0** "**Electrical Characteristics**". Minor text edits throughout the document.

APPENDIX B: MIGRATION FROM PIC18F85J90 AND PIC18F87J90 TO PIC18F87K90

Devices in the PIC18F87K90, PIC18F85J90 and PIC18F87J90 families are almost similar in their functions and features. Code can be migrated from the 18F85J90 to the PIC18F87K90 without many changes. The differences between the two device families are listed in Table B-1.

S

	303
SDIx	303
SDOx	303
SEC_IDLE Mode	59
SEC_RUN Mode	54
Secondary Oscillator (SOSC)	45
Selective Peripheral Module Control	60
Serial Data In (SDIV)	303
Serial Data III (SDIX)	303
Serial Data Out (SDOX)	303
SETE	185
Shoot-Through Current	267
Slave Select (SSx)	303
SI FFP	486
Software Simulator (MPLAB SIM)	503
Special Event Trigger See Compare (CCP Module)	000
Special Event Trigger, See Compare (ECCP Mode).	
Specifications	
AC (Timing) Characteristics	
Temperature and Voltage	524
Capture/Compare/PWM Requirements	
(ECCP1, ECCP2)	532
CLKO and I/O Requirements	527
Comparator	522
EUSART/AUSART Synchronous Receive	
Requirements	541
EUSART/AUSART Synchronous Transmission	
Requirements	541
Example SPI Mode Requirements (Master Mode,	
CKE = 0)	533
Example SPI Mode Requirements (Master Mode,	
CKE = 1)	534
Example SPI Mode Requirements (Slave Mode,	
Example SPI Mode Requirements (Slave Mode, CKE = 0)	535
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements	535
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1)	535 536
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements	535 536 525
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics	535 536 525 530
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode)	535 536 525 530 538
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements	535 536 525 530 538
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode)	535 536 525 530 538 537
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC)	535 536 525 530 538 537 526
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator	535 536 525 530 538 537 526 522
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Memory Programming Requirements	535 525 530 538 537 526 522 521
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Data Requirements	535 525 530 538 537 526 522 521 520 520
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements	535 525 530 538 537 526 522 521 540 539 526
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock	535 536 525 530 538 537 526 522 521 540 539 526
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock	535 536 525 530 538 537 526 522 521 540 539 526
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements	535 536 525 530 538 537 526 522 521 540 539 526 531 541
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements Ultra Low-Power Wake-up Voltage Reference	535 536 525 530 538 537 526 522 521 540 539 526 531 541 522
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements Ultra Low-Power Wake-up Voltage Reference SSPOV	535 536 525 530 538 537 526 522 521 540 539 526 531 541 522 339
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV	535 536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag.	535 536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPXTAT Register R/W Bit 318.	535 536 525 530 538 522 521 540 539 526 531 541 522 339 339
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPXSTAT Register R/W Bit. SSx	535 536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 339
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPX_TAT Register R/W Bit. SSX.	535 536 525 530 538 537 526 522 521 540 539 526 531 522 339 339 339 321 303 89
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPXSTAT Register R/W Bit. SSX.	535 536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 339 321 303 89 497
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPXSTAT Register R/W Bit. 318, SSx.	535 536 525 530 538 537 526 522 521 540 539 526 531 541 522 339 339 339 321 303 89 497
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPXSTAT Register R/W Bit. SSX. Stack Full/Underflow Resets SUBFSR. SUBFSR. SUBFWB.	535 536 525 530 538 537 526 522 521 540 539 526 531 542 339 339 339 321 303 89 497 486
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPX Status Flag. SSPX Status Flag. SSPX Status Flag. SSTAT Register R/W Bit. SSTAT Stack Full/Underflow Resets SUBFSR. SUBFSR. SUBFWB. SUBLW	535 536 525 530 538 537 526 522 521 540 539 526 531 522 339 339 339 321 303 89 497 486 487
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPXTAT Register R/W Bit. SSX. Stack Full/Underflow Resets SUBFSR. SUBFSR. SUBFWB. SUBLW SUBULNK. SUBULNK.	535 536 525 530 538 537 526 522 521 540 539 526 531 522 339 339 321 303 89 497 486 487 487
Example SPI Mode Requirements (Slave Mode, CKE = 0) Example SPI Slave Mode Requirements (CKE = 1) External Clock Requirements High/Low-Voltage Detect Characteristics I ² C Bus Data Requirements (Slave Mode) I ² C Bus Start/Stop Bits Requirements (Slave Mode) Internal RC Accuracy (INTOSC) Internal Voltage Regulator Memory Programming Requirements MSSP I ² C Bus Data Requirements MSSP I ² C Bus Start/Stop Bits Requirements PLL Clock Timing Timer0 and Timer1 External Clock Requirements. Ultra Low-Power Wake-up Voltage Reference SSPOV SSPOV Status Flag. SSPXSTAT Register R/W Bit. 318, SSx. Stack Full/Underflow Resets SUBFSR. SUBFSR. SUBFN SUBLW SUBULNK SUBULNK SUBWF S	535 536 525 530 538 537 526 522 521 540 539 526 531 522 339 339 321 303 89 497 486 487 487

Т

Table Pointer Operations (table)	114
Table Reads/Table Writes	89
	400
	409
TBLWT	490
Timer0	183
Associated Registers	185
Operation	18/
	405
Overnow Interrupt	185
Prescaler	185
Switching Assignment	185
Prescaler Assignment (PSA Bit)	185
Proceedor Folgett (TOPS2:TOPS0 Bits)	195
	105
Reads and Writes in 16-Bit Mode	184
Source Edge Select (T0SE Bit)	184
Source Select (T0CS Bit)	184
Timer1	187
16 Pit Dood/Write Mode	101
	191
Associated Registers	197
Clock Source Selection	189
Gate	193
Interrunt	192
Oneration	400
Operation	189
Oscillator	187
Resetting, Using the ECCP Special	
Event Trigger	193
SOSC Oscillator	101
	100
	192
Use as a Clock Source	192
TMR1H Register	187
TMR1L Register	187
Timer2	199
Associated Registers	200
	200
Interrupt	200
Operation	199
Output	200
PR2 Register	248
TMR12 to PR12 Match Flag (TMR12IE Bit)	138
TMP2 to PP2 Match Interrupt	2/10
	240
1 Imer3/5/7	201
16-Bit Read/Write Mode	206
Associated Registers	211
Gates	206
Operation	205
	200
Overnow Interrupt 20	1,210
SOSC Oscillator	201
Use as a Clock Source	206
Special Event Trigger (ECCP)	210
TMRxH Register	201
TMPvI Register	201
	201
Timer4/6/8/10/12	213
Associated Registers	215
Interrupt	215
Operation	
Output	215
	210
Outputs, PVVIVI TIME Base for ECCP	215
Postscaler. See Postscaler, Timer4/6/8/10/12.	
Prescaler. See Prescaler, Timer4/6/8/10/12.	
PRx Register	213
TMRx Register	213
TMRy to PRy Match Interrunt 21	3 215
T WITT TO T TTA WATCH THE TUPT	0, 210

Type-A in 1/2 MUX, 1/3 Bias Drive	
Type-A in 1/3 MUX, 1/2 Bias Drive	
Type-A in 1/3 MUX, 1/3 Bias Drive	
Type-A in 1/4 MUX, 1/3 Bias Drive	
Type-A/Type-B in Static Drive	
Type-B in 1/2 MUX, 1/2 Bias Drive	
Type-B in 1/2 MUX, 1/3 Bias Drive	
Type-B in 1/3 MUX, 1/2 Bias Drive	
Type-B in 1/3 MUX, 1/3 Bias Drive	
Type-B in 1/4 MUX, 1/3 Bias Drive	
Timing Diagrams and Specifications	
Reset, Watchdog Timer, Oscillator Start-up	
Timer, Power-up Timer and Brown-out	
Reset Requirements	
Top-of-Stack (TOS) Access	
TSTFSZ	
Two-Speed Start-up	425, 444
IESO (CONFIG1H), Internal/External	
Oscillator Switchover Bit	
Two-Word Instructions	
Example Cases	91
TXSTAx Register	
BRGH Bit	

U

Ultra Low-Power Regulator	
In Sleep	443
Ultra Low-Power Wake-up	
Exit Delay (table)	67
Ultra Low-Power Wake-up (ULPWU)	
Overview	
W	
Watchdog Timer (WDT)	425, 440
Associated Registers	441
Control Register	441
During Oscillator Failure	445
Programming Considerations	440
WCOL	337, 338, 339, 342
WCOL Status Flag	337, 338, 339, 342
WWW Address	566
х	
XORLW	491
XORWF	