

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f65k90-i-mrrsl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name		Pin Number	Pin	Buffer	Description			
PII	i name	TQFP	Туре	Туре	Description			
RB6/KBI2	/PGC	52						
RB6			1/0	TTL	Digital I/O.			
KBI2			1	TTL	Interrupt-on-change pin.			
PGC			1/0	ST	In-Circuit Debugger and ICSP programming clock p			
RB7/KBI3	/PGD	47						
RB7			1/0	TTL	Digital I/O.			
KBI3			I	TTL	Interrupt-on-change pin.			
PGD			I/O	ST	In-Circuit Debugger and ICSP programming data pin			
Legend:	TTL = TTL co	ompatible inpu	ıt		CMOS = CMOS compatible input or output			
	ST = Schmi	tt Trigger inp	ut wit	h CMOS	levels Analog = Analog input			
	I = Input				O = Output			
	P = Powe $I^2C = I^2C/SN$				OD = Open-Drain (no P diode too)			
Note 1:	Default assign	ment for ECC	P2 wl	hen the (CCP2MX Configuration bit is set.			

TABLE 1-4:	PIC18F8XK90	PINOUT I/O	DESCRIPTIONS (CONTINUED)	

2: Alternate assignment for ECCP2 when the CCP2MX Configuration bit is cleared.

3: Not available on PIC18F65K90 and PIC18F85K90 devices.

4: The CCP6, CCP7, CCP8 and CCP9 pin placement depends on the ECCPMX Configuration bit setting.

4.7 Ultra Low-Power Wake-up

The Ultra Low-Power Wake-up (ULPWU) on pin, RAO, allows a slow falling voltage to generate an interrupt without excess current consumption.

To use this feature:

- 1. Charge the capacitor on RAO by configuring the RAO pin to an output and setting it to
- 2. Stop charging the capacitor by configuring RAO as an input.
- 3. Discharge the capacitor by setting the ULPEN and ULPSINK bits in the WDTCON register.
- 4. Configure Sleep mode.
- 5. Enter Sleep mode.

When the voltage on RAO drops below, \forall he device wakes up and executes the next instruction.

This feature provides a low-power technique for periodically waking up the device from Sleep mode.

The time-out is dependent on the discharge time of the RC circuit on RAO.

When the ULPWU module wakes the device from Sleep mode, the ULPLVL bit (WDTCON<5>) is set. Software can check this bit upon wake-up to determine the wake-up source.

See Example 4-1 for initializing the ULPWU module.

EXAMPLE 4-1: ULTRA LOW-POWER WAKE-UP INITIALIZATION

	//*****
	//Charge the capacitor on RAO //***********************************
TRISAbits.TR	ISAO = O;
PORTAbits.R	AO = 1;
for(i = 0; i <	< 10000; i++) Nop(); //***********************************
	//Stop Charging the capacitor //on RAO
	//*******
TRISAbits.TR	(ISAO = 1;
	//*******
	//Enable the Ultra Low Power
	//Wakeup module and allow
	<pre>//capacitor discharge</pre>
	//********
	s.ULPEN = 1;
WDTCONbits	s.ULPSINK = 1;
	//For Sleep
OSCCONbits	
	//Enter Sleep Mode
	//
Sleep();	
	//for sleep, execution will
	//resume here

A series resistor, between RAO and the external capacitor, provides overcurrent protection for the RAO/ANO/ ULPWU pin and enables software calibration of the time-out (se Figure 4-9.

A timer can be used to measure the charge time and discharge time of the capacitor. The charge time can then be adjusted to provide the desired delay in Sleep. This technique compensates for the affects of temperature, voltage and component accuracy. The peripheral can also be configured as a simple programmable Low-Voltage Detect (LVD) or temperature sensor.

Note: For more information, set N 879, "Using the Microchip Ultra Low-Power Wake-up Module" (DS00879).

TABLE 5-2: INITIALIZATION CONDITIONS FOR ALL REGISTERS						
Register	Applicable Devices	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets, CM Resets	Wake-up via WDT or Interrupt		
TOSU	PIC18F6XK90 PIC18F8XK90	0 00000 0000		0 uuuu ⁽¹⁾		
TOSH	PIC18F6XK90 PIC18F8XK90	0000 0000	0000 0000	นนนน นน์ปัน		
TOSL	PIC18F6XK90 PIC18F8XK90	0000 0000	0000 0000	นนนน นน์ปัน		
STKPTR	PIC18F6XK90 PIC18F8XK9C	00-0 0000	uu-0 0000	uu-u uuuú ¹⁾		
PCLATU	PIC18F6XK90 PIC18F8XK90	00000	0 0000	u uuuu		
PCLATH	PIC18F6XK90 PIC18F8XK90	0000 0000	0000 0000	<u>uuuu</u> uuuu		
PCL	PIC18F6XK90 PIC18F8XK90	0000 0000	0000 0000	PC + 2 ⁽²⁾		
TBLPTRU	PIC18F6XK90 PIC18F8XK9C	00 0000	00 0000	uu uuuu		
TBLPTRH	PIC18F6XK90 PIC18F8XK9C	0000 0000	0000 0000	<u>uuuu</u> uuuu		
TBLPTRL	PIC18F6XK90 PIC18F8XK9C	0000 0000	0000 0000	<u>uuuu</u> uuuu		
TABLAT	PIC18F6XK90 PIC18F8XK9C	0000 0000	0000 0000	<u>uuuu</u> uuuu		
PRODH	PIC18F6XK90 PIC18F8XK90) xxxx xxxx	uuuu uuuu	uuuu uuuu		
PRODL	PIC18F6XK90 PIC18F8XK90) xxxx xxxx	uuuu uuuu	uuuu uuuu		
INTCON	PIC18F6XK90 PIC18F8XK90) 0000 000x	0000 000u	นนนน นนษีน		
INTCON2	PIC18F6XK90 PIC18F8XK9	0 1111 1111	1111 1111	uuuu uuuu ⁽³⁾		
INTCON3	PIC18F6XK90 PIC18F8XK90	1100 0000	1100 0000	นนนน นนษ์ป		
INDFO	PIC18F6XK90 PIC18F8XK9	O N/A	N/A	N/A		
POSTINCO	PIC18F6XK90 PIC18F8XK90	D N/A	N/A	N/A		
POSTDECO	PIC18F6XK90 PIC18F8XK90	N/A	N/A	N/A		
PREINCO	PIC18F6XK90 PIC18F8XK90	N/A	N/A	N/A		
PLUSWO	PIC18F6XK90 PIC18F8XK9	O N/A	N/A	N/A		
FSROH	PIC18F6XK90 PIC18F8XK90	0000 0000	0000	uuuu		
FSROL	PIC18F6XK90 PIC18F8XK90) xxxx xxxx	uuuu uuuu	uuuu uuuu		
WREG	PIC18F6XK90 PIC18F8XK90) xxxx xxxx	uuuu uuuu	uuuu uuuu		
INDF1	PIC18F6XK90 PIC18F8XK90	N/A	N/A	N/A		
POSTINC1	PIC18F6XK90 PIC18F8XK90	N/A	N/A	N/A		
POSTDEC1	PIC18F6XK90 PIC18F8XK9C	N/A	N/A	N/A		
PREINC1	PIC18F6XK90 PIC18F8XK90	N/A	N/A	N/A		
PLUSW1	PIC18F6XK90 PIC18F8XK90	N/A	N/A	N/A		
FSR1H	PIC18F6XK90 PIC18F8XK90	0000	0000	uuuu		
FSR1L	PIC18F6XK90 PIC18F8XK90) xxxx xxxx	uuuu uuuu	uuuu uuuu		
BSR	PIC18F6XK90 PIC18F8XK90	0000 0000	0000	uuuu		

u = unchangedx = unknown₇ = unimplemented bit, read $a_{3,q}$ = value depends on condition. Legend: Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt, and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008br 0018h).

3: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

4: See Table 5-1 for the Reset value for a specific condition.

NOTES:

R/W-0	R/W-O	R-O	R-O	R/W-O	R/W-O	R/W-C) R/W-
TMR5GIE	LCDIE ⁽¹⁾	RC2IE	TX2IE	CTMUIE	CCP2IE	CCP1IE	RTCCIE
bit 7							bit C
Legend:							
R = Readabl		W = Writab			plemented bit,		
-n = Value a	at POR	1 = Bit is	set	0 = Bit	is cleared	x = Bit	is unknown
bit 7	TMR5GIE: Tir	mer5 Gate Int	errupt Enable	bit			
	1 = Enabled O = Disabled	l					
bit 6	LCDIE: LCD I	nterrupt Enab	ole bit				
	1 = Enabled O = Disabled	l					
bit 5	RC2IE: AUSA	RT Receive In	terrupt Enabl	e bit			
	1 = Enabled O = Disabled	l					
bit 4	TX2IE: AUSA	RT Transmit I	nterrupt Enab	ole bit			
	1 = Enabled O = Disabled	l					
bit 3	CTMUIE: CTM	MU Interrupt	Enable bit				
	1 = Enabled O = Disabled						
bit 2	CCP2IE: ECC	P2 Interrupt	Enable bit				
	1 = Enabled O = Disabled						
bit 1	CCP1IE: ECC	P1 Interrupt	Enable bit				
	1 = Enabled O = Disabled						
bit O	RTCCIE: RTC	C Interrupt E	nable bit				
	1 = Enabled						
	0 = Disabled						

REGISTER 10-12: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

Note 1: This bit is valid when the Type-B waveform with Non-Static mode is selected.

REGISTER 10-13: PIE4: PERIPHERAL INTERRUPT ENABLE REGISTER 4

R/W-O	R/W-O	R/W-O	R/W-O	R/W-O	R/W-0	R/W	-0 R/W
CCP10IE ⁽¹⁾	CCP9IE ⁽¹⁾	CCP8IE	CCP7IE	CCP6IE	CCP5IE	CCP4IE	CCP3IE
bit 7							bit C
Legend:							
R = Readable	bit	W = Writab	e bit	U = Unim	plemented bit,	read as O	
-n = Value at	POR	1 = Bit is	set	O = Bit	is cleared	x = Bi	t is unknown
		. Dit is					
bit 7-0	CCP10IE:CCF	P3IE: CCP<10	:3> Interrupt	Enable bits			

CCP10IE:CCP3IE: CCP<10:3> Interrupt Enable bits

1 = Enabled

O = Disabled

Note 1: CCP10IE and CCP9IE are unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-
TMR7GIP ⁽¹⁾	TMR12IP ⁽¹⁾	TMR10IP ⁽¹⁾	TMR8IP	TMR7IP ⁽¹⁾	TMR6IP	TMR5IP	TMR4IP
bit 7					-	-	bit (
Lagand							
Legend: R = Readable	bi+	W = Writable	a hit		alamantad bit	read as 0	
					plemented bit,		
-n = Value at	PUR	1 = Bit is s	set	0 = BII	is cleared	X = BIL	is unknown
bit 7	TMR7GIP: TI	MR7 Gate Inter	rupt Priorit	√bit			
2.12	1 = High pri			<i>J</i> ~			
	O = Low pri						
bit 6	TMR12IP: TN	/IR12 to PR12	Match Inter	rupt Priority I	oit		
	1 = High pri						
	0 = Low pri	5					
bit 5		/IR10 to PR10	Match Inter	rupt Priority I	oit		
	1 = High pri						
	0 = Low pri	5					
bit 4		R8 to PR8 Mat	ich Interrup	t Priority bit			
	1 = High pri 0 = Low pri						
bit 3		R7 Overflow In	terrunt Pric	orit ⁽¹⁾ bit			
Sit 0	1 = High pri		torrupt i no	Siriy Siri			
	0 = Low pri						
bit 2	TMR6IP: TM	R6 to PR6 Mat	tch Interrup	t Priority bit			
	1 = High pri	iority		-			
	0 = Low pri	ority					
bit 1		R5 Overflow In	iterrupt Pric	ority bit			
	1 = High pri						
	0 = Low pri	•					
bit O		R4 to PR4 Mat	tch Interrup	t Priority bit			
	1 = High pri 0 = Low pri						
		onty					

REGISTER 10-20: IPR5: PERIPHERAL INTERRUPT PRIORITY REGISTER 5

Note 1: Unimplemented in devices with a program memory of 32 Kbytes (PIC18FX5K90).

15.5.4 TIMER3/5/7 GATE SINGLE PULSE MODE

When Timer3/5/7 Gate Single Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer3/5/7 Gate Single Pulse mode is first enabled by setting the TxGSPM bit (TxGCON<4>). Next, the TxGGO/TxDONE bit (TxGCON<3>) must be set.

The Timer3/5/7 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the TxGGO/TxDONE bit will automatically be cleared.

No other gate events will be allowed to increment Timer3/5/7 until the TxGGO/TxDONtet is once again set in software.

<u>Clearing</u> the TxGSPM bit also will clear the TxGGO/ TxDONE bit. (For timing details, seigure 15-4)

Simultaneously enabling the Toggle mode and the Single Pulse mode will permit both sections to work together. This allows the cycle times on the Timer3/5/7 gate source to be measured. (For timing details, see Figure 15-5)

FIGURE 15-4: TIMER3/5/7 GATE SINGLE PULSE MODE

R/W-O	R/W-0	R/W-O	R/W-O	R/W-C) R/W	-0 R/	W-O	R/W-O
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASKO	ALRMPTR1	ALRMP	TRO
bit 7								bit C
Legend:								
Legenu. R = Readabl€	hit	W = Writabl	e hit	II – Ilnim	nlemented h	it, read as C)	
-n = Value at		1 = Bit is			is cleared		Bit is unk	nown
		i bitio	501	<u> </u>		~		
bit 7	ALRMEN: Ala	arm Enable bit						
		enabled (clea	red automat	ically after a	n alarm even	t whenever A	ALRMPTR-	<0@> =
	and CHIN 0 = Alarm is							
bit 6	CHIME: Chim							
		enabled; ALR	MPTR<1:0>	oits are allow	ved to roll ov	ver from 00h	to FFh	
		disabled; ALF						
bit 5-2	AMASK<3:0>	: Alarm Mask	Configuratio	on bits				
		y half second						
	0001 = Ever	y second y 10 seconds						
	0010 = Ever							
		y 10 minutes						
	0101 = Ever							
	0110 = 0nce 0111 = 0nce							
	1000 = 0000							
		e a year (exce	pt when con	nfigured for F	ebruatly on the	every four	/ears)	
		erved Do not		-	·			
		erved Do not						
oit 1-0		0>: Alarm Val	-					
		e correspond e ALRMPTR<1						
	ALRMVALH:							
	OO = ALRMM	IN						
	O1 = ALRMW							
	10 = ALRMM							
	11 = Unimple ALRMVALL:	menteu						
	ALINIVIVALL.							
	00 = ALRMSE	EC						
	00 = ALRMSE 01 = ALRMHI							

18.1.2 OPEN-DRAIN OUTPUT OPTION

When operating in Output mode (the Compare or PWM modes), the drivers for the CCPx pins can be optionally configured as open-drain outputs. This feature allows the voltage level on the pin to be pulled to a higher level through an external pull-up resistor and allows the output to communicate with external circuits without the need for additional level shifters.

The open-drain output option is controlled by the CCPxOD bits (ODCON2<7:2>). Setting the appropriate bit configures the pin for the corresponding module for open-drain operation. Every 4th rising edge Every 16th rising edge The event is selected by the mode select bits, CCP4M<3:0> (CCP4CON<3:0>). When a capture is

18.1.3 PIN ASSIGNMENT FOR CCP6, CCP7, CCP8 AND CCP9

The pin assignment for CCP6/7/8/9 (Capture input, Compare and PWM output) can change, based on the device configuration.

The ECCPMX Configuration bit (CONFIG3H<1>) determines the pin to which CCP6/7/8/9 is multiplexed. The pin assignments for these CCP modules are given in Table 18-4

TABLE 18-4: CCP PIN ASSIGNMENT

ECCPMX		Pin Ma	pped To	
Value	CCP6	CCP7	CCP8	CC9
1 (Default)	RE6	RE5	RE4	RE3
0	RH7	RH6	RH5	RH4

18.2 Capture Mode

In Capture mode, the CCPR4H:CCPR4L register pair captures the 16-bit value of the TMR1 or TMR3 register when an event occurs on the CCP4 pins. An event is defined as one of the following:

Every falling edge Every rising edge Every 4th rising edge Every 16th rising edge

The event is selected by the mode select bits, CCP4M<3:O> (CCP4CON<3:O>). When a capture is made, the interrupt request flag bit, CCP4IF (PIR4<1>), is set. (It must be cleared in software.) If another capture occurs before the value in CCPR4 is read, the old captured value is overwritten by the new captured value.

Figure 18-1shows the Capture mode block diagram.

18.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

Note:	If RC1 or RE7 is configured as a CCF4
	output, a write to the PORT causes a
	capture condition.

18.2.2 TIMER1/3/5/7 MODE SELECTION

For the available timers (1/3/5/7) to be used for the capture feature, the used timers must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work.

The timer to be used with each CCP module is selected in the CCPTMRSx registers. (SeSection 18.1.1 CCP Modules and Timer Resources .)

Details of the timer assignments for the CCP modules are given inTable 18-2 and Table 18-3

19.0 ENHANCED CAPTURE/COMPARE/PWM (ECCP) MODULE

PIC18F87K90 family devices have three Enhanced Capture/Compare/PWM (ECCP) modules: ECCP1, ECCP2 and ECCP3. These modules contain a 16-bit register, which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register. These ECCP modules are upward compatible with CCP

Note: Throughout this section, generic references are used for register and bit names that are the same, except for an x variable that indicates the item s association with the ECCP1, ECCP2 or ECCP3 module. For example, the control register is named CCPxCON and refers to CCP1CON CCP2CON and CCP3CON. ECCP1, ECCP2 and ECCP3 are implemented as standard CCP modules with Enhanced PWM capabilities. These include:

Provision for two or four output channels

Output Steering modes

Programmable polarity

Programmable dead-band control

Automatic shutdown and restart

The enhanced features are discussed in detail in Section 19.4 PWM (Enhanced Mode).

The ECCP1, ECCP2 and ECCP3 modules use the control registers, CCP1CON, CCP2CON and CCP3CON. The control registers, CCP4CON through CCP10CON, are for the CCP4 through CCP10 modules.

REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-O	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	BORPWR1 ⁽¹⁾	BORPWRO ⁽¹⁾	BORV1 ⁽¹⁾	BORVO ⁽¹⁾	BOREN1 ⁽²⁾	BORENO ⁽²⁾	PWRTEN ⁽²⁾
bit 7							bit C

Legend:	P = Programmable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as 0
-n = Value at POR	1 = Bit is set	O = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as O
bit 6-5	BORPWR<1:0>: BORMV Power Level bift
	11 = ZPBORVMV instead of BORMV is selected
	10 = BORMV is set to high-power level
	01 = BORMV is set to medium-power level
	00 = BORMV is set to low-power level
bit 4-3	BORV<1:0>: Brown-out Reset Voltage blts
	11 = VBORMV is set to 1.8V
	10 = VBORMV is set to 2.0V
	01 = VBORMV is set to 2.7V
	00 = VBORMV is set to 3.0V
bit 2-1	BOREN<1:0>: Brown-out Reset Enable bits
	11 = Brown-out Reset is enabled in hardware only (SBOREN is disabled)
	10 = Brown-out Reset is enabled in hardware only and disabled in Sleep mode (SBOREN is only a set provide and controlled by configurate (SBOREN is concluded)
	01 = Brown-out Reset is enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset is disabled in hardware and software
bit O	PWRTEN : Power-up Timer Enable bit
	1 = PWRT is disabled
	O = PWRT is enabled

- Note 1: For the specifications, seection 31.1 DC Characteristics: Supply Voltage PIC18F87K90 Family (Industrial/Extended).
 - 2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

disabled)

TABLE 29-2:	PIC18F87K90 FAMILY INSTRUCTION SET

Mnemo	onic,	Description	Cureles	16-	Bit Inst	ruction	Word	Status	Notos
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIE	ented c	PERATIONS							
ADDWF		Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1, 2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000		ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if O	1 (2 or 3	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ		Decrement f, Skip if Not O	1 (2 or 3	0100	11da	ffff	ffff	None	1, 2
INCF		Increment f	1	0010		ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if O	1 (2 or 3	0011	11da	ffff	ffff	None	4
INFSNZ		Increment f, Skip if Not O	1 (2 or 3			ffff	ffff	None	1, 2
IORWF		Inclusive OR WREG with f	1	0001		ffff	ffff	Z, N	1, 2
MOVF		Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF		Move £ (source) to 1st wor	12	1100		ffff	ffff	None	
	·s/ ·u	f _d (destination) 2nd wor		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1		111a	ffff	ffff	None	
MULWF		Multiply WREG with f	1	0000		ffff	ffff	None	1, 2
NEGF		Negate f	1	0110		ffff	ffff	C, DC, Z, OV, N	•, =
RLCF		Rotate Left f through Carry	1	0011		ffff	ffff	C, Z, N	1, 2
RLNCF		Rotate Left f (No Carry)	1	0100		ffff	ffff	Z, N	., 2
RRCF		Rotate Right f through Carry	1		00da	ffff	ffff	C, Z, N	
RRNCF		Rotate Right f (No Carry)	1		00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110		ffff	ffff	None	1, 2
SUBFWB		Subtract f from WREG with	1	0101		ffff	ffff	C, DC, Z, OV, N	1, 2
50DI WD	1, u, u	Borrow		0101	orua			0, 00, 2, 00, 1	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		Borrow							
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if O	1 (2 or 3	0110	011a	ffff	ffff	None	1, 2
XORWF		Exclusive OR WREG with f	1	0001		ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself(NeV), PORTB, 1, 0), the value used will be that value present on the pins themselves: example, if the data latch1isfor a pin configured as input and is driven low by an external device, the data will be written backOwith a

2: If this instruction is executed on the TMRO register (and, where applicable prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as NoP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a unless the first word of the instruction retrieves in the second word of these 16 bits. This ensures that all program memory locations have a valid instruction.

TABLE 29-2: PIC18F87K90 FAMILY INSTRUCTION SET (CONTINUED)									
Mnemo	onic,	Description	Quala	16-l	3it Insti	ruction V	Word	Status	Neter
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
BIT-ORIEN	ITED OP	ERATIONS							
BCF	f, b, a	Bit Clear f	1	1001	bbba	ffff	ffff	None	1, 2
BSF	f, b, a	Bit Set f	1	1000	bbba	ffff	ffff	None	1, 2
BTFSC	f, b, a	Bit Test f, Skip if Clear	1 (2 or 3)1011	bbba	ffff	ffff	None	3, 4
BTFSS	f, b, a	Bit Test f, Skip if Set	1 (2 or 3)1010	bbba	ffff	ffff	None	3, 4
BTG	f, b, a	Bit Toggle f	1	0111	bbba	ffff	ffff	None	1, 2
CONTROL	OPERA	TIONS							
BC	n	Branch if Carry	1 (2)	1110	0010	nnnn	nnnn	None	
BN	n	Branch if Negative	1 (2)		0110	nnnn	nnnn	None	
BNC	n	Branch if Not Carry	1 (2)	1110	0011	nnnn	nnnn	None	
BNN	n	Branch if Not Negative	1 (2)	1110	0111	nnnn	nnnn	None	
BNOV	n	Branch if Not Overflow	1 (2)		0101	nnnn	nnnn	None	
BNZ	n	Branch if Not Zero	1 (2)	1110	0001	nnnn	nnnn	None	
BOV	n	Branch if Overflow	1 (2)	1110	0100	nnnn	nnnn	None	
BRA	n	Branch Unconditionally	2	1101	Onnn	nnnn	nnnn	None	
BZ	n	Branch if Zero	1 (2)	1110	0000	nnnn	nnnn	None	
CALL	n, s	Call Subroutine 1st word	2	1110	110s	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
CLRWDT		Clear Watchdog Timer	1	0000	0000	0000	0100	TO, PD	
DAW		Decimal Adjust WREG	1		0000	0000	0111	С	
GOTO	n	Go to Address 1st word	2	1110	1111	kkkk	kkkk	None	
		2nd word		1111	kkkk	kkkk	kkkk		
NOP		No Operation	1		0000	0000	0000	None	
NOP		No Operation	1	1111	XXXX	XXXX	XXXX	None	4
POP			1	0000	0000	0000	0110	None	
PUSH		Push Top of Return Stack (TOS)	1	0000	0000	0000	0101	None	
RCALL	n	Relative Call	2	1101		nnnn		None	
RESET		Software Device Reset	1		0000	1111		All	
RETFIE	S	Return from Interrupt Enable	2	0000	0000	0001	000s	gie/gieh, Peie/giel	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
RETURN	S	Return from Subroutine	2		0000	0001	001s	None	
SLEEP		Go into Standby mode	1		0000			TO, PD	

Note 1: When a PORT register is modified as a function of itself(ADYF PORTB, 1, 0), the value used will be that value present on the pins themselves example, if the data latch1isfor a pin configured as input and is driven low by an external device, the data will be written backOwith a

2: If this instruction is executed on the TMRO register (and, where applicable prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed asNaOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

ADDWFC	ADD W and Carry bit to f	ANDLW	AND Literal with W		
Syntax:	ADDWFC f {,d {,a}}	Syntax:	ANDLW k		
Operands:	0 df d255	Operands:	0 dk d255		
	d • [0,1]	Operation:	(W) .AND. ko W		
Operation: Status Affected: Encoding: Description:	a • [0,1] (W) + (f) + (G) dest N,OV, C, DC, Z OO10 OOda ffff ffff Add W, the Carry flag and data memory location f. If d Os the result is placed in W. If d is, the result is placed in data memory location f. If a isO, the Access Bank is selected. If a isO, the Access Bank is selected. If a isO and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing	Status Affected: Encoding: Description: Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instri	N, Z OOOO 1011 kkkk kkkk The contents of W are ANDed with the 8-bit literal k. The result is placed in W 1 1 Q2 Q3 Q4 Read literal Process Write to k Data W		
	mode whenever fd95 (5Fh). See Section 29.2.3 Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode for details.	W After Instruc W	= A3h		
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1 Decode	Q2Q3Q4ReadProcessWrite toregister fDatadestination				
Example:	ADDWFC REG, O, 1				
Before Instru Carry bi REG W After Instruc Carry bi REG W	t = 1 = 02h = 4Dh tion				

31.5.2 TIMING CONDITIONS

The temperature and voltages specifiedTable 31-5 apply to all timing specifications unless otherwise noted.Figure 31-3specifies the load conditions for the timing specifications.

TABLE 31-5: TEMPERATURE AND VOLTAGE SPECIFICATIONS AC

	Standard Operating Conditions (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature -40°CTA d+85°C for industrial					
AC CHARACTERISTICS	-40°C dTA d+125°C for extended					
	Operating voltage No range as described infection 31.1 and Section 31.3.					

FIGURE 31-3: LOAD CONDITIONS FOR DE VICE TIMING SPECIFICATIONS

